弹簧专题
- 格式:doc
- 大小:219.00 KB
- 文档页数:4
高考弹簧问题专题详解高考动向弹簧问题可以较好的培养学生的分析解决问题的才能和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
知识升华一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。
数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。
说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长〔或压缩〕跟外力成正比这一性质可制成弹簧秤。
2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。
〔1〕定义:在弹性限度内,弹簧产生的弹力F〔也可认为大小等于弹簧受到的外力〕和弹簧的形变量〔伸长量或者压缩量〕x的比值,也就是胡克定律中的比例系数k。
〔2〕劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。
弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之那么越大。
如两根完全一样的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;假设两根完全一样的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。
由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个局部受到的力大小是一样的。
弹簧专题班级__________ 座号_____ 姓名__________ 分数__________一、知识清单1. 考虑外壳重力时弹簧秤读数 弹簧秤结构简图 正测 倒测 平测读数:F 1 平衡F 1=F 2-m 0g读数:F 1 平衡F 1=F 2+m 0g读数:F 1平衡 F 1=F 2,右加速F 2-F 1=m 0a【提醒】若为轻质弹簧秤,则m 0=0,无论如何测量,都有F 1=F 2。
2. 弹簧连接物的静摩擦力的变化问题【关键提示】物块不发生相对滑动,则弹簧弹力不变,切向其它外力变化则会引起静摩擦力变化。
3. 弹簧长度的变化问题4. 瞬时加速度问题的两类模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变. [思维深化](1)如图2、图3中小球m 1、m 2原来均静止,现如果均从图中B 处剪断,则图2中的弹簧和图3中的下段绳子,它们的拉力将分别如何变化?θmFmF壳 F 1m 0F 2壳F 1m 0 F 2 壳 F 1m 0 F 2壳图2 图3(2)如果均从图中A 处剪断,则图2中的弹簧和图3中的下段绳子的拉力又将如何变化呢?(3)由(1)(2)的分析可以得出什么结论? 5. 小球砸弹簧问题 (1)下落的“三段四点”:(2)四个图像v-t 图a-t 图F-t 图a-x 图6. 恒力推弹簧连接的两物体问题7. 分离问题分离类型:A 与弹簧分离A 处于压缩状态,k gm x A 1接触AFa处于原长,分离:弹力为零;加速度此瞬间还为零 0tv速度相等, 压缩量最大P QPQP QF9.两物体分离问题临界条件:①力的角度:A、B间弹力为零F AB=0;②运动学的角度:v A=v B、a A=a B.位移:x =x 1-x 2,运动学公式:x =½at 12 分离前:F=(m A +m B )a+kx ;分离后:F -m B g =m B a 10.含弹簧的功能关系竖直小球砸弹簧倾斜小球砸弹簧水平弹簧推小球11.弹性势能的三种处理方法弹性势能E P =½kx 2,高考对此公式不作要求,因此在高中阶段出现弹性势能问题时,除非题目明确告诉了此公式,否则不需要此公式即可解决,其处理方法常有以下三种:①功能法:根据弹簧弹力做的功等于弹性势能的变化量计算;或根据能量守恒定律计算出弹性势能; ②等值法:压缩量和伸长量相同时,弹簧对应的弹性势能相等,在此过程中弹性势能的变化量为零; ③“设而不求”法:如果两次弹簧变化量相同,则这两次弹性势能变化量相同,两次作差即可消去。
高三物理第二轮专题复习(一)弹簧类问题轻弹簧是一理想模型,涉及它的知识点有①形变和弹力,胡克定律②弹性势能弹簧振子等。
问题类型:1、弹簧的瞬时问题弹簧的两端若有其他物体或力的约束,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
弹簧的弹力不能突变是由弹簧形变的改变要逐渐进行决定的。
2、弹簧的平衡问题这类题常以单一的问题出现,通常用胡克定律F=Kx和平衡条件来求解,列方程时注意研究对象的选取,注意整体法和隔离法的运用。
3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的合外力加速度速度动能和其它物理量发生变化的情况。
弹簧的弹力与形变量成正比例变化,而它引起的物体的加速度速度动量动能等变化不是简单的单调关系,往往有临界值或极值。
有些问题要结合简谐运动的特点求解。
4、弹力做功与动量能量的综合问题弹力是变力,求弹力的冲量和弹力做的功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。
如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。
在弹力做功的过程中弹力是个变力,并与动量能量联系,一般以综合题出现。
它有机地将动量守恒机械能守恒功能关系和能量转化结合在一起,以考察综合应用能力。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理动量定理和功能关系等知识解题。
规律:在弹簧-物体系统中,当弹簧处于自然长度时,系统具有最大动能;系统运动中弹簧从自然长度开始到再次恢复自然长度的过程相当于弹性碰撞过程。
当弹簧具有最大形变量时,两端物体具有相同的速度,系统具有最大的弹性势能。
系统运动中,从任意状态到弹簧形变量最大的状态的过程相当于完全非弹性碰撞的过程。
(实际上应为机械能守恒)典型试题1、如图所示,轻弹簧下端固定在水平地面上,弹簧位于竖直方向,另一端静止于B点。
在B点正上方A点处,有一质量为m的物块,物块从静止开始自由下落。
物块落在弹簧上,压缩弹簧,到达C点时,物块的速度为零。
2023年高三物理二轮常见模型与方法强化专训专练专题04 弹簧模型一、高考真题1.(2022年江苏卷)如图所示,轻质弹簧一端固定,另一端与物块A 连接在一起,处于压缩状态,A 由静止释放后沿斜面向上运动到最大位移时,立即将物块B 轻放在A 右侧,A 、B 由静止开始一起沿斜面向下运动,下滑过程中A 、B 始终不分离,当A 回到初始位置时速度为零,A 、B 与斜面间的动摩擦因数相同、弹簧未超过弹性限度,则( )A .当上滑到最大位移的一半时,A 的加速度方向沿斜面向下B .A 上滑时、弹簧的弹力方向不发生变化C .下滑时,B 对A 的压力先减小后增大D .整个过程中A 、B 克服摩擦力所做的总功大于B 的重力势能减小量【答案】B【详解】B .由于A 、B 在下滑过程中不分离,设在最高点的弹力为F ,方向沿斜面向下为正方向,斜面倾角为θ,AB 之间的弹力为F AB ,摩擦因素为μ,刚下滑时根据牛顿第二定律对AB 有()()()A B A B A B sin cos F m m g m m g m m a θμθ++−+=+对B 有B B AB B sin cos m g m g F m a θμθ−−=联立可得AB A B BF F m m m =−+由于A 对B 的弹力F AB 方向沿斜面向上,故可知在最高点F 的方向沿斜面向上;由于在最开始弹簧弹力也是沿斜面向上的,弹簧一直处于压缩状态,所以A 上滑时、弹簧的弹力方向一直沿斜面向上,不发生变化,故B 正确;A .设弹簧原长在O 点,A 刚开始运动时距离O 点为x 1,A 运动到最高点时距离O 点为x 2;下滑过程AB 不分离,则弹簧一直处于压缩状态,上滑过程根据能量守恒定律可得()()22121211sin 22kx kx mg f x x θ=++− 化简得()122sin mg f k x x θ+=+当位移为最大位移的一半时有()121in =s +2F f x x k x mg θ−⎛⎫−− ⎪⎝⎭合带入k 值可知F 合=0,即此时加速度为0,故A 错误;C .根据B 的分析可知AB A B BF F m m m =−+再结合B 选项的结论可知下滑过程中F 向上且逐渐变大,则下滑过程F AB 逐渐变大,根据牛顿第三定律可知B 对A 的压力逐渐变大,故C 错误;D .整个过程中弹力做的功为0,A 重力做的功为0,当A 回到初始位置时速度为零,根据功能关系可知整个过程中A 、B 克服摩擦力所做的总功等于B 的重力势能减小量,故D 错误。
高中物理弹簧模型专题一、弹簧称的示数例1.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上;②中弹簧的左端受大小也为 F 的拉力作用;③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以 l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则判断l 1、l 2、l 3、l 4的大小关系。
变式训练.一个质量为m 的物体在一弹簧称的作用下沿竖直向上做加速度为a 的匀加速直线运动,忽略空气阻力,重力加速度为g ,求弹簧称的示数.规律总结:弹簧称的示数等于轻质弹簧一端的拉力大小,并不一定等于物体的重力二、与物体平衡相关的弹簧问题例2.如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为 ( C )A.m 1g/k 1B.m 2g/k 2C.m 1g/k 2D.m 2g/k 2三、弹簧的瞬时性问题例3.质量分别为m 和2m 的小球P 、Q 用轻弹簧相连,P 用细线悬挂在天花板下,开始系统处于静止。
求:(1)剪断细线瞬间,P 、Q 的加速度(2)剪断弹簧瞬间,P 、Q 的加速度 变式训练.如图所示,小球P 、Q 质量均为m ,分别用轻弹簧b 和细线c 悬挂在天花板下,再用另一细线d 、e 与左边的固定墙相连,静止时细线d 、e 水平,b 、c 与竖直方向夹角均为θ=37º。
下列判断正确的是A .剪断d 瞬间P 的加速度大小为0.6gB .剪断d 瞬间P 的加速度大小为0.75gC .剪断e 前c 的拉力大小为0.8mgD .剪断e 后瞬间c 的拉力大小为1.25mg规律总结:当弹簧两端都有约束时,弹簧弹力不发生突变;细绳的弹力可以发生突变四、与动力学相关的弹簧问题例4.如图所示,一轻质弹簧竖直放在水平地面上,小球A 由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是( BD )A.小球加速度方向始终向上B.小球加速度方向先向下后向上C.小球速度一直减小D.小球速度先增大后减小边式训练:如图所示,轻弹簧下端固定,竖立在水平面上。
高考弹簧类问题复习弹簧类问题含有力的非突变模型---弹簧模型,这类问题能很好地考查同学们对物理过程的分析、物理知识的综合、以及数学知识的灵活应运,所以这类问题在近年的高考中频频出现。
为了帮助同学们复习好这部分内容,现浅谈如下几点,供同学们参考一、知识点聚焦1、弹簧的瞬时问题弹簧发生弹性形变时,弹力与其形变量成正比,因此,弹力不同,形变量不同,形变量不同,对应的弹力也不同。
解决这一类问题时一定要弄清“时刻”及“位置”的含义。
2、弹簧的平衡问题这类问题涉及的知识有胡克定律、力的平衡条件,一般可用f=kx或△f=k•△x和∑F=0等公式来求解。
3、弹簧的非平衡问题这类问题主要是指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功、能和合外力等其他物理量发生变化的情况。
这类问题的解决,不但要涉及胡克定律、牛顿第二定律、还要涉及动能定理、能的转化和守恒定律等方面的内容。
4、弹簧弹力做功与动量、能量的综合问题在弹簧弹力做功的过程中弹力是个变力,所以这类问题一般与动量、能量联系,以综合题的形式出现。
这类问题有机地将动量守恒、机械能守恒、功能关系和能量转化等结合在一起,考查同学们的综合应用能力。
解决这类问题时,要细致分析弹簧的动态过程,综合利用动能定理和功能关系等知识解题。
二、典型例题分析(一)、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧",是一种常见的理想化物理模型。
由于“轻弹簧”质量不计,选取任意小段弹簧分析,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。
故:轻质弹簧中各部分间的张力处处相等,均等于弹簧两端的受力。
弹簧一端受力为F,另一端受力一定也为F。
若是弹簧秤,则弹簧秤示数为F。
例1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m不能忽略,弹簧及挂钩质量不计,施加水平方向的力F1、F2,且F1>F2则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .分析与解 以整个弹簧秤为研究对象:利用牛顿运动定律12F F ma -= ∴12F F a m -=仅以轻质弹簧为研究对象:则弹簧两端的受力都是F 1,所以弹簧秤的读数为F 1说明 F 2作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的。
弹簧一、弹簧的读数、长度、方向1.( 陕西高新一中2010模拟)如图所示,弹簧秤外壳质量为m 0,弹簧及挂钩的质量忽略不计,挂钩吊一重物质量为m ,现用一方向竖直向上的外力F 拉着弹簧秤,使其向上做匀加速直线运动,则弹簧秤的读数为( )A mgB m m m +0mgC F mm m +00 D F m m m +0 2(2004全国理综卷Ⅱ)如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。
若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有A .l 2>l 1B .l 4>l 3C .l 1>l 3D .l 2=l 43.如图所示,光滑水平面上有质量分别为m 1和m 2的甲、乙两木块,两木块中间用一原长为L 、劲度系数为k 的轻质弹簧连接起来,现用一水平力F 向左推木块乙,当两木块一起匀加速运动时,两木块之间的距离是 ( )A .k m m Fm L )(212++B .k m m Fm L )(211+-C .k m Fm L 21-D .k m Fm L 12+ 4.如图4所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定与杆上,小球处于平衡状态,设拔除销钉M 的瞬间,小球加速度的大小为12m/s 2,若不拔除销钉M 而拔除销钉N 瞬间,小球的加速度可能是(g=10 m/s 2)A .22 m/s 2,方向竖直向上B .22 m/s 2,方向竖直向下C .2 m/s 2,方向竖直向上D .2 m/s 2,方向竖直向下5(2010·海南物理)如右图,木箱内有一竖直放置的弹簧,弹簧上方有一物块:木箱静止时弹自由落体处于压缩状态且物块压在箱顶上.若在某一段时间内,物块对箱顶刚好无压力,则在此段时间内,木箱的运动状态可能为A .加速下降B .加速上升C .减速上升D .减速下降6、如图所示的装置可以测量飞行器在竖直方向上做匀加速直线运动的加速度.该装置是在矩形箱子的上、下壁上各安装一个可以测力的传感器(可测压力和拉力),分别连接两根劲度系数相同(可拉伸可压缩)的轻弹簧的一端,弹簧的另一端都固定在一个滑块上,滑块套在光滑竖直杆上.现将该装置固定在一飞行器上,传感器P在上,传感器Q 在下.飞行器在地面静止时,传感器P 、Q 显示的弹力大小均为10 N .求:(1)滑块的质量.(地面处的g=10 m/s 2)(2)当飞行器竖直向上飞到离地面4R 处,此处的重力加速度为多大?(R 是地球的半径) (3)若在离地面4R 处时,传感器P 、Q 显示的弹力大小均为F'=20 N ,此时飞行器的加速度是多大?传感器始终竖直方向放置,P 在上, Q 在下。
图14弹簧专题1、弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2、弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx 或△f=k •△x 来求解。
3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4、 弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
它有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起,以考察学生的综合应用能力。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
第一篇:弹簧中的力学问题1.如图,物块质量为M ,与甲、乙两弹簧相连接,乙弹簧下端与地面连接,甲、乙两弹簧质量不计,其劲度系数分别为k 1、k 2。
起初甲弹簧处于自由长度,现用手将甲弹簧的A 端缓慢上提,使乙弹簧产生的弹力大小变为原来的2/3,则A 端上移距离可能是( ) A .(k 1+k 2)Mg/3k 1k 2 B .2(k 1+k 2)Mg/3k 1k 2 C.4(k 1+k 2)Mg/3k 1k 2 D.5(k 1+k 2)Mg/3k 1k 22.(99全国)如右图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中下面木块移动的距离为( )A. m 1g/k 1B. m 2g/ k 1C. m 1g/k 2D. m 2g/ k 23、如图14所示,A 、B 两滑环分别套在间距为1m 的光滑细杆上,A 和B 的质量之比为1∶3,用一自然长度为1m 的轻弹簧将两环相连,在 A 环上作用一沿杆方向的、大小为20N 的拉力F ,当两环都沿杆以相同的加速度a 运动时,弹簧与杆夹角为53°。
弹簧专题(参考答案)一、知识清单1.【答案】2.【答案】3.【答案】4.【答案】(1)弹簧和下段绳的拉力都变为0.(2)弹簧的弹力来不及变化,下段绳的拉力变为0.(3)绳的弹力可以突变而弹簧的弹力不能突变.5.【答案】6.【答案】7.【答案】8.【答案】9.【答案】10.【答案】11.【答案】二、选择题12.【答案】D【解析】按乙图放置,弹簧测力计的示数为F1,弹簧挂钩的受力情况是F0=G+F1,所以弹簧测力计读数F1=F0﹣G;按丙图放置,弹簧测力计的示数为F2,弹簧挂钩的受力情况是F0=F2,所以弹簧测力计读数F2=F0.故选D.【分析】弹簧测力计在静止下使用,此时弹簧受到的力为平衡力,弹簧测力计指针指示的示数为这个力的大小,分析出乙、丙两图放置方式中弹簧挂钩的受力情况,就可得出正确答案.【名师点拨】本题的关键是理解“弹簧的一端与连接有挂钩的拉杆相连,另一端固定在外壳上的O点”,因此解题的关键对挂钩进行分析.13.【答案】AC14.【答案】 A【解析】当向b盒内缓慢加入砂粒的过程中,a、b、c一直处于静止状态,对a分析,弹簧弹力不变,a的重力不变,则细绳拉力不变;对b、c整体分析知,其受方向始终向左的摩擦力,故c对地面的摩擦力方向始终向右,由于b、c整体质量增大,则地面对c的支持力增大,B、C、D错;如果开始时,b所受c的摩擦力沿斜面向上,则对b分析可知,随着砂粒的加入b对c的摩擦力可能先减小后增大,A对。
15.【答案】 D【解析】设刚开始时弹簧压缩量为x0,A对弹簧的压力mg sin θ=kx0①B刚要离开挡板时,弹簧处于伸长状态,B对弹簧的拉力mg sin θ=kx1②所以物体A向上的位移x=x1+x0=2mg sin θk,故D正确。
16.【答案】CD【解析】水平横杆对质量为M的小球的支持力为Mg+mg2,选项A错误;设下面两个弹簧的弹力均为F,则2F sin 60°=mg ,解得F =33mg ,结合胡克定律得kx =33mg ,则x =33kmg ,选项B 错误,选项C 正确;下面的一根弹簧对M 的水平分力为F cos 60°=36mg ,再结合胡克定律得kx ′=36mg ,解得x ′=36k mg ,选项D 正确.17.【答案】BC 18.【答案】 BC【解析】 刚撤去外力F 时,由牛顿第二定律知对A 、B 整体有F =2ma 1,对物体A 有F N -mg =ma 1,联立得F N =F 2+mg ,A 项错误;当弹簧弹力大小等于F 时,有F -2mg =2ma 2,F N -mg =ma 2,联立得F N =F2,B 正确;当两物体A 、B 的加速度为零时,两者速度最大,则有F N =mg ,C 正确;当弹簧恢复原长时,弹簧不提供弹力,此时两物体恰好分离,A 、B 间的相互作用力大小为0,D 项错误。
一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-= 1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况. 【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g . 【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.图3-7-4图3-7-2图 3-7-1 图3-7-3【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( ) A.0 B.,方向竖直向下C.,方向垂直于木板向下 D., 方向水平向右【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=. 撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为cos N F g a m θ=== 【答案】 C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =. 则:2121()()F F kx kx --=--,即F k x ∆=∆说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 . 【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k + 故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 【答案】221221()m m m g k + 21121211()()m m m g k k ++五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.图 3-7-5图3-7-6【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ). 【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A受力可知:11sin A F kx m g θ== 解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ= 设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--= 解得:()sin A B AF m m g a m θ-+=因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化. 结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,往往能达到事半功倍的效果.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?【解析】 由题意可知,弹簧开始的压缩量0mgx k =, 物体B 刚要离开地面时弹簧的伸长量也是0mgx k=.(1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F所做的功等于物体A 增加的动能及重力势能的和. 即:201222F x mg x mv ⋅=⋅+得: v =图 3-7-7图3-7-8(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度. 在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-= 而0kx mg =,简谐运动在上、下振幅处12a a =,解得:也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002x mg k F +=,解得: 032mg F =.【答案】32mg说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关.八、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储存一定的弹性势能,因此弹簧的弹性势能可以与机械能守恒规律综合应用,我们用公式212P E kx =计算弹簧势能,弹簧在相等形变量时所具有的弹性势能相等一般是考试热点.弹簧弹力做功等于弹性势能的减少量.弹簧的弹力做功是变力做功,一般可以用以下四种方法求解:(1)因该变力为线性变化,可以先求平均力,再用功的定义进行计算; (2)利用F x -图线所包围的面积大小求解;(3)用微元法计算每一小段位移做功,再累加求和; (4)根据动能定理、能量转化和守恒定律求解.由于弹性势能仅与弹性形变量有关,弹性势能的公式高考中不作定量要求,因此,在求弹力做功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解.特别是涉及两个物理过程中的弹簧形变量相等时,往往弹性势能的改变可以抵消或替代求解.【例10】如图3-7-13所示,挡板P 固定在足够高的水平桌面上,物块A 和B 大小可忽略,它们分别带有A Q +和B Q +的电荷量,质量分别为A m 和B m .两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B 连接,另一端连接轻质小钩.整个装置处于场强为E 、方向水平向左的匀强电场中,A 、B 开始时静止,已知弹簧的劲度系数为k ,不计一切摩擦及A 、B 间的库仑力, A 、B 所带电荷量保持不变,B 不会碰到滑轮. (1)若在小钩上挂质量为M 的物块C 并由静止释放,可使物块A 对挡板P 的压力恰为零,但不会离开P ,求物块C 下降的最大距离h .(2)若C 的质量为2M ,则当A 刚离开挡板P 时, B 的速度多大?【解析】 通过物理过程的分析可知,当物块A 刚离开挡板P 时,弹力恰好与A 所受电场力平衡,弹簧伸长量一定,前后两次改变物块C 质量,在第(2)问对应的物理过程中,弹簧长度的变化及弹性势能的改变相同,可以替代求解.设开始时弹簧压缩量为1x ,由平衡条件1B kx Q E =,可得1B Q Ex k=① 设当A 刚离开挡板时弹簧的伸长量为2x ,由2A kx Q E =,可得: 2A Q Ex k= ②图 3-7-13故C 下降的最大距离为: 12h x x =+ ③ 由①②③三式可得: ()A B E h Q Q k=+ ④(2)由能量守恒定律可知,物块C 下落过程中,C 重力势能的减少量等于物块B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和. 当C 的质量为M 时,有:B MgH Q Eh E =+∆弹 ⑤当C 的质量为2M 时,设A 刚离开挡板时B 的速度为v ,则有:212(2)2B B MgH Q Eh E M m v =+∆++弹 ⑥由④⑤⑥三式可得A 刚离开P 时B 的速度为:v =⑦【答案】(1)()A B E h Q Q k=+(2)v =【例11】如图3-7-14所示,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B 相连,弹簧的劲度系数为k ,物体A B 、都处于静止状态.一不可伸长的轻绳一端绕过轻滑轮连接物体A ,另一端连接一轻挂钩.开始时各段绳都处于伸直状态,物体A 上方的一段绳沿竖直方向.现给挂钩挂一质量为2m 的物体C 并从静止释放,已知它恰好能使物体B 离开地面但不继续上升.若将物体C 换成另一质量为12()m m +的物体D ,仍从上述初始位置由静止释放,则这次物体B 刚离地时物体D 的速度大小是多少?已知重力加速度为g【解析】 开始时物体A B 、静止,设弹簧压缩量为1x ,则有:11kx m g =悬挂物体C 并释放后,物体C 向下、物体A 向上运动,设物体B 刚要离地时弹簧伸长量为2x ,有22kx m g =B 不再上升表明此时物体A 、C 的速度均为零,物体C 己下降到其最低点,与初状态相比,由机械能守恒得弹簧弹性势能的增加量为:物体C 换成物体D 后,物体B 离地时弹簧势能的增量与前一次相同,由能量关系得:22211211211211()()()()22m m v m v m m g x x m g x x E ++=++-+-∆联立上式解得题中所求速度为:v =【答案】v =说明: 研究对象的选择、物理过程的分析、临界条件的应用、能量转化守恒的结合往往在一些题目中需要综合使用. 九、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.【例12】如图3-7-15所示,质量为m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b 、对质点的作用力均为F ,则弹簧c 对质点作用力的大小可能为 ( ) A 、0 B 、F mg + C 、F mg - D 、mg F - 图3-7-14 图3-7-15【解析】 由于两弹簧间的夹角均为0120,弹簧a b 、对质点作用力的合力仍为F ,弹簧a b 、对质点有可能是拉力,也有可能是推力,因F 与mg 的大小关系不确定,故上述四个选项均有可能.正确答案:ABCD 【答案】 ABCD 十、弹簧振子弹簧振子的位移、速度、加速度、动能和弹性势能之间存在着特殊关系,弹簧振子类问题通常就是考查这些关系,各物理量的周期性变化也是考查的重点. 十一、弹簧串、并联组合弹簧串联或并联后劲度系数会发生变化,弹簧组合的劲度系数可以用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特点要掌握:弹簧串联时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.【例14】 如图3-7-17所示,两个劲度系数分别为12k k 、的轻弹簧竖直悬挂,下端用光滑细绳连接,并有一光滑的轻滑轮放在细线上;滑轮下端挂一重为G 的物体后滑轮下降,求滑轮静止后重物下降的距离. 【解析】 两弹簧从形式上看似乎是并联,但因每根弹簧的弹力相等,故两弹簧实为串联;两弹簧的弹力均2G ,可得两弹簧的伸长量分别为112G x k =,222G x k =,两弹簧伸长量之和12x x x =+,故重物下降的高度为:1212()24G k k x h k k +== 【答案】1212()4G k k k k + 十三、物体沿弹簧螺旋运动【例16】如图3-7-19所示,长度为L 的光滑钢丝绕成高度为H 的弹簧,将弹簧竖直放置.一中间有孔的小球穿过钢丝并从弹簧的最高点A 由静止释放,求经多长时间小球沿弹簧滑到最低点B . 【解析】 小球沿光滑弹簧下滑时机械能守恒,可以假想在不改变弹簧上各处倾角的条件下将弹簧拉成一条倾斜直线,如图3-7-20所示,小球沿此直线下滑的时间与题中要求的时间相等.小球沿直线下滑的加速度为sin a g θ=由几何知识可得:sin H Lθ=;由位移公式可知:212L at =,联立上式解得:t =【答案】弹簧类模型中的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
弹簧专题训练
1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平
板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a
<g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静
止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使
P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,
g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg
的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力
F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,
设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:
(1)此过程中所加外力F 的最大值和最小值。
(2)此过程中外力F 所做的功。
7.(14分)如图14所示,A 、B 两滑环分别套在间距为1m 的光滑细杆上,A 和B 的
质量之比为1∶3,用一自然长度为1m 的轻弹簧将两环相连,在 A 环上作用一
沿杆方向的、大小为20N 的拉力F ,当两环都沿杆以相同的加速度a 运动时,
弹簧与杆夹角为53°。
(cos53°=0.6)
求:(1)弹簧的劲度系数为多少?
(2)若突然撤去拉力F ,在撤去拉力F 的瞬间,A 的加速度为a /,a
/ 与a 之间比为多少?
8.(14分)如图所示,质量M =3.5kg 的小车静止于光滑水平面上靠近桌子处,其上表面与水平桌面
相平,小车长L =1.2m ,其左端放有一质量为0.5kg 的滑块Q 。
水平放置的轻弹簧左端固定,质量为1kg 的小物块P 置于桌面上的A 点并与弹簧的右端接触。
此时弹簧处于原长,现用水平向左的推力将P 缓慢推至B 点(弹簧仍在弹性限度内)时,推力做的功为W F =6J ,撤去推力后,P 沿桌面滑到小车上并与Q 相碰,最后Q 停在小车的右端,P 停在距小车左端0.5m 处。
已知AB 间距L 1=5cm ,A 点离桌子边沿C 点距离L 2=90cm ,P 与桌面间动摩擦因数4.01=μ,P 、Q 与小车表面间动摩擦因数1.02=μ。
(g =10m/s 2
)求: (1)P 到达C 点时的速度 V C 。
(2)P 与Q 碰撞后瞬间Q 的速度大小。
图8
图
9 图14 图7
9.质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x0,如图1-9-15所示.一物块从钢板正上方距离为3x0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点.若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度.求物块向上运动到达的最高点与O点的距离.
弹簧类六大问题的求解应用
有关弹簧的题目在高考中几乎年年出现,由于涉及到的弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的分析,不能建立与之相关的物理模型和进行分门别类,导致解题思路不清、效率低下,错误率较高。
下面我们归纳六类问题探求解法。
一、“轻弹簧”类问题
在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧",是一种常见的理想化物理模型。
由于“轻弹簧”质量不计,选取任意小段弹簧分析,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。
故:轻质弹簧中各部分间的张力处处相等,均等于弹簧两端的受力。
弹簧一端受力为F,另一端受力一定也为F。
若是弹簧秤,则弹簧秤示数为F。
例1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m不能忽略,弹簧及挂钩质量不
计,施加水平方向的力F1、F2,且F1>F2则弹簧秤沿水平方向的加速度为,弹簧秤的读数为 .
二、弹簧弹力瞬时问题
因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。
因此,在分析瞬时变化时,可以认为弹力大小和方向不变,即弹簧的弹力瞬间不突变。
例2、如图所示,木块A与B用一轻弹簧相连,竖直放在木块C上,三者静
置于地面,A、B、C的质量之比是1∶2∶3.设所有接触面都光滑,当沿水平方
向迅速抽出木块C的瞬时,木块A和B的加速度分别是a A=____ ,a B=____
三、弹簧长度的变化问题
设劲度系数为k的弹簧受到压力为-F1时压缩量为-x1,弹簧受到拉力为F2时伸长量为x2,此时的“-”号表示压缩的含义。
若弹簧受力由压力-F1变为拉力F2,弹簧长度将由压缩量-x1变为伸长量为x2,长度增加量为x1+x2
由胡克定律有:F2=kx2-F1=k(-x1)
∴F1-(-F2)=k[x1-(-x2)]即:△F=k△x
说明弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时△x表示的物理含义是弹簧长度的改变量,并不是形变量。
例3、如图所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2拴接,劲度系数为k2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物
块2的重力势能增加了______,物块1的重力势能增加了________.
四、弹力变化的运动过程分析
弹簧的弹力是一种由形变而决定大小和方向的力,当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关。
以此来分析计算物体运动状态的可能变化结合弹簧振子的简谐运动,分析涉及到弹簧物体的变加速度运动,往往能达到事半功倍的效果。
此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动。
结合与平衡位置对应的回复力、加速度、速度的变化规律,则很容易分析物体的运动过程例4、如图所示,质量为m的物体A用一轻弹簧与下方地面上质量也为m的物体B相连,开始
时A和B均处于静止状态,此时弹簧压缩量为x0,一条不可伸长的轻绳绕
过轻滑轮,一端连接物体A、另一端C握在手中,各段绳均处于刚好伸直
状态,A上方的一段绳子沿竖直方向且足够长。
现在C端施水平恒力F
而使A从静止开始向上运动。
(整个过程弹簧始终处在弹性限度以内)
(1)如果在C端所施恒力大小为3mg,则在B物块刚要离开地面时A
的速度为多大?
(2)若将B的质量增加到2m,为了保证运动中B始终不离开地面,
则F最大不超过多少?
五、与弹簧相关的临界问题
通过弹簧相联系的物体,在运动过程中经常涉及到一些临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两物体速度达到相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等等。
此类题的解题关键是利用好临界条件,得到解题有用的物理量和结论
例5、如图所示,A、B两木块叠放在竖直轻弹簧上,已知木块A、B质量分别为0.42 kg和0.40
kg,弹簧的劲度系数k=100 N/m ,若在木块A上作用一个竖直向上的力F,使A 由静止开始以0.5 m/s2的加速度竖直向上做匀加速运动(g=10 m/s2).
(1)使木块A竖直做匀加速运动的过程中,力F的最大值;
(2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248 J,求这一过程F对木块做的功。
六、弹力做功与弹性势能的变化问题
弹簧弹力做功等于弹性势能的减少量。
弹簧的弹力做功是变力做功,求解一般可以用以下四种方法:1、因该变力为线性变化,可以先求平均力,再用功的定义进行计算;2、利用F-x图线所包围的面积大小求解;3、用微元法计算每一小段位移做功,再累加求和;4、据动能定理和能量转化和守恒定律求解。
由于弹性势能仅与弹性形变量有关,弹性势能的公式高考中不作定量要求,因此,在求弹力做功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
特别是涉及到两个物理过程中的弹簧形变量相等时,往往弹性势能的改变可以抵消,或替代求解。
例6、如图所示,挡板P固定在足够高的水平桌面上,小物块A和B大小可忽略,它们分别带为+Q A和+Q B的电荷量,质量分别为mA和mB。
两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B连接,另一端连接轻质小钩。
整个装置处于场强为E、方向水平向左的匀强电场中,A、B开始时静止,已知弹簧的劲度系数为k,不计一切摩擦及A、B间的库仑力,A、B所带电荷量保持不变,B不会碰到滑轮。
(1)若在小钩上挂质量为M的物块C并由静止释放,可使物块A对挡板P的压力恰
为零,但不会离开P,求物块C下降的最大距离h
(2)若C的质量为2M,则当A刚离开挡板P时,
B的速度多大?。