天津市太平村中学人教版八年级数学下册 第19章一次函数复习教案
- 格式:doc
- 大小:72.00 KB
- 文档页数:5
人教版数学八年级下册教学设计:第十九章一次函数小结复习(二)一. 教材分析人教版数学八年级下册第十九章一次函数小结复习(二)的内容包括一次函数的性质、一次函数的图像和一次函数的应用。
本章主要让学生掌握一次函数的基本概念和性质,能够绘制一次函数的图像,并能够运用一次函数解决实际问题。
二. 学情分析学生在之前的学习中已经掌握了一次函数的基本概念和性质,能够绘制一次函数的图像,并能够解决一些简单的一次函数问题。
但是,对于一次函数的深入理解和灵活运用还存在一定的困难,特别是在解决实际问题时,不能很好地将一次函数与实际问题相结合。
三. 教学目标1.理解一次函数的性质,能够熟练地绘制一次函数的图像。
2.能够运用一次函数解决实际问题,提高学生的数学应用能力。
3.培养学生的团队协作能力和自主学习能力。
四. 教学重难点1.一次函数的性质和图像的绘制。
2.将一次函数应用于实际问题的解决。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探索和解决问题来掌握一次函数的知识。
2.利用多媒体教学手段,展示一次函数的图像,帮助学生直观地理解一次函数的性质。
3.学生进行小组讨论和合作,培养学生的团队协作能力。
4.布置适量的练习题,让学生在实践中巩固一次函数的知识。
六. 教学准备1.准备一次函数的图像和实际问题的案例。
2.准备相关的教学课件和教学素材。
3.准备练习题和答案。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾一次函数的基本概念和性质,激发学生的学习兴趣。
2.呈现(10分钟)教师通过展示一次函数的图像,让学生直观地感受一次函数的性质,引导学生理解一次函数的图像与一次函数的系数之间的关系。
3.操练(15分钟)教师给出一些实际问题,让学生运用一次函数的知识解决。
学生分组讨论和合作,教师巡回指导。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成,检查学生对一次函数知识的掌握情况。
5.拓展(10分钟)教师引导学生思考一次函数在实际生活中的应用,让学生举例说明一次函数的应用场景,并学生进行小组讨论。
19.章一次函数总复习教案【教材分析】【教学流程】8.汽车由重庆驶往相距400 km的成都,如果汽车的平均速度是100 km/h,那么汽车距成都的路程s(km)与行驶时间t(h)的函数关系用图象表示为( )总结出本节的知识结构综合运用例1..已知一次函数的图象经过点(0,1),且图象与x轴、y轴所围成的三角形的面积为2,求一次函数的解析式.解析首先设出函数解析式,由图象过点(0,1)可得b=1.然后根据三角形面积公式列出关于k的方程求得k值.教师出示例题学生自主探究合作交流,展示评价教师适时点拨例1.解:设所求的一次函数解析式为y=kx+b.因为直线y=kx+b经过点(0,1),所以b=1.所以y=kx+1.令y=0,则1xk=-.所以直线y=kx+l与x轴的交点坐标为1(,0)k-所以11122k⨯⨯-=,解得例2.如图所示,是某公司一电热淋浴器水箱的水量y(L)与供水时间x(min)的函数关系.(1)求y与x的函数关系式;(2)在(1)的条件下,求在30 min时水箱有多少L水?解析(1)由图象可知y与x成一次函数关系,设出解析式列方程组求解;(2)求当x=30时的函数值即得答案.例3..如图,l1、l2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(小时)的函数图象,假设两种灯泡的使用寿命都是2 000小时,照明效果一样.(1)根据图象分别求出l1、l2的函数关系式;(2)当照明时间为多少时,两种灯的费用相等? (3)小亮房间计划照明2 500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).k=±14所以一次函数的解析式为11y x1y x144=+=-+或例2. (1)设y与x之间的函数关系式为y=kx+b.因为直线y=kx+b过点(10,50)和点(50,150),所以10k b50k 2.5 50k b150b25 +==⎧⎧⎨⎨+==⎩⎩解得所以y=2.5x+25(2)当x=30时,y=2.5×30+25=100(L),即30 min时水箱有100 L水例3.解:(1)设直线l1的解析式为y1=k1x+b1,因为直线l1经过点(0,2)和点(500,17),所以11111 17500k b k0.03 b2b2=+=⎧⎧⎨⎨==⎩⎩解得所以y1=0.03x+2(0≤x≤2000).同理求得直线l2的解析式l2=0.012x+20(0≤x≤2 000).(2)当y1=y2时,两种灯的费用相等.所以0.03x+2=0.012x+20.解得x=1 000.解析(1)由图象可得知l1、l2分别经过两点,因此设出解析式列出方程组可求得函数解析式;(2)列出关于x的方程;(3)根据所求出的函数关系式设计用灯方法..所以当照明时间为1 000小时时,两种灯的费用相等.(3)节能灯使用2 000小时,白炽灯使用500小时.矫正补偿1.已知一次函数的图象经过A(2,-1)和B两点,其中点B是函数y=-x+3与y轴的交点,求这个一次函数的解析式.解析已知两点求一次函数的解析式最常用的方法是待定系数法,因此这就需要我们先求出点B的坐标. 函数与y轴的交点就是求x=0时,y的值.2.如图,直线l1的函数解析式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的函数解析式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.教师出示问题,学生自主探究、回答、师生共同纠正.1. 解当x=0时,函数y=-x+3的值为3,所以点B的坐标为(0,3).设所求一次函数的解析式为y=kx+b,把A(2,-1),B(0,3)代入,得即所求函数的解析式为y=-2x+3.2.分析:(1)令y=-3x+3=0,求出x可得点D的坐标;(2)设直线l2的解析式为y=kx+b,把A,B的坐标代入求出k,b可得;(3)先求出点C的坐标,再求S△ADC;(4)在l2上且到x轴的距离等于点C纵坐标的相反数的点即为点P.解:(1)由y=-3x+3,令y=0,得-3x+3=0,∴x=1,∴D(1,0)(2)y=32x-6(3)由⎩⎪⎨⎪⎧y=-3x+3,y=32x-6,解得⎩⎨⎧x =2,y =-3,∴C(2,-3),∵AD =3,∴S △ADC =12×3×|-3|=92 (4)P(6,3)完善 整合 1、本节课我们复习了哪些知识点?2、你对本节课所复习的知识又有了哪些新的认识?师引导学生归纳总结. 梳理知识,并建立知识体系.拓展提高3.某超市计划购进一批甲、乙两种玩具,两种玩具每件的进价分别为30元和27元.(1)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x >0)件甲种玩具需要花费y 元,请你求出y 与x 的函数关系式; (2)在(1)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.分析:(1)由题意找出等量关系列出分段函数关系式即可;(2)建立方程(或不等式)求解即可.教师出示问题,学生先自主探究,后小组同伴交流,最后展示,师生共同评价、纠正,教师点拨、强调。
第19章一次函数一、明确课标要求1.初步理解一次函数及其图象的性质;初步体会方程与函数的关系.2.能根据信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题.3.经历函数、一次函数等概念的抽象概括过程,体会函数的模型思想,发展抽象思维能力.4.经历一次函数图象及其性质的探索和应用,发展合作意识、应用能力.二、重点、难点回顾1.一次函数:若两变量x、y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数,特别地,当b=0时,y=kx (k≠0),叫正比例函数2.一次函数的图象是一条直线,作一次函数的图象时,只要确定两个点,再过这两个点作直线即可,一次函数y=kx+b的图象也称为直线y=kx+b3.正比例函数y=kx的图象是经过原点(0,0)的一条直线4.一次函数y=kx+b的图象性质①当k>0时,y随x增大而增大,并且b>0时,函数的图象在第一、二、三象限;当b<0时,函数的图象在第一、三、四象限;当b=0时,函数的图象在第一、三象限和原点.②当k<0时,y随x增大而减小,并且b>0时,函数的图象在第一、二、四象限;当b<0时,函数的图象在第二、三、四象限;当b=0时,函数的图象在第二、四象限和原点.5.确定一次函数表达式的条件确定一次函数的解析式一般需要独立的两个条件,确定出k、b的值即可.6.一次函数图象的应用根据已知的一次函数图象,获取信息,发展形象思维,解决简单的实际问题,发展数学应用能力,并初步体会方程与函数的关系7.一次函数与一次不等式、一次方程(组)的关系:(1)二元一次方程的每一组解就是对应一次函数图象上的点的坐标.(2)二元一次方程组的解就是对应两个一次函数图象的交点坐标.(3)对于一次函数y=2x+4,当y=0,对应的x值即为一元一次方程2x+4=0的解;当y>0时,对应的x的取值范围即为一元一次不等式2x+4>0的解集.三、易混、易错点提示1.一次函数概念不明确,分不清谁是自变量,谁是谁的函数问题;2.搞不清正比例函数与一次函数的关系,容易忽略k≠0这个条件;3.搞不清一次函数y随x的变化情况;4.一次函数的应用问题有障碍。
人教版八年级下册数学第19章一次函数复习课说课稿教案尊敬的各位评委老师:大家下午好!今天我说课的内容是人教版数学八年级下册第十九章《一次函数》复习课。
对于本节课我将从教材分析;学情分析;教法学法;教学程序与设计说明五个方面阐述我对本节课的理解。
一、教材分析一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,一次函数这一章在整个教材中将起着承上启下的作用,特别是一次函数的图像和性质的理解和掌握,又是后续知识发展的起点,对今后知识的掌握起着决定性的作用。
教学目标:(一)知识与技能1.理解掌握正比例函数、一次函数的概念、图像、性质及解析式的确定。
2.理解一次函数与一元一次方程、一元一次不等式、二元一次方程组的关系,会应用于解决数学和实际生活问题。
(二)过程与方法1.进一步培养学生数形结合的意识和能力以及分类讨论的数学思想。
2.进一步培养学生的研究精神和合作交流意识及团队精神。
(三)情感与态度1.在学习过程中,培养学生的合作意识和大胆猜想、参与探究的良好品质。
2.进一步体验数与形的转化,体验数学的简洁美。
激发学生学习数学的兴趣。
教学重难点:教学重点:1.一次函数的图像及性质。
2.用函数观点看方程(组)、不等式的解。
教学难点:一次函数的实际应用和数型结合思想在解题中的应用。
二、学情分析八年级的学生已经具备了一定的总结概括能力,在此之前学生已经初步掌握了一次函数的相关概念、图像、性质及简单应用,另一方面八年级学生更加沉稳,不愿意表达自己的见解,需要老师设计富有趣味性与挑战性的问题,激发学生的探究热情。
三、教法学法教学方法:思路让学生讲,疑难让学生议,规律让学生找,结论让学生得,错误让学生析,小结让学生做。
学法指导:新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。
第十九章一次函数复习学习目标 :1.掌握一次函数的见解 , 认识一次函数和正比率函数的关系.2. 能写出实责问题中正比率关系与一次函数关系的剖析式.3.会画一次函数的图象 , 能结合图象理解一次函数 ( 含正比率函数 ) 的性质 .授课重难点1. 熟练掌握用待定系数法确定一次函数的剖析式.2.会采纳两个适合点画一次函数 ( 含正比率函数 ) 的图象 .3. 由函数的图象及性质进一步理解和掌握正比率函数与一次函数的见解.4.领悟一次函数与一次方程 ( 组 ) 、一元一次不等式之间的联系 , 并能解决简单问题 , 培养分析、类比、综合、概括的能力和用数形结合思想解决数学识题.重点: 1. 函数的定义 .2.一次函数的图象与性质及应用.3.求一次函数的剖析式 .难点: 1. 函数的定义及表示法.2.一次函数的应用 .授课过程例 1. 函数 y=+ 中自变量x 的取值范围是()A.x ≤ 2B.x≤ 2且x≠ 1C.x<2且x≠ 1D.x≠1剖析:依照题意 , 得 2-x ≥ 0 且 x-1 ≠0, 则 x≤2 且 x≠ 1. 应选 B.例 2.以以下列图,过点A的一次函数的图象与正比率函数y=2x 的图象订交于点B, 则这个一次函数的剖析式是()A.y=2x+3B.y=x-3C.y=2x-3D.y=-x+3剖析:设一次函数的剖析式为 y=kx+b, ∵点 B在直线 y=2x 上, ∴B(1,2), 把 A(0,3),B(1,2) 两点坐标代入剖析式得解得应选 D.例 3. 对于函数y=-kx(k是常数,k≠ 0)的图象,以下说法不正确的选项是()A.是一条直线B.过点C.经过一、三象限或二、四象限D.y 随 x 的增大而减小剖析:依照正比率函数的图象与性质, 逐个除去即可 . 选项 A 正确 ; 把选项 B 中点的坐标代入即可知正确 ; 因为 k 不知正负 , 所以选项 C 正确 ; 依照正比率函数图象性质, 可知 D 错误 . 应选 D.例 4. 一次函数y=2x+1 的图象不经过()A.第一象限B. 第二象限C.第三象限D. 第四象限剖析:∵y=2x+1 中的 2>0, ∴直线必然经过第一、三象限, 并且与y 轴的交点为 (0,1), 交于 y 轴正半轴 , 则经过第二象限 , ∴一次函数y=2x+1 的图象经过第一、二、三象限 , 必然不经过第四象限 . 应选 D.坚固练习以以下列图 , 一次函数 y= - x+m的图象和 y 轴交于点 B, 与正比率函数 y=x 的图象交于点P(2,n).(1)求 m和 n 的值 ;(2)求△ POB的面积 .总结拓展1.讲堂小结:本节课经过以生活中的实例问题为载体, 以一次函数的知识作为解题工具, 把复杂问题通过分解转变为简单问题, 思路清楚而精练, 突出重点 , 训练到位 , 表现了学生自主、合作、研究、沟通的学习方式, 激发学生学习数学的兴趣, 培养了学生运用数学知识解决实责问题的2.拓展延长若直线 y=-2x+m 与直线 y=2x-1 的交点在第四象限, 则 m的取值范围是()A.m>-1B.m<1C.-1<m<1D.-1 ≤ m≤13. 作业部署教材P107---P108页复习题1,2,3,4,5,6,7,8题讲堂收效测评1. 在一次函数y=(2-k)x+1中,y随x的增大而增大,则k的取值范围为.2. 已知点 (3,5) 在直线 y=ax+b(a,b为常数,且a≠0)上,则的值为.3. 已知直线y=2x+(3-a)与x轴的交点在A(2,0),B(3,0)之间(包括A,B两点),则a的取值范围是.4. 直线 y=2x+b 经过点 (3,5),则对于x的不等式2x+b≥ 0 的解集是.5. 若一次函数y=-x+a 与一次函数y=x+b 的图象的交点坐标为(m,8), 则 a+b=.六.谈论与反省(引导学生自己总结)1.你今天学习了什么?学到了什么?还有什么迷惑?有什么感觉?在学生回答的基础上,教师谈论并板书2.授课反省.浸透数学建模的思想, 领悟到数学的抽象性和宽泛的应用性. 激发学习数学的兴趣, 培养剖析问题、解决问题的能力, 培养学生应企图识和创新意识.。
一次函数 全章复习教案一、复习目标1、理解正比例函数和一次函数的概念,会根据已知条件确定一次函数表达式.2、会画一次函数的图象,根据一次函数的图象和解析式 理解其性质(k >0或 k<0时,图象的变化情况).3、能根据一次函数的图象求二元一次方程组的近似解. 能用一次函数解决实际问题4、理解一次函数与二元一次方程(组)、一元一次不等式(组)之间的关系.二、复习重点和难点: (一)复习重点:一次函数的概念、图像及其性质(二)复习难点:运用一次函数的图象及其性质解决有关实际问题知识要点:三、复习过程(一)知识梳理1. 一次函数的概念:把形如y=kx+b (k,b 是常数,k≠0)的函数叫一次函数. 当b=0时一次函数 y=kx 也叫正比例函数. 这里特别要注意 k ≠0 的限制。
正比例函数是一次函数的特例。
而一般的一次函数(当 b ≠0 时)却不是正比例函数。
2、一次函数与正比例函数的图象:正比例函数y=kx(k≠0)的图象是经过(0,0)的一条直线。
一次函数y=kx+b (k≠0)的图象是经过(0,b )和(kb ,0)两点的一条直线。
直线y=kx+b 可以看做由直线y=kx 平移︱b ︱个单位长度而得到(b >0,向上平移;b <0,向下平移)3. 一次函数的的性质:直线y=kx+b (k ≠0)中,k 和b 决定着直线的位置及增减性,当k>0时,y 随x 的增大而增大,此时若b>0,则直线y=kx+b 经过第一,二,三象限;若b<0,则直线y=kx+b 经过第一,三,四象限,当k<0时,y 随x 的增大而减小,此时当b>0时,直线y=kx+b 经过第一,二,四象限;当b<0时,直线y=kx+b 经过第二,三,四象限.4、正比例函数y=kx (k ≠0)的性质:正比例函数y=kx 的图象必经过原点,它的增减性只与k 的正负有关:(1)当k >0时,图象经过第一、三象限,y 随x 的增大而增大;(2)当k <0时,图象经过第二、四象限,y 随x 的增大而减小.5、点P (x 0,y 0)与直线y=kx+b 的图象的关系(1)如果点P (x 0,y 0)在直线y=kx+b 的图象上,那么x 0,y 0的值必满足解析式y=kx+b ;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.6、确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y 的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.7、待定系数法:先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.用待定系数法确定一次函数表达式的一般步骤:一设,二代,三解,四代入(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值;(4)将k、b的之代入y=kx+b,得到函数表达式。
人教版数学八年级下册教案:第十九章一次函数小结复习(一)一. 教材分析人教版数学八年级下册第十九章主要讲述了一次函数的概念、性质和图象。
本章内容是初高中数学的重要衔接部分,对于学生来说,理解一次函数的基本概念和性质,掌握一次函数的图象绘制方法,以及能够运用一次函数解决实际问题,是非常重要的。
二. 学情分析学生在学习本章内容前,已经掌握了七年级和八年级上册的函数知识,对于函数的基本概念和性质有一定的了解。
但在一次函数的图象绘制和应用方面,可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生通过观察、操作、思考、交流等活动,加深对一次函数的理解。
三. 教学目标1.理解一次函数的概念,掌握一次函数的性质。
2.学会绘制一次函数的图象,并能运用一次函数解决实际问题。
3.培养学生的观察能力、操作能力、思考能力和交流能力。
四. 教学重难点1.一次函数的概念和性质。
2.一次函数图象的绘制方法。
3.一次函数在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等多种教学方法,引导学生通过观察、操作、思考、交流等活动,深入理解一次函数的知识。
六. 教学准备1.教学PPT。
2.练习题。
3.教学道具。
七. 教学过程1.导入(5分钟)通过提问方式复习之前学过的一次函数的知识,如一次函数的定义、性质等。
2.呈现(10分钟)利用PPT展示一次函数的图象,让学生观察并思考以下问题:–图象是一条直线吗?为什么?–直线的斜率和截距有什么关系?–直线与坐标轴的交点坐标是什么?3.操练(10分钟)让学生分组合作,利用教学道具或者软件绘制一次函数的图象,并回答上述问题。
4.巩固(10分钟)让学生独立完成练习题,检测对一次函数知识的掌握程度。
5.拓展(10分钟)讨论一次函数在实际问题中的应用,如线性方程的求解、成本与数量的关系等。
6.小结(5分钟)对本节课的内容进行总结,强调一次函数的概念、性质和图象绘制方法。
7.家庭作业(5分钟)布置一些有关一次函数的练习题,要求学生在课后完成。
《一次函数》章节复习(第一课时)
教学目标:
1.理解函数概念及其图象意义。
2.理解掌握正比例函数、一次函数解析式及其性质。
3.理解一次函数与一元一次方程、一元一次不等式、二元一次方程组的关系,会应用于解
决数学和实际生活问题。
教学重点:
1.变量与函数图象之间的关系。
2.待定系数法求解析式
3.数型结合思想在解题中的应用。
教学难点:
线段长度与坐标之间的关系。
教学过程:
一、 知识回顾,构建知识体系。
二、 基础练习,夯实双基能力。
1、下图中的曲线不表示y 是x 的函数的是( )
A B C D E F
2、下图中描述了一辆汽车在甲乙两地之间的行驶过程中汽车离乙地的距离S (千米)与时间t (小时)之间的函数关系。
根据图中提出供的信息,下列说法正确的是( ) ①、汽车是从甲地出发,到达乙地,然后返回甲地。
②、汽车中途休息了2小时。
③、汽车共行驶了120千米,共用了6小时。
④、汽车返回时的速度是80千米/时。
⑤、请同学们们相互提出新的问题并讨论。
3、已知函数y = —1
2
x +2.
① 画出此函数图象;② 求出函数图象与x 轴、y 轴的交点坐标;S △ABO = ③ 当x=4时,y= ;当x>4时,y ;当x<4时,y
④ 当y=2时,x= ;当y>2时,x ;当y<2时,x
⑤ y 随x 的增大而
⑥ 将此图象向下平移3个单位,则得解析式为
三、 例题变式,内化解题能力。
4、如图:直线AB 与x 轴、y 轴分别交于点A (4,0)和B (0, 2)
① 求直线AB 的解析式。
② 在y 轴上是否存在一点C ,使S △ABC =6。
③ 直线AB 上是否存在一点P ,使点P 到y 轴的距离为1。
若
存在,求出点P 的坐标,若不存在,请说明理由。
④ 求出直线AB 关于Y 轴对称的直线解析式。
⑤ 已知点M (3,4),在x 轴上是否存在一点N ,使得B N +
MN 的值最小。
⑥ 设直线AB :y 1= — 1
2
x +2,直线MN :y 2=kx +b .
a) 求两直线的交点坐标。
b)当x 满足什么条件时,y 1=y 2;
当x 满足什么条件时,y 1>y 2; 当x 满足什么条件时,y 1<y 2.
四、 小结:本节课通过组题的形式,理清、掌握一次函数教学相关内容和基本解题方法,学
会用数形结合思想解决问题。
五、 作业:1、整理例题。
2、附练习
(本题10分)填空或解答:点B 、C 、E 在同一直线上,点A 、D 在直线CE 的同侧,
AB =AC ,EC =ED ,∠BAC =∠CED ,直线AE 、BD 交于点F 。
(1)如图①,若∠BAC =60°,则∠AFB =_________;如图②,若∠BAC =90°,则∠AFB =_________;
(2)如图③,若∠BAC =α,则∠AFB =_________(用含α的式子表示); (3)将图③中的△ABC 绕点C 旋转(点F 不与点A 、B 重合),得图④或图⑤。
在图④中,∠AFB 与∠α的数量关系是________________;在图⑤中,∠AFB 与∠α的数量关系是________________。
请你任选其中一个结论证明。
A A B
C
D
D
E
F
F
图①
图② 图③
(第24题图)
A
A
B
B
C
D
D E
E
F F
图④
(第24题图)
图⑤。