2015-2016学年山东省潍坊市初三数学上学期期中考试试题.doc
- 格式:doc
- 大小:222.04 KB
- 文档页数:8
2015-2016学年山东省潍坊市七年级(上)期中数学试卷一、选择题(本题共12个小题.在每题所列四个选项中,只有一个符合题意,把符合题意的选项所对应的字母代号写在答题纸中各题对应的方格里).1.下列各组数中,不是互为相反意义的量的是( )A.收入200元与支出200元B.上升7米和下降8米C.超过0.05mm与不足0.05mm D.增多2件与减少2升2.下列说法正确的是( )A.xy3是整式B.x3y2系数为0 C.是单项式D.3不是单项式3.在﹣2,,0,﹣,﹣0.7,π,15%中,分数有( )A.2个B.3个C.4个D.5个4.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为( )A.1.68×104m B.16.8×103m C.0.168×104m D.1.68×103m5.用代数式表示“a的3倍与b的差的平方”,正确的是( )A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)26.有理数(﹣1)2,(﹣1)3,﹣14,|﹣1|,﹣(﹣1),中,其中等于1的个数是( ) A.2个B.3个C.4个D.5个7.如图,若数轴上的两点A、B表示的数分别为a、b,则下列结论正确的是( )A.a+b<0 B.a﹣b>0 C.ab>0 D.>08.下列各组单项式的和仍为单项式的是( )A.5x2y与﹣2xy B.﹣5x2y与πx2y C.5a2y与3x2y D.23与x39.按括号内的要求,用四舍五入法,对1022.0099取近似值,其中错误的是( ) A.1022.01(精确到0.01)B.1.0×103(保留2个有效数字)C.1020(精确到十位)D.1022.010(精确到千分位)10.下列各组代数式中,互为相反数的有( )①a﹣b与﹣a﹣b;②a+b与﹣a﹣b;③a+1与1﹣a;④﹣a+b与a﹣b.A.①②④ B.②④C.①③D.③④11.下列各式中运算正确的是( )A.4m﹣m=3 B.a2b﹣ab2=0 C.2a3﹣3a3=a3D.xy﹣2xy=﹣xy12.某商店以每套80元的进价购进8套服装,并以90元左右的价格卖出.如果以90元为标准,超过标准的售价记为正数,不足标准的售价记为负数,出售价格记录如下:+2,﹣3,+5,+1,﹣2,﹣1,0,﹣5(单位:元).其它收支不计,当商店卖完这8套服装后( ) A.盈利 B.亏损 C.不盈不亏 D.盈亏不明二、填空题(本题共6个小题.请把最终结果填写在答题纸中各题对应的横线上).13.数轴上表示数﹣55和表示﹣144的两点之间的距离是__________.14.的系数是__________,次数是__________.5x3﹣3x2+2x﹣6的次数是__________.15.某粮店出售三种品牌的大米,袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,其中任意拿出两袋,它们最多相差__________kg.16.|﹣3|的意义是__________.17.若|a﹣1|=2,则a=__________.18.观察下列单项式:x,﹣3x2,5x3,﹣7x4,…按规律可得第10个单项式是__________.三、解答题(请在答题纸中各题对应的空间写出必要的过程).19.计算:(1)﹣12016+|﹣3﹣5|﹣(﹣2)3(2)()(3)﹣2(a2+2b)﹣3(﹣a2+b)20.在数轴上表示:1.5的相反数,平方等于4的数,最大的负整数,绝对值最小的有理数;并把这些数由小到大用“<”号连接起来.21.已知3a m b2与﹣2ab n是同类项,请对多项式3(m2n﹣mn﹣mn2)﹣2(﹣2mn2+2m2n﹣mn)先化简再求值.22.有理数a、b、c在数轴上的位置如图所示,化简|a+b|+|a|+|b|.23.若a与b互为相反数,c与d互为倒数,且|m+2|+(n﹣3)2=0,求a+b﹣cd﹣m+n的值.24.某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:(向东记为正,向西记为负,单位:千米)+10,﹣3,+4,+2,+8,+5,﹣2,﹣8,+12,﹣5,﹣7.(1)到晚上6时,出租车在停车场的什么方向?相距多远?(2)若汽车每千米耗油0.2升,则从停车场出发到晚上6时,出租车共耗油多少升?25.有一种改编的“二十四点”扑克牌游戏,其游戏规则为:规定黑桃、梅花两花色为负数,红桃、方块两花色为正数,任取四张扑克牌,将这四个牌面数字(1﹣13,每个数字必用且只用一次)进行加减乘除四则运算(可以使用括号),使其结果等于﹣24.例如对梅花2、红桃3、方块4,黑桃4(即﹣2,+3,+4,﹣4),可作如下运算:[(﹣4)﹣(﹣2)]×4×3=﹣24.现有四张扑克牌方块3,黑桃4,红桃6,黑桃10,运用上述规则写出三种不同方法的运算式,使其结果等于﹣24.(要求填写综合算式,不要写分步算式)(1)__________(2)__________(3)__________.2015-2016学年山东省潍坊市七年级(上)期中数学试卷一、选择题(本题共12个小题.在每题所列四个选项中,只有一个符合题意,把符合题意的选项所对应的字母代号写在答题纸中各题对应的方格里).1.下列各组数中,不是互为相反意义的量的是( )A.收入200元与支出200元B.上升7米和下降8米C.超过0.05mm与不足0.05mm D.增多2件与减少2升【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.件与升不能比较.【解答】解:增多2件与减少2升不是互为相反意义的量.故选D.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.下列说法正确的是( )A.xy3是整式B.x3y2系数为0 C.是单项式D.3不是单项式【考点】单项式.【分析】根据单项式是表示数字与字母乘积的式子分别对每一项进行分析即可得出答案.【解答】解:A、﹣是单整式,故本选项正确;B、x3y2是单项式,系数为1,故本选项错误;C、是分式,故本选项错误正确;D、3是单项式,故本选项错误;故选A.【点评】此题考查了单项式,整式,掌握单项式的定义是解决本题的关键,单项式是表示数字与字母乘积的式子;注意单独的一个数字和字母也是单项式.3.在﹣2,,0,﹣,﹣0.7,π,15%中,分数有( )A.2个B.3个C.4个D.5个【考点】有理数.【专题】常规题型.【分析】根据有理数的概念,解答即可,整数和分数统称为有理数.【解答】解:整数和分数统称为有理数,整数:﹣2,0;分数:,,﹣0.7,15%;故选:C.【点评】本题主要考查了有理数的概念,熟记有理数是由整数和分数构成的,注意:π是无理数,所以不是分数.4.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为( )A.1.68×104m B.16.8×103m C.0.168×104m D.1.68×103m【考点】科学记数法—表示较大的数.【专题】常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将16 800用科学记数法表示为1.68×104.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.用代数式表示“a的3倍与b的差的平方”,正确的是( )A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2【考点】列代数式.【分析】因为a的3倍为3a,与b的差是3a﹣b,所以再把它们的差平方即可.【解答】解:∵a的3倍与b的差为3a﹣b,∴差的平方为(3a﹣b)2.故选B.【点评】本题考查列代数式,找到所求式子的等量关系是解决问题的关键.本题的易错点是得到被减式.列代数式的关键是正确理解题中给出的文字语言关键词,比如题干中的“倍”、“平方的差”,尤其要弄清“平方的差”和“差的平方”的区别.6.有理数(﹣1)2,(﹣1)3,﹣14,|﹣1|,﹣(﹣1),中,其中等于1的个数是( )A.2个B.3个C.4个D.5个【考点】有理数的乘方;相反数;绝对值;有理数的除法.【分析】依据有理数的乘方、绝对值、相反数、有理数的除法法则进行化简,然后即可做出判断.【解答】解:(﹣1)2=1;(﹣1)3=﹣1;﹣14=﹣1;|﹣1|=1;﹣(﹣1)=1;=1,其中等于1的有4个.故选:C.【点评】本题主要考查的是有理数的乘方、绝对值、相反数、有理数的除法,掌握运算法则是解题的关键.7.如图,若数轴上的两点A、B表示的数分别为a、b,则下列结论正确的是( )A.a+b<0 B.a﹣b>0 C.ab>0 D.>0【考点】数轴.【分析】根据a,b在数轴上的位置可知a<﹣1<0<b<1,然后依据有理数的运算法则进行计算即可.【解答】解:由a,b在数轴上的位置可知a<﹣1<0<b<1,∴a+b<0,a﹣b<0,ab<0,<0.∴A正确;B、C、D错误.故选:A.【点评】本题主要考查的是数轴的认识,有理数的加、减、乘、除运算的运算法则,由点A,B在数轴上的位置得到a<﹣1<0<b<1是解题的关键.8.下列各组单项式的和仍为单项式的是( )A.5x2y与﹣2xy B.﹣5x2y与πx2y C.5a2y与3x2y D.23与x3【考点】合并同类项.【分析】直接利用合并同类项法则分别分析得出答案.【解答】解:A、5x2y与﹣2xy无法合并,故此选项错误;B、﹣5x2y+πx2y=(﹣5+π)x2y,故此选项正确;C、5a2y与3x2y无法合并,故此选项错误;D、23与x3,无法合并,故此选项错误;故选:B.【点评】此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.9.按括号内的要求,用四舍五入法,对1022.0099取近似值,其中错误的是( ) A.1022.01(精确到0.01)B.1.0×103(保留2个有效数字)C.1020(精确到十位)D.1022.010(精确到千分位)【考点】近似数和有效数字.【分析】根据精确到某一位,即对下一位的数字进行四舍五入直接进行判断.【解答】解:A、1022.0099(精确到0.01)≈1022.01,正确;B、1022.0099(保留2个有效数字)≈1.0×103,正确;C、1022.0099(精确到十位)≈1.02×103=1020,故错误;D、1022.0099(精确到千分位)≈1022.010,正确.故选C.【点评】本题考查了近似数的求法,精确到某一位,即对下一位的数字进行四舍五入,还要理解有效数字的概念.10.下列各组代数式中,互为相反数的有( )①a﹣b与﹣a﹣b;②a+b与﹣a﹣b;③a+1与1﹣a;④﹣a+b与a﹣b.A.①②④ B.②④C.①③D.③④【考点】去括号与添括号;相反数.【分析】只有符号不同的两个数互为相反数,互为相反数的两个数的和是0.两个多项式,如果一个多项式的各项分别与另一个多项式的各项互为相反数,则这两个代数式也互为相反数.【解答】解:②a+b与﹣a﹣b互为相反数;④﹣a+b与a﹣b互为相反数.故选B.【点评】本题主要考查两个代数式互为相反数的条件:一个多项式的各项分别与另一个多项式的各项互为相反数,则这两个代数式也互为相反数.11.下列各式中运算正确的是( )A.4m﹣m=3 B.a2b﹣ab2=0 C.2a3﹣3a3=a3D.xy﹣2xy=﹣xy【考点】合并同类项.【专题】计算题.【分析】根据合并同类项得到4m﹣m=3m,2a3﹣3a3=﹣a3,xy﹣2xy=﹣xy,于是可对A、C、D进行判断;由于a2b与ab2不是同类项,不能合并,则可对B进行判断.【解答】解:A、4m﹣m=3m,所以A选项错误;B、a2b与ab2不能合并,所以B选项错误;C、2a3﹣3a3=﹣a3,所以C选项错误;D、xy﹣2xy=﹣xy,所以D选项正确.故选D.【点评】本题考查了合并同类项:把同类项的系数相加减,字母和字母的指数不变.12.某商店以每套80元的进价购进8套服装,并以90元左右的价格卖出.如果以90元为标准,超过标准的售价记为正数,不足标准的售价记为负数,出售价格记录如下:+2,﹣3,+5,+1,﹣2,﹣1,0,﹣5(单位:元).其它收支不计,当商店卖完这8套服装后( ) A.盈利 B.亏损 C.不盈不亏D.盈亏不明【考点】正数和负数.【分析】所得的正负数相加,再加上预计销售的总价,减去总进价即可得到是盈利还是亏损.【解答】解:2+(﹣3)+5+1+(﹣2)+(﹣1)+0+(﹣5)=﹣3,总售价:90×8﹣3=718(元),盈利:718﹣640=78(元).故选:A.【点评】此题考查正数和负数;得到总售价是解决本题的突破点.二、填空题(本题共6个小题.请把最终结果填写在答题纸中各题对应的横线上).13.数轴上表示数﹣55和表示﹣144的两点之间的距离是89.【考点】数轴.【分析】数轴上两点之间的距离等于这两点的数的差的绝对值,即较大的数减去较小的数.【解答】解:数﹣55和表示﹣144的两点之间的距离是|﹣55﹣(﹣144)|=89.故答案为:89.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.14.的系数是﹣,次数是3.5x3﹣3x2+2x﹣6的次数是3.【考点】多项式;单项式.【分析】单项式的系数是单项式中的数字因数,次数是所有字母指数的和;多项式的次数是多项式中最高次项的次数,据此即可求解.【解答】解:的系数是﹣,次数是3.5x3﹣3x2+2x﹣6的次数是3.故答案是:﹣,3,3.【点评】本题考查了单项式的次数、次数和多项式的次数的定义,理解定义是关键.15.某粮店出售三种品牌的大米,袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,其中任意拿出两袋,它们最多相差0.6kg.【考点】正数和负数.【专题】应用题.【分析】“+”表示在原来固定数上增加,“﹣”表示在原来固定数上减少.最多相差应该是原来固定数上增加最多的减去原来固定数上减少最多的.即为(25+0.3)﹣(25﹣0.3)=0.6kg.【解答】解:这几种大米的质量标准都为25千克,误差的最值分别为:±0.1,±0.2,±0.3.根据题意其中任意拿出两袋,它们最多相差(25+0.3)﹣(25﹣0.3)=0.6kg.【点评】本题考查正负数在实际生活中的应用,需注意应理解最值的含义.注意“任意拿出两袋”.16.|﹣3|的意义是数轴上表示﹣3的点与原点的距离.【考点】绝对值.【分析】根据绝对值的定义,|a|表示数轴上表示a的点到原点的距离,据此即可求解.【解答】解:|﹣3|表示:数轴上表示﹣3的点与原点的距离.故答案是:数轴上表示﹣3的点与原点的距离.【点评】本题考查了绝对值的定义,|a|表示,数轴上表示a的点到原点的距离,理解定义是关键.17.若|a﹣1|=2,则a=3或﹣1.【考点】绝对值.【分析】根据互为相反数的绝对值相等解答.【解答】解:∵|a﹣1|=2,∴a﹣1=2或a﹣1=﹣2,∴a=3或﹣1.故答案为:3或﹣1.【点评】本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.18.观察下列单项式:x,﹣3x2,5x3,﹣7x4,…按规律可得第10个单项式是﹣19x10.【考点】单项式.【专题】规律型.【分析】第奇数个单项式系数的符号为正,第偶数个单项式的符号为负,那么第n个单项式可用(﹣1)n+1表示,第一个单项式的系数的绝对值为1,第2个单项式的系数的绝对值为3,那么第n个单项式的系数可用(2n﹣1)表示;第一个单项式除系数外可表示为x,第2个单项式除系数外可表示为x2,第n个单项式除系数外可表示为x n.【解答】解:第n个单项式的符号可用(﹣1)n+1表示;第n个单项式的系数可用(2n﹣1)表示;第n个单项式除系数外可表示为x n.∴第n个单项式表示为(﹣1)n+1(2n﹣1)x n,∴第10个单项式是(﹣1)10+1(2×10﹣1)x10=﹣19x10.故答案为:﹣19x10.【点评】本题考查了单项式.也考查l数字的变化规律;分别得到符号,系数等的规律是解决本题的关键;得到各个单项式的符号规律是解决本题的易错点.三、解答题(请在答题纸中各题对应的空间写出必要的过程).19.计算:(1)﹣12016+|﹣3﹣5|﹣(﹣2)3(2)()(3)﹣2(a2+2b)﹣3(﹣a2+b)【考点】有理数的混合运算;整式的加减.【分析】(1)先算乘方和绝对值,再算加减;(2)利用乘法分配律简算;(3)先去括号,进一步合并即可.【解答】解:(1)原式=﹣1+8﹣(﹣8)=﹣1+8+8=15;(2)原式=×24+×24﹣×24=9+4﹣18=﹣5;(3)原式=﹣2a2﹣4b+3a2﹣3b=a2﹣7b.【点评】此题考查有理数的混合运算,整式的混合运算,掌握运算顺序与计算方法是解决问题的关键.20.在数轴上表示:1.5的相反数,平方等于4的数,最大的负整数,绝对值最小的有理数;并把这些数由小到大用“<”号连接起来.【考点】有理数大小比较;数轴.【专题】推理填空题;实数.【分析】首先判断出1.5的相反数是﹣1.5,平方等于4的数是﹣2和2,最大的负整数是﹣1,绝对值最小的有理数是0;然后根据在数轴上表示数的方法,在数轴上表示出﹣1.5、﹣2、2、﹣1、0;最后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:1.5的相反数是﹣1.5,平方等于4的数是﹣2和2,最大的负整数是﹣1,绝对值最小的有理数是0,,﹣2<﹣1.5<﹣1<0<2.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.21.已知3a m b2与﹣2ab n是同类项,请对多项式3(m2n﹣mn﹣mn2)﹣2(﹣2mn2+2m2n﹣mn)先化简再求值.【考点】整式的加减—化简求值;同类项.【专题】计算题;整式.【分析】由同类项的定义求出m与n的值,原式去括号合并后代入计算即可求出值.【解答】解:∵3a m b2与﹣2ab n是同类项,∴m=1,n=2,原式=3m2n﹣3mn﹣3mn2+4mn2﹣4m2n+2mn=﹣m2n﹣mn+mn2,将m=1,n=2代入得:原式=0.【点评】此题考查了整式的加减﹣化简求值,以及同类项,熟练掌握运算法则是解本题的关键.22.有理数a、b、c在数轴上的位置如图所示,化简|a+b|+|a|+|b|.【考点】整式的加减;数轴;绝对值.【分析】根据各点在数轴上的位置判断出各有理数的符号,再去绝对值符号,合并同类项即可.【解答】解:∵由图可知b<﹣1<0<a<1,∴a+b<0,∴原式=﹣(a+b)+a﹣b=﹣a﹣b+a﹣b=﹣2b.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.23.若a与b互为相反数,c与d互为倒数,且|m+2|+(n﹣3)2=0,求a+b﹣cd﹣m+n的值.【考点】代数式求值;相反数;非负数的性质:绝对值;倒数;非负数的性质:偶次方.【分析】由题意可知a+b=0,cd=1,m=﹣2,n=3,然后代入计算即可.【解答】解:∵a与b互为相反数,c与d互为倒数,∴a+b=0,cd=1.∵|m+2|+(n﹣3)2=0,∴m=﹣2,n=3.∴原式=0﹣1﹣(﹣2)+3=4.【点评】本题主要考查的是求代数式的值、非负数的性质、倒数、相反数,根据题意求得a+b=0,cd=1,m=﹣2,n=3是解题的关键.24.某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:(向东记为正,向西记为负,单位:千米)+10,﹣3,+4,+2,+8,+5,﹣2,﹣8,+12,﹣5,﹣7.(1)到晚上6时,出租车在停车场的什么方向?相距多远?(2)若汽车每千米耗油0.2升,则从停车场出发到晚上6时,出租车共耗油多少升?【考点】正数和负数.【分析】(1)把行驶记录的所有数据相加,然后根据有理数的加法运算进行计算,结果如果是正数,则在停车场东边,是负数,则在停车场西边;(2)把所有数据的绝对值相加,求出行驶的总路程,然后乘以0.2即可得解.【解答】解:(1)+10﹣3+4+2+8+5﹣2﹣8+12﹣5﹣7=16,答:到晚上6时出租车在停车场的东方,相距16千米.(2)|+10|+|﹣3|+|+4|+|+2|+|+8|+|+5|+|﹣2|+|﹣8|+|+12|+|﹣5|+|﹣7|=10+3+4+2+8+5+2+8+12+5+7=66千米,0.2×66=13.2升答:出租车共耗油13.2升.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,需要注意(2)题容易出错.25.有一种改编的“二十四点”扑克牌游戏,其游戏规则为:规定黑桃、梅花两花色为负数,红桃、方块两花色为正数,任取四张扑克牌,将这四个牌面数字(1﹣13,每个数字必用且只用一次)进行加减乘除四则运算(可以使用括号),使其结果等于﹣24.例如对梅花2、红桃3、方块4,黑桃4(即﹣2,+3,+4,﹣4),可作如下运算:[(﹣4)﹣(﹣2)]×4×3=﹣24.现有四张扑克牌方块3,黑桃4,红桃6,黑桃10,运用上述规则写出三种不同方法的运算式,使其结果等于﹣24.(要求填写综合算式,不要写分步算式)(1)6÷3×(﹣10)+(﹣4)=﹣24(2)(﹣4+6﹣10)×3=﹣24(3)[(﹣10)﹣(﹣4)]×3﹣6=﹣24.【考点】有理数的混合运算.【专题】开放型.【分析】通过数的加减乘除运算求出答案是﹣24的算式.【解答】解:(1)6÷3×(﹣10)+(﹣4)=﹣24;(2)(﹣4+6﹣10)×3=﹣24;(3)[(﹣10)﹣(﹣4)]×3﹣6=﹣24.故答案为:6÷3×(﹣10)+(﹣4)=﹣24;(﹣4+6﹣10)×3=﹣24;[(﹣10)﹣(﹣4)]×3﹣6=﹣24.【点评】此题考查了有理数的混合运算,24点游戏是常见的一种蕴含数学运算的小游戏.要求能够灵活运用运算顺序和法则进行计算.。
2015-2016学年山东省威海市荣成市九年级(下)期中数学试卷一、选择题:1. 二次根式√x−1中字母x的取值范围是()A.x<1B.x≤1C.x>1D.x≥12. 下列计算错误的是()A.√2⋅√3=√6B.√2+√3=√5C.√12÷√3=2D.√8=2√23. 已知m=1+√2,n=1−√2,则代数式√m2+n2−3mn的值为()A.9B.±3C.3D.54. 关于x的方程(m−3)x m2−2m−1−mx+6=0是一元二次方程,则它的一次项系数是()A.−1B.1C.3D.3或−15. 用配方法解方程x2−2x−5=0时,原方程应变形为()A.(x+1)2=6B.(x+2)2=9C.(x−1)2=6D.(x−2)2=96. 对于任意的实数x,代数式x2−3x+3的值是一个()A.整数B.非负数C.正数D.无法确定7. 等腰三角形的底和腰是方程x2−6x+8=0的两根,则这个三角形的周长为()A.8B.10C.8或10D.不能确定8. 我市某楼盘原准备以每平方米8800元的价格对外销售,但是受国家楼市调控政策的影响,对价格进行了两次下调,最终的销售价格是每平方米6860元.设平均每次下调的百分率是x,可得方程()A.6860(1+x)+6860(1+x)x=8800B.6860(1+x)2=8800C.8800(1−x)x=6860D.8800(1−x)2=68609. 已知2+√3是关于x的方程x2−4x+c=0的一个根,则方程的另一个根与c的值是()A.2−√3,1B.−6−√3,15−8√3C.√3−2,−1D.2+√3,7+4√310. 若a +b +c =0,则关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有一根是( )A.1B.−1C.0D.无法判断11. 关于x 的方程x 2+(k 2−4)x +k +1=0的两个实数根互为相反数,则k 的值是( )A.k =±2B.k =2C.k ≥−1D.k =−212. 某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x ,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x =1000C.200+200×3x =1000D.200[1+(1+x)+(1+x)2]=1000二、填空题:计算(√5−3)2=________.方程x 2−5x =0的解是________.方程3x 2−2x +m −1=0的根是−1,则另一个根是________.√50⋅√a 的值是一个整数,则正整数a 的最小值是________.甲公司前年缴税40万元,今年缴税67.6万元,则该公司缴税的年平均增长率为________.已知关于x 的方程2kx 2−(4k +1)x +2k −1=0有两个实数根,则k 的取值范围是________.三、解答题:计算:(1)(√24−√0.5+2√23)+(√18−√6);(2)23√9x −6√x 4+2x√1x .已知a ,b 满足√4a −5b +√a −b −1=0,求√ab ÷√b 3a 的值.解方程:(1)x2+2√5x+2=0;(2)2x(x−1)=3x−2;(3)(3y−2)2=4(2y−1)2;(4)(2x−5)2−4(2x−5)+3=0.当x为何值时,代数式x2−13x−12的值等于18.关于x的一元二次方程x2−2x+k+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)如果x1+x2−x1x2<4,且k为整数,求k的值.商场某种商品平均每天可销售20件,每件盈利40元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?此时,每件衬衫盈利多少元?(2)每件衬衫降价多少元,商场平均每天盈利最多?学校计划利用一块空地修建一个学生自行车棚,其中一面靠墙,这堵墙的长度为12米,建造车棚的面积为80平方米.已知新建板墙的木板材料的总长为26米.为了方便学生出行,学校决定在与墙平行的一面开一个2米宽的门,那么车棚的长与宽分别为多少米?参考答案与试题解析2015-2016学年山东省威海市荣成市九年级(下)期中数学试卷一、选择题:1.【答案】D【考点】二次根式有意义的条件【解析】根据被开方数大于等于0列式计算即可得解.【解答】由题意得,x−1≥0,解得x≥1.2.【答案】B【考点】二次根式的混合运算【解析】利用二次根式的运算方法逐一算出结果,比较得出答案即可.【解答】A、√2⋅√3=√6,计算正确;B、√2+√3,不能合并,原题计算错误;C、√12÷√3=√4=2,计算正确;D、√8=2√2,计算正确.3.【答案】C【考点】二次根式的化简求值【解析】原式变形为√(m+n)2−5mn,由已知易得m+n=2,mn=(1+√2)(1−√2)=−1,然后整体代入计算即可.【解答】m+n=2,mn=(1+√2)(1−√2)=−1,原式=√(m+n)2−5mn=√22−5×(−1)=√9=3.4.【答案】B【考点】一元二次方程的定义【解析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】由题意得:m 2−2m −1=2,m −3≠0,解得m =−1或m =3.m =3不符合题意,舍去,所以它的一次项系数−m =1.5.【答案】C【考点】解一元二次方程-配方法【解析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x 2−2x =5,方程的两边同时加上一次项系数−2的一半的平方1,得x 2−2x +1=6,∴ (x −1)2=6.故选C.6.【答案】C【考点】配方法的应用非负数的性质:偶次方【解析】根据完全平方公式,将x 2−3x38转化为完全平方的形式,再进一步判断.【解答】解:多项式x 2−3x +3变形得x 2−3x +94+34=(x −32)2+34,任意实数的平方都是非负数,其最小值是0,所以(x −32)2+34的最小值是34, 故多项式x 2−3x +3的值是一个正数,故选C .7.【答案】B【考点】解一元二次方程-因式分解法等腰三角形的判定与性质【解析】先求出方程的根,再根据三角形三边关系确定是否符合题意,然后求解.【解答】解:∵方程x2−6x+8=0的解是x=2或4,当2为腰,4为底时,2+2=4不能构成三角形;当4为腰,2为底时,4,4,2能构成等腰三角形,周长=4+4+2=10.故选B.8.【答案】D【考点】由实际问题抽象出一元二次方程【解析】关系式为:原价×(1−下调的百分比)2=实际的价格,把相关数值代入即可得到方程.【解答】解:设平均每次下调的百分率为x.根据题意得:88000(1−x)2=6860,故选D.9.【答案】A【考点】根与系数的关系【解析】首先设方程x2−4x+c=0的另一根为α,由根与系数的关系即可求得另一个根与c的值.【解答】设方程x2−4x+c=0的另一根为α,则α+2+√3=4,解得α=2−√3.所以c=(2+√3)(2−√3)=1.10.【答案】A【考点】一元二次方程的定义解一元二次方程-因式分解法一元二次方程的解【解析】把a+b+c=0转化为b=−(a+c)代入一元二次方程,再用因式分解法求出方程的根.【解答】∵a+b+c=0,∴b=−(a+c)①把①代入一元二次方程ax2+bx+c=0(a≠0)中,得:ax2−(a+c)x+c=0,ax2−ax−cx+c=0,ax(x−1)−c(x−1)=0,(x−1)(ax−c)=0,∴x1=1,x2=c.a11.【答案】D【考点】根与系数的关系【解析】根据一元二次方程根与系数的关系列出方程求解即可.【解答】设x1,x2是关于x的一元二次方程x2+(k2−4)x+k+1=0的两个实数根,且两个实数根互为相反数,则=−(k2−4)=0,即k=±2,x1+x2=−ba当k=2时,方程无解,故舍去.12.【答案】D【考点】由实际问题抽象出一元二次方程【解析】先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=1000万元,把相关数值代入即可.【解答】∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.二、填空题:【答案】14−6√5【考点】二次根式的混合运算【解析】利用完全平方公式计算.【解答】解:原式=5−6√5+9=14−6√5.故答案为14−6√5.【答案】x1=0,x2=5【考点】解一元二次方程-因式分解法【解析】在方程左边两项中都含有公因式x,所以可用提公因式法.【解答】直接因式分解得x(x−5)=0,解得x1=0,x2=5.【答案】53【考点】根与系数的关系【解析】,然后解一次方程即可.设方程另一个根是t,根据根与系数的关系得到−1+t=−−23【解答】解:设方程另一个根是t,,根据题意得−1+t=−−23.解得t=53.故答案为53【答案】2【考点】二次根式的乘除法【解析】根据二次根式的乘法法则计算得到5√2a,再根据条件确定正整数a的最小值即可.【解答】∵√50⋅√a=√50a=5√2a是一个整数,∴正整数a是最小值是2.【答案】30%【考点】一元二次方程的应用【解析】设公司缴税的年平均增长率为x,根据增长后的纳税额=增长前的纳税额×(1+增长率),即可得到去年的纳税额是40(1+x)万元,今年的纳税额是40(1+x)2万元,据此即可列出方程求解.【解答】设该公司缴税的年平均增长率为x,依题意得40(1+x)2=67.6解方程得x=0.3=10%(舍去负值)所以该公司缴税的年平均增长率为30%.【答案】k≥−1且k≠016【考点】根的判别式【解析】根据x 的方程2kx 2−(4k +1)x +2k −1=0有两个实数根得到2k ≠0,△=b 2−4ac ≥0,列出k 的不等式,求出k 的取值范围即可.【解答】解:∵ 关于x 的方程2kx 2−(4k +1)x +2k −1=0有两个实数根,∴ k ≠0且Δ≥0,即Δ=(4k +1)2−4×2k ×(2k −1)≥0,且k ≠0,∴ Δ=16k +1≥0且k ≠0,∴ k ≥−116且k ≠0.故答案为:k ≥−116且k ≠0. 三、解答题:【答案】原式=2√6−√22+2√63+√24−√6=5√63−√24; 原式=2√x −3√x +2√x=√x .【考点】二次根式的加减混合运算二次根式的混合运算【解析】(1)先把各二次根式化为最简二次根式,然后去括号合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可.【解答】原式=2√6−√22+2√63+√24−√6=5√63−√24; 原式=2√x −3√x +2√x=√x .【答案】解:由题意得,4a −5b =0,a −b −1=0,则{4a −5b =0a −b =1, 解得,{a =5b =4, 则√ab ÷√b 3a =√ab ×a b 3=a b ,当a =5,b =4时,原式=54.【考点】非负数的性质:算术平方根【解析】根据非负数的性质列出二元一次方程组,求出a 、b 的值,根据二次根式的除法法则把原式化简,代入计算即可.【解答】解:由题意得,4a −5b =0,a −b −1=0, 则{4a −5b =0a −b =1, 解得,{a =5b =4, 则√ab ÷√b 3a =√ab ×ab 3=a b, 当a =5,b =4时,原式=54.【答案】解:(1)∵ △=(2√5)2−8=12,∴ x =−2√5±√122,∴ x 1=−√5+√3,xx 2=−√5−√3,(2)原方程可化为2x 2−5x +2=0, ∴ (2x −1)(x −2)=0,∴ x 1=2,x 2=12(3)两边直接开平方得,3y −2=±(4y −2), ∴ y 1=0,y 2=47;(4)∵ (2x −5)2−4(2x −5)+3=0. ∴ (2x −5−1)(2x −5−3)=0,∴ x 1=3,x 2=4.【考点】解一元二次方程-因式分解法解一元二次方程-公式法【解析】(1)直接用公式法求解;(2)原方程化简,再用因式分解法求解;(3)用直接开平方法求解即可;(4)把2x −5看作整体用因式分解法求解即可.【解答】解:(1)∵ △=(2√5)2−8=12,∴ x =−2√5±√122,∴ x 1=−√5+√3,xx 2=−√5−√3,(2)原方程可化为2x 2−5x +2=0, ∴ (2x −1)(x −2)=0,∴ x 1=2,x 2=12(3)两边直接开平方得,3y −2=±(4y −2),∴y1=0,y2=4;7(4)∵(2x−5)2−4(2x−5)+3=0.∴(2x−5−1)(2x−5−3)=0,∴x1=3,x2=4.【答案】解:由题意可得,x2−13x−12=18移项及合并同类项,得x2−13x−30=0∴(x−15)(x+2)=0∴x−15=0或x+2=0,解得x=15或x=−2,即当x=15或x=−2时,代数式x2−13x−12的值等于18.【考点】解一元二次方程-因式分解法【解析】根据题意可得x2−13x−12=18,从而可以得到x的值,本题得以解决.【解答】解:由题意可得,x2−13x−12=18移项及合并同类项,得x2−13x−30=0∴(x−15)(x+2)=0∴x−15=0或x+2=0,解得x=15或x=−2,即当x=15或x=−2时,代数式x2−13x−12的值等于18.【答案】∵方程有实数根,∴△=(−2)2−4(k+1)>0,解得k<0.故K的取值范围是k<0.根据一元二次方程根与系数的关系,得x1+x2=2,x1x2=k+1,x1+x2−x1x2=2−(k+1).由已知,得2−(k+1)<4,解得k>−3.又由(1)k<0,∴−3<k<0.∵k为整数,∴k的值为−2和−1.【考点】根的判别式根与系数的关系【解析】(1)方程有两个实数根,必须满足△=b2−4ac≥0,从而求出实数k的取值范围;(2)先由一元二次方程根与系数的关系,得x1+x2=−2,x1x2=k+1.再代入不等式x1+x2−x1x2<4,即可求得k的取值范围,然后根据k为整数,求出k的值.【解答】∵方程有实数根,∴△=(−2)2−4(k+1)>0,解得k<0.故K的取值范围是k<0.根据一元二次方程根与系数的关系,得x1+x2=2,x1x2=k+1,x1+x2−x1x2=2−(k+1).由已知,得2−(k+1)<4,解得k>−3.又由(1)k<0,∴−3<k<0.∵k为整数,∴k的值为−2和−1.【答案】设每件商品降价x元,由题意得,(40−x)(20+2x)=1200解得:x1=20,x2=10∵该商场为了尽快减少库存,则x=10不合题意,舍去.∴x=20,∴40−x=20,即每件衬衫应降价20元,每件衬衫盈利20元;设商场每天盈利为y,每件衬衫降价x元,由题意可得,y=(40−x)(20+2x)=−2(x−15)2+1250,∴当x=15时,商场平均每天盈利最多,即每件衬衫降价15元,商场平均每天盈利最多.【考点】二次函数的应用【解析】(1)根据题意可以列出相应的方程,从而可以解答本题;(2)根据题意可以列出相应的函数关系式,将函数关系式化为顶点式即可解答本题.【解答】设每件商品降价x元,由题意得,(40−x)(20+2x)=1200解得:x1=20,x2=10∵该商场为了尽快减少库存,则x=10不合题意,舍去.∴x=20,∴40−x=20,即每件衬衫应降价20元,每件衬衫盈利20元;设商场每天盈利为y,每件衬衫降价x元,由题意可得,y=(40−x)(20+2x)=−2(x−15)2+1250,∴当x=15时,商场平均每天盈利最多,即每件衬衫降价15元,商场平均每天盈利最多.【答案】车棚的长为10米,宽为8米.【考点】一元二次方程的应用【解析】设垂直墙的一边为x米,则其长为26−2x+2米,根据长方形面积公式列方程求解可得.【解答】解:设垂直墙的一边为x米,根据题意,得:x(26−2x+2)=80,解得:x1=10,x2=4(经分析知不合题意,舍去)∴26−2×10+2=8(米)。
潍坊市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每题4分,共40分) (共10题;共36分)1. (4分)下列函数解析式中,一定是二次函数的是()A .B .C .D .2. (4分)“从布袋中取出一个红球的概率为0”,这句话的含义是()A . 布袋中红球很少B . 布袋中没有球C . 布袋中没有红球D . 布袋中的球全是红球3. (4分) (2019九上·宁波期末) 在平面直角坐标系中,将点绕坐标原点顺时针旋转,所得到的对应点的坐标为()A .B .C .D .4. (4分) (2017九上·鸡西期末) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:① b2-4ac>0 ② a>0 ③ b>0 ④ c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A . 2个B . 3个C . 4个D . 5个5. (4分)在一个暗箱内放有a个除颜色外其余完全相同的小球,其中红球只有3个且摸到红球的概率为15%,则a的值是()A . 20B . 15C . 12D . 96. (4分) (2019九上·鄞州月考) 已知下列命题:①抛物线y=3x2+5x-1与两坐标轴交点的个数为2个;②相等的圆心角所对的弦相等;③任何正多边形都有且只有一个外接圆;④三角形的外心到三角形各顶点的距离相等;⑤圆内接四边形对角相等;真命题的个数有()A . 1个B . 2个C . 3个D . 4个7. (4分) (2017九上·北京期中) 若二次函数y=x2+bx的图象的对称轴是直线x=2,则关于x的方程x2+bx=5的解为()A . x1=0,x2=4B . x1=1,x2=5C . x1=1,x2=﹣5D . x1=﹣1,x2=58. (4分)已知OA=3cm,以O为圆心,3cm为半径作⊙O,则点A与⊙O的位置关系是()A . 点A在⊙O上B . 点A在⊙O内C . 点A在⊙O外D . 不确定9. (2分)在⊙O中,P是弦AB的中点,CD是过点P的直径,•则下列结论中不正确的是()A . AB⊥CDB . ∠AOB=4∠ACDC . 弧AD=弧BDD . PO=PD10. (2分) (2019九上·蜀山月考) 抛物线的顶点坐标是()A . (2,﹣5)B . (2,5)C . (﹣2,﹣5)D . (﹣2,5)二、填空题(本题有6小题,每小题5分,共30分) (共6题;共30分)11. (5分)(2017·广州) 当x=________时,二次函数y=x2﹣2x+6有最小值________.12. (5分) (2016九上·常熟期末) 不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出________球的可能性最大.13. (5分) (2019八上·德惠月考) 在Rt△ABC 中,∠C=90°,a、b、c 分别表示∠A、∠B、∠C 的对边.已知:c=5,a:b=4:3,则 a=________ . b=________.14. (5分)(2020·苏州模拟) 如图,在△ABC中,AB=AC=5,BC=6,则△ABC的内切圆⊙I与外接圆⊙O的周长之比为________。
2015-2016学年度上学期六校第一次联考九年级 数 学 试 题 命题人:学校 赵化中学 姓名 郑宗平 注意事项: 1、答卷前,考生务必将自己的班级、学号、姓名填写好; 2、考试时间120分钟,总分150分. 第Ⅰ卷 选择题 (共40分) 一、选择题(共10个小题,每小题4分,共40分) 1.下列方程是一元二次方程的是 ( ) A. 232x 1x -= B.2x 0= C. ()()()2x 12x 14x x 7+-=+ D.()2x x 55-= 2.已知有一元二次方程23x 6x 20π-+=,则此方程的一次项系数为 ( ) A.6 B.6- C.6π D.6π- 3. 方程()()m 5m 1m 5-+=-的解是 ( ) A. m 0= B.m 5= C.m 5=或m 0= D.m 5=或m 1=- 4.用配方法解方程2x 4x 10++=时,配方后的方程是 ( ) A.()2x 23+= B.()2x 23-= C.()2x 25-= D.()2x 25+= 5.若方程()222x y 116+-=,则22x y += ( ) A.5或3- B .5 C .4± D.4 6.已知关于x 的一元二次方程()2kx 1k x 10+--=,下列说法正确的是 ( ) A.当k 0=时,方程无解 B.当k 0≠,方程总有两个不相等的实数根 C.当k 1=时,方程有一个实数根 D.当k 1=-,方程有两个相等的实数根 7.已知在平面直角坐标系中,函数y kx b =+图象位置如图所示,则 一元二次方程+2x x k 10+-=根的存在情况是 ( ) A.没有实数根 B.有两个相等的实数根C.有两个不相等的实数根D.无法确定 8.我们都知道从n 边形的一个顶点出发可以引()n 3-条对角线.现有一个多边形所有对角线的总条数为90条,则这个多边形的边的条数是 ( ) A. 14 B. 15 C. 16 D. 17 9.为了打造良好的校园学习环境,赵化中学用两年时间把校园种植花草树木的场地面积增加了69%,则这两年该校种植花草树木的场地面积平均每年增长率为 ( ) A.34.5% B.33% C.30% D.27% 10.如图,将边长为12cm 的正方形纸片ABCD 沿其对 角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△'''A B C ,若两个三角形重叠部分(见图中阴影)的面积为232cm ,则它移动的距离'AA 等于 ( )班级___________学号_____________姓名 ________________—————————————密————————————————封————————————————————————线————D A B C C 'B 'A 'D AC x y y=kx+b OA.6cmB.8cmC. 6cm 或8cmD. 4cm 或8cm第Ⅱ卷 选择题 (共110分)二、 填空题(每题4分,共20分)11.方程()02x x 1=-的解为 .12.关于x 的一元二次方程()2k 1x 2x 20-+-=有实数根,则k 的取值范围为 .13.如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某 两网格线的交点上,若灰色三角形面积为214,则方格纸的面 积为 .14.某种水稻原品种亩产500千克,出米率70%,新品种每亩收获的稻谷可加工大米462千克,新品种与原品种相比较,亩产量和出米率均大幅度上升,且稻谷亩产量的增长率是出米率的增长率的2倍,求稻谷产量亩产量的增长率?若设出米率...的.增长率...为x ,则列方程 .(无需整理) 15. 若实数αβ、分别满足2201610a a +-=与2201610b b +-=,αβ不等于0;则22a b a b a b +-= .三、 解答题(每小题4分,共16分)16. 用适当的方法解下列方程:⑴.23x 27=; ⑵.2x 2x 99990+-=;⑶. 2x 3x 1-=; ⑷.()()2x 5x 3156x -+=-.四.解答题(每小题8分,共16分)17.分别..写出满足下列条件的一元二次方程: (要求每题各至少写一个,方程不重复,未知数自定;前面4题各1分,后面两题各2分) ⑴.有一个根为0;⑵.有一个根为-1;⑶.两根相等;⑷.两根互为相反数;⑸.两根互为倒数;⑹.两根分别为+13和13-.18. 如右图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(道路分别与矩形场地的边平行,见图中的阴影部分),余下的部分种上草坪,要使草坪的面积为2540m ,求道路的宽?五.解答题(每小题10分,共20分)19. a b c 、、为△ABC 的三边,当m 0>时,关于x 的方程()()22c x m b x m 2m ax 0++--=有两个相等的实数根.⑴.将方程整理为关于x 的一元二次方程的一般形式;(4分)⑵.求证:△ABC 为直角三角形. (6分)20. 若一元二次方程2ax bx c 0++=的一个根为1,且a b 、满足等式b a 22a 1=-+--.⑴.求出a b c 、、分别是多少?(6分)⑵.求方程21y c 04+=的解.(4分)六.解答题(本小题12分)21.已知一三角形的两边长分别是8和6,第三边长是一元二次方程2x 16x 600-+=的一根. ⑴.求此三角形的第三边长?(5分)⑵.求该三角形的面积?(7分)32m 20m七.解答题(本小题12分)22.阅读下面例题的解答过程,体会、理解其方法,并借鉴该例题的解法解方程. 例:解方程2x x 110---=解:⑴.当x 10-≥即当x 1≥时,x 1x 1-=-;∴原方程可化为:()2x x 110---=,即2x x 0-=;解得:,12x 0x 1==.∵x 1≥,故x 0=舍去;∴x 1=是原方程的解.⑵.当x 10-<即当x 1<时,()x 1x 1-=--;∴原方程可化为:()2x x 110+--=,即2x x 20+-=;解得:,12x 1x 2==-.∵x 1<,故x 1=舍去;∴x 2=-是原方程的解.综上所述:原方程的解为,12x 1x 2==-.请同学们参照上面例题的解法解方程:2x 2x 240++-=八.解答题(本小题14分)23.千年古镇赵化的新区鑫城有一商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元;为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件衬衫每降价1元,商场平均每天可多售出2件.⑴.每天销售这种衬衫的盈利要达到1200元,则每件衬衫应降价多少元?(8分) ⑵.每件衬衫降价多少元时,商场每天盈利最多?利润是多少?(6分)2015-2016学年(上学期)六校第一次联考九年级数学试题 参考答案一、选择题(共10个小题,每小题4分,共40分)二、 填空题(每题4分,共20分) 11.1-. 12. 1k 2≥ 且 k 1≠. 13. 12 . 14.()()%50012x 701x 462+⨯+=. 15. 2017 .13题略解:可设每个方格的边长为x ,则:()2111214x 2x 3x x 4x 2x 4x 2224-⨯⋅-⨯⋅-⨯⋅= 整理并把未知数的系数化为1得:23x 4=,∴方格纸的面积为:316124⨯=. 故应填: 12 .15题略解:根据题意和方程特点可以设αβ、为2x 2016x 10+-=的两根,∴,20161αβαβ+=-=- ∴()()()()()221120161120172017a b a b a b a b a b 轾+-=+-=---=-?=臌. 故应填: 2016 .三、 解答题(每小题4分共16分)16.⑴.,12x 3x 3==-; ⑵.,12x 99x 101==-; ⑶.,12317317x x 44+-==-; ⑷. ,125x x 62==- 四.解答题(每小题8分,共16分)17.略解:⑴至⑸各小题的答案不唯一,但要注意△≥0;⑹题:2x 2x 20--=.18.略解:本题方法不止一种.可以把横竖道路分别“平移”至矩形内边的如图位置处. 设道路的宽为xm ,则根据题意列方程为:()()20x 32x 540--=.解得符合题意的道路宽为2m .五.解答题(每小题10分,共20分)19.略解:⑴. ()2b c x 2m ax bm cm 0+--+=;⑵. 当△= 0 时,关于x 的方程()2b c x 2m ax bm cm 0+--+=有两个相等的实数根. ∵△=()()()()()22222222m a4b c bm cm 4ma 4m b c 4m a b c --+-+=+-=+- ∴()2224m a b c 0+-= ∵m 0> ∴222a b c 0+-= ∴222a b c += ∴△ABC 为直角三角形.20.略解:⑴.∵1是一元二次方程2ax bx c 0++=的一个根∴a b c 0++= 题 号1 2 3 4 5 6 7 8 910 答 案 B D C A B D C B C D根据二次根式被开方数的非负数性可知:a 202a 0-≥⎧⎨-≥⎩解得:a 2=;把a 2=代入b 0011=+-=-; 把,a 2b 1==- 代入a b c 0++= 解得:c 1=-; ∴,,a 2b 1c 1==-=-.⑵. 当c 1=-时,21y 104-= ;解得:,1211y y 22==-.六.解答题(本小题12分)21.略解:⑴.求得三角形的第三边长为10或6. ⑵.有两种情况:①.当第三边长为10时,该三角形三边分别为6、8、10.(见示意图) 该三角形为直角三角形.三角形的面积为:1S 68242=⨯⨯= ②.当第三边长为6时,该三角形三边分别为6、6、8.(见示意图) 该三角形为等腰三角形.三角形的面积为:1S 825852=⨯⨯= 所以三角形的面积为24或85.七.解答题(本小题12分)22.略解:⑴.当x 20+≥即当x 2≥-时,x 2x 2+=+;解得符合本条件的,12x 0x 2==-. ⑵.当x 20+<即当x 2<-时,()x 2x 2+=-+;解出的x 中没有符合本条件的值. 综上所述:原方程的解为,12x 0x 2==-.八.解答题(本小题14分)23.略解:⑴.设每件衬衫应降价x 元,根据题意,得:()()40x 202x 1200-+=整理得:2x 30x 2000-+=解之得:,12x 10x 20== ; 因题意要尽快减少库存,所以x 取20.答:每件衬衫应降价20元.⑵.商场每天盈利:()()()2240x 202x 80060x 2x 2x 151250-+=+-=--+ 所以当x 15=时,商场最大盈利1250元.答:每件衬衫降价15元时,商场平均每天盈利最多,每天最大利润为1250元.说明:以上答案仅供参考!1086254686。
某某省潍坊市寿光市2015-2016学年度八年级数学上学期期末考试试题一、选择题(每小题3分,共36分,在每小题给出的4个选项中,只有一个是符合题目要求的.)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.2.代数式,,,8﹣,中,分式的个数为()A.1个B.2个C.3个D.4个3.一鞋店试销一种新款女鞋,试销期间卖出情况如表:型号220 225 230 235 240 245 250数量(双) 3 5 10 15 8 3 2对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数B.众数 C.中位数D.方差4.面积相等的两个三角形()A.必定全等 B.必定不全等C.不一定全等D.以上答案都不对5.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB,垂足为E.若PE=3,则两平行线AD与BC间的距离为()A.3 B.5 C.6 D.不能确定6.在▱ABCD中,∠A:∠B:∠C=2:3:2,则∠D的度数为()A.36° B.60° C.72° D.108°7.下列分式中,是最简分式的是()A.B.C.D.8.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=19.如图,要测量河两岸相对的两点A、B间的距离,先在过点B的AB的垂线l上取两点C、D,使CD=BC,再在过D的垂线上取点E,使A、C、E在一条直线上,这时△ACB≌△ECD,DE=AB.测得DE 的长就是A、B的距离,这里判断△ACB≌△ECD的理由是()A.SAS B.ASA C.AAS D.SSS10.如果方程有增根,那么m的值为()A.1 B.2 C.3 D.无解11.如图,A,B两地被池塘隔开,小明通过下列方法测出了A,B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A,B间的距离.有关他这次探究活动的描述错误的是()A.S△CMN=S△ABC B.CM:CA=1:2C.MN∥AB D.AB=24m12.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF二、填空题(每小题4分,共24分)13.命题“同位角相等,两直线平行”的逆命题是:.14.若分式的值为零,则x的值为.15.如图,在△ABC中,AD=AE,BD=EC,∠ADB=∠AEC=105°,∠B=40°,则∠CAE=.16.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.2015~2016学年度八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩.17.若已知一组数据x1,x2…,x n的平均数为x,方差为S2,那么另一组数据3x1﹣2,3x2﹣2,…,3x n﹣2的平均数为,方差为.18.在▱ABCD中,AB、BC、CD三条边的长度分别为(a﹣3)cm、(a﹣4)cm、(9﹣a)cm,则这个平行四边形的周长为cm.三、解答题(10分+10分+8分+10分+10分+12分=60分)19.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.20.同学们,期2016届中考试的时候我们考了一个关于轴对称的图案设计问题,大家答得不错,开动脑筋,挑战一下下面这个题吧!相信你会做得更好!(1)下面图均为4的网格,每个小正方形的边长为1,观察阴影部分组成的图案,请写出这四个图案都具有的两个共同特征:(2)借助下面的网格,请设计三个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与①~④的图案不能重合)21.先化简代数式:,然后选取一个使原式有意义的x的值代入求值.22.列方程解应用题:A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.23.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.24.元旦假期,小明一家游览我市仓圣公园,公园内有一假山,假山上有条石阶小路,其中有两段台阶的高度如下图所示(图中的数字表示每一级台阶的高度,单位:cm).请你运用你所学习的统计知识,解决以下问题:(1)把每一级台阶的高度作为数据,请从统计知识方面(平均数、中位数)说一下有哪些相同点和不同点?(2)甲、乙两段台阶哪段上行走会比较舒服?你能用所学知识说明吗?(3)为方便行走,公园决定修整这两段台阶,在不改变台阶数量的前提下,应该怎样修改会比较好(在下图上填一下)?并说明一下你的方案的设计思路?某某省潍坊市寿光市2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分,在每小题给出的4个选项中,只有一个是符合题目要求的.)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选:A.【点评】轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.代数式,,,8﹣,中,分式的个数为()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】根据分式的定义直接判断得出即可.【解答】解:只有,,8﹣,符合分式的定义,一共有3个.故选:C.【点评】此题主要考查了分式的定义,准确把握分式定义是解题关键.3.一鞋店试销一种新款女鞋,试销期间卖出情况如表:型号220 225 230 235 240 245 250数量(双) 3 5 10 15 8 3 2对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数B.众数 C.中位数D.方差【考点】统计量的选择;众数.【分析】众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【解答】解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选B.【点评】考查了众数、平均数、中位数和标准差意义,比较简单.4.面积相等的两个三角形()A.必定全等 B.必定不全等C.不一定全等D.以上答案都不对【考点】全等三角形的判定.【分析】两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边和对应高不一定相等,故面积相等的两个三角形不一定全等.【解答】解:因为两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边、对应高不一定相等;故面积相等的两个三角形不一定全等.故选C.【点评】本题考查了全等三角形的判定.解答此题需要熟悉三角形的面积公式.5.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB,垂足为E.若PE=3,则两平行线AD与BC间的距离为()A.3 B.5 C.6 D.不能确定【考点】角平分线的性质;平行线之间的距离.【分析】作PF⊥AD于F,PG⊥BC于G,根据角平分线的性质得到PF=PE=3,PG=PE=3,根据平行线间的距离的求法计算即可.【解答】解:作PF⊥AD于F,PG⊥B C于G,∵AP是∠BAD的角平分线,PF⊥AD,PE⊥AB,∴PF=PE=3,∵BP是∠ABC的角平分线,PE⊥AB,PG⊥BC,∴PG=PE=3,∵AD∥BC,∴两平行线AD与BC间的距离为PF+PG=6,故选:C.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.在▱ABCD中,∠A:∠B:∠C=2:3:2,则∠D的度数为()A.36° B.60° C.72° D.108°【考点】平行四边形的性质.【分析】首先根据题意画出图形,然后由四边形ABCD是平行四边形,可得对角相等,邻角互补,又由在▱ABCD中,∠A:∠B:∠C=2:3:2,即可求得答案.【解答】解:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AD∥BC,∴∠C+∠D=180°,∵∠A:∠B:∠C=2:3:2,∴∠D=×180°=108°.故选D.【点评】此题考查了平行四边形的性质.注意结合题意画出图形,利用图形求解是关键.7.下列分式中,是最简分式的是()A.B.C.D.【考点】最简分式.【专题】探究型.【分析】将选项中式子进行化简,不能化简的选项即是所求的最简分式.【解答】解:,,,不能化简.故选D.【点评】本题考查最简分式,解题的关键是明确最简分式的定义.8.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1【考点】作图—基本作图;坐标与图形性质;角平分线的性质.【专题】压轴题.【分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b 的数量关系.【解答】解:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=﹣1,故选:B.【点评】此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|.9.如图,要测量河两岸相对的两点A、B间的距离,先在过点B的AB的垂线l上取两点C、D,使CD=BC,再在过D的垂线上取点E,使A、C、E在一条直线上,这时△ACB≌△ECD,DE=AB.测得DE 的长就是A、B的距离,这里判断△ACB≌△ECD的理由是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】根据已知条件分析,题目中给出了三角形的边相等,两条垂线,可得一对角相等,加上图形中的对顶角相等,条件满足了ASA,答案可得.【解答】解:∵AB⊥BC,DE⊥BC,∴∠ABC=∠EDC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,要根据已知选择方法.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如果方程有增根,那么m的值为()A.1 B.2 C.3 D.无解【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣3)=0,得到x=3,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣3),得x=3m.∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3.m=x=1,故选:A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.11.如图,A,B两地被池塘隔开,小明通过下列方法测出了A,B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A,B间的距离.有关他这次探究活动的描述错误的是()A.S△CMN=S△ABC B.CM:CA=1:2C.MN∥AB D.AB=24m【考点】三角形中位线定理.【专题】应用题.【分析】根据三角形中位线定理可得MN∥AB,MN=AB,然后可得△CMN∽△CAB,根据相似三角形面积比等于相似比的平方,线段的中点定义进行分析即可.【解答】解:∵AC,BC的中点M,N,∴MN∥A B,MN=AB,∴△CMN∽△CAB,∴S△M:S△ACB=(MN:AB)2,∴S△M:S△ACB=4:1,∴S△CMN=S△ABC,故A描述错误;∵M是AC中点,∴CM:CA=1:2,故B描述正确;∵AC,BC的中点M,N,∴MN∥AB,故C描述正确;∵MN的长为12m,MN=AB,∴AB=24m,故D描述正确,故选:A.【点评】此题主要考查了三角形的中位线,以及相似三角形的性质,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.12.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF【考点】正方形的判定;线段垂直平分线的性质.【分析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.【解答】解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.【点评】本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关的定理是解题关键.二、填空题(每小题4分,共24分)13.命题“同位角相等,两直线平行”的逆命题是:两直线平行,同位角相等.【考点】命题与定理.【分析】把一个命题的题设和结论互换就得到它的逆命题.【解答】解:命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”故答案为:“两直线平行,同位角相等”.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.若分式的值为零,则x的值为﹣2 .【考点】分式的值为零的条件.【专题】计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得|x|﹣2=0,x﹣2≠0,由|x|﹣2=0,解得x=2或x=﹣2,由x﹣2≠0,得x≠2,综上所述,得x=﹣2,故答案为:﹣2.【点评】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.如图,在△ABC中,AD=AE,BD=EC,∠ADB=∠AEC=105°,∠B=40°,则∠CAE=35°.【考点】等腰三角形的性质.【专题】计算题.【分析】根据AD=AE,BD=EC,∠ADB=∠AEC=105°,可知△ADB≌△AEC,可得出AB=AC,根据等腰三角形的性质即可解答.【解答】解:∵AD=AE,BD=EC,∠ADB=∠AEC=105°,∴△ADB≌△AEC,∴AB=AC,∴∠B=∠C=40°,在△AEC中,∠CAE+∠C+∠AEC=180°,∴∠CAE=180°﹣40°﹣105°=35°,故答案为:35°.【点评】本题考查了等腰三角形的性质,属于基础题,关键是先求出AB=AC,再根据等腰三角形等边对等角的关系即可.16.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.2015~2016学年度八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩90分.【考点】加权平均数.【分析】根据加权平均数的计算公式求解即可.【解答】解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).故答案为90分.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求85,90,95这三个数的平均数,对平均数的理解不正确.17.若已知一组数据x1,x2…,x n的平均数为x,方差为S2,那么另一组数据3x1﹣2,3x2﹣2,…,3x n﹣2的平均数为3x﹣2 ,方差为9S2.【考点】方差;算术平均数.【分析】一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;一组数据中的每一个数都变为原数的n倍,它的方差变为原数据的n2倍;依此规律求解即可.【解答】解:∵一组数据x1,x2…,x n的平均数为x,方差为S2,∴另一组数据3x1﹣2,3x2﹣2,…,3x n﹣2的平均数=(3x1﹣2+3x2﹣2+…+3x n﹣2)=[3(x1+x2+…+x n)﹣2n]=3x﹣2,原来的方差S2=[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],现在的方差s2=[(3x1﹣2﹣3x+2)2+(3x2﹣2﹣3x+2)2+…+(3x n﹣2﹣3x+2)2]=[9(x1﹣x)2+9(x2﹣x)2+…+9(x n﹣x)2]=9S2.故答案为3x﹣2,9S2.【点评】本题考查了平均数与方差,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.18.在▱ABCD中,AB、BC、CD三条边的长度分别为(a﹣3)cm、(a﹣4)cm、(9﹣a)cm,则这个平行四边形的周长为10 cm.【考点】平行四边形的性质;解一元一次方程.【分析】根据平行四边形的对边相等可列出方程,从而解出a,这样就可得出各边的长,继而得出周长.【解答】解:∵平行四边形的对边相等,当a﹣3=9﹣a时a﹣3=9﹣a,解得:a=6cm,即得AB=3cm、BC=2cm、CD=3cm、DA=2cm,∴平行四边形ABCD的周长是:AB+BC+CD+DA=10cm;当a﹣4=9﹣a时,a=6.5cm,即得AB=3.5cm、BC=2.5cm、CD=2.5cm、DA=2.5cm,∴AB≠BC=CD=DA,∴四边形不是平行四边形,故答案为10【点评】本题考查平行四边形的性质,需要熟练掌握平行四边形对边相等的性质,如果不能看出哪两组边为对边,可以画出草图,这样有助于分析.三、解答题(10分+10分+8分+10分+10分+12分=60分)19.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先根据∠BAC=∠DAE得出∠BAD=∠CAE,再根据全等三角形的判定得出△ABD≌△ACE,解答即可.【解答】证明:∵∠BAC=∠DAE∴∠BAD=∠CAE∵∠ABD=∠ACE,AB=AC∵在△ABD与△ACE中,∴△ABD≌△ACE(ASA)∴BD=CE.【点评】本题考查了全等三角形的判定与性质,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等.20.同学们,期2016届中考试的时候我们考了一个关于轴对称的图案设计问题,大家答得不错,开动脑筋,挑战一下下面这个题吧!相信你会做得更好!(1)下面图均为4的网格,每个小正方形的边长为1,观察阴影部分组成的图案,请写出这四个图案都具有的两个共同特征:(2)借助下面的网格,请设计三个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与①~④的图案不能重合)【考点】利用轴对称设计图案.【分析】(1)观察发现四个图形都是轴对称图形;(2)根据轴对称图形的特点设计图案即可.【解答】解:(1)这四个图案都具有的两个共同特征是:都是轴对称图形;(2)如图:.【点评】此题主要考查了利用轴对称图形设计图案,关键是掌握利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.21.先化简代数式:,然后选取一个使原式有意义的x的值代入求值.【考点】分式的化简求值.【专题】开放型.【分析】先算小括号里的,小括号里面的先对第二项的分母分解因式,然后找出两项分母的最简公因式(x﹣1)(x+1),对小括号里的第一项的分子分母都乘以x﹣1,第二项不变,然后根据同分母相加减的法则,分母不变.只把分子相加减,再把除法统一成乘法,约分化为最简.注意化简后,代入的数不能使分母的值为0.【解答】解:===x2+1;当x=0时,原式的值为1.说明:只要x≠±1,且代入求值正确,均可记满分.【点评】分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.注意化简后,代入的数不能使分母的值为0.22.列方程解应用题:A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.【考点】分式方程的应用.【专题】行程问题.【分析】设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.根据题意,知小汽车所用的时间比公共汽车所用的时间少3小时﹣20分=小时,列方程求解.【解答】解:设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.依题意,得,解,得x=20.经检验x=20是原方程的根,且符合题意.∴3x=60.答:公共汽车和小汽车的速度分别是20公里/时,60公里/时.【点评】找到合适的等量关系是解决问题的关键.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.此题中关键是弄清两车的时间关系.23.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.【考点】平行四边形的性质;全等三角形的判定.【专题】证明题.【分析】根据平行四边形的性质得出OA=OC,AB∥CD,推出∠EAO=∠FCO,证出△AOE≌△COF即可.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA).【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的判定的应用,关键是根据平行四边形的性质得出AO=CO.24.元旦假期,小明一家游览我市仓圣公园,公园内有一假山,假山上有条石阶小路,其中有两段台阶的高度如下图所示(图中的数字表示每一级台阶的高度,单位:cm).请你运用你所学习的统计知识,解决以下问题:(1)把每一级台阶的高度作为数据,请从统计知识方面(平均数、中位数)说一下有哪些相同点和不同点?(2)甲、乙两段台阶哪段上行走会比较舒服?你能用所学知识说明吗?(3)为方便行走,公园决定修整这两段台阶,在不改变台阶数量的前提下,应该怎样修改会比较好(在下图上填一下)?并说明一下你的方案的设计思路?【考点】方差.【分析】(1)利用平均数计算公式、中位数解答即可;(2)先求出方差,根据方差的大小再确定哪段台阶路走起来更舒服;(3)要使台阶路走起来更舒服,就得让方差变得更小.【解答】解:(1)将甲、乙两台阶高度值从小到大排列如下,甲:10,12,15,17,18,18;乙:14,14,15,15,16,16;甲的中位数是:(15+17)÷2=16,平均数是:(10+12+15+17+18+18)=15;乙的中位数是:(15+15)÷2=15,平均数是:(14+14+15+15+16+16)=15;故两台阶高度的平均数相同,中位数不同;(2)=[(10﹣15)2+(12﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(18﹣15)2]=,=[(14﹣15)2+(14﹣15)2+(15﹣15)2+(15﹣15)2+(18﹣15)2+(18﹣15)2]=,∵乙台阶的方差比甲台阶方差小,∴乙台阶上行走会比较舒服;(3)修改如下:为使游客在两段台阶上行比较舒服,需使方差尽可能小,最理想应为0,同时不能改变台阶数量和台阶总体高度,故可使每个台阶高度均为15cm(原平均数),使得方差为0.【点评】此题主要考查了方差在实际生活中的应用,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.。
山东省潍坊市2024-2025学年高一上学期11月期中考试语文试题注意事项:1.答卷前,考生务必将自己的姓名、考生号和座号填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:费孝通曾指出,在中国传统社会里,我们对于社会的认识主要来自书本与经典,所以才有所谓“秀才不出门,能知天下事”“半部《论语》治天下”的认知格局。
强调书本以及经典的重要性,当然很有道理,因为经典记载了过去我们认识世界的经验和总结。
但是,费孝通认为若是只通过书本来认识社会的话,应该有两个逻辑前提:一个是过去出版的著作里包含了人类所有的知识,因此任何知识都可以从书本中得到了解;另一个是过去的书中应该包含了所有解决问题的方法。
实际上,这两个逻辑前提是不成立的。
特别是在一个发展日益迅速、竞争强度日渐增加、社会状况日趋复杂的时代,我们的认知也处在知识爆炸的情境中。
这样的中国,无论是知识的积累,还是解决问题的需求,要面对的要素越来越多且越来越复杂。
所以按照费孝通的说法,认识和治理中国这样的社会,应该以社会调查作为根本途径。
费孝通认为社会调查是认识论的起点。
这是符合历史唯物主义的,是从实践到理论,又从理论回到实践的一个认识过程。
我们要认识社会,必须从实际调查出发,没有调查就没有发言权。
费孝通真正将社会调查变成理论体系,形成社会学调查,与他攻读博士学位阶段严格的学术训练有关,这使他可以通过专业的眼光去看待过去做过的社会调查。
费孝通强调了社会调查与社会学调查的区别。
社会调查是描述性的,告诉我们社会是什么,《江村经济》这本书就是一种描述性的著作,也就是如今所说的民族志。
2015-2016学年九年级(下)入学数学试卷一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案.其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在,﹣1,0,2这四个数中,属于负数的是()A.B.﹣1 C.0 D.22.计算2a3•(﹣a5)的结果是()A.2a8B.﹣2a8C.2a15D.﹣2a153.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.函数中,自变量x的取值范围是()A.x>3 B.x≥3 C.x<3 D.x≤35.下列调查中,调查方式选择正确的是()A.为了了解某品牌手机的屏幕是否耐摔,选择全面调查B.为了了解玉兔号月球车的零部件质量,选择抽样调查C.为了了解南开步行街平均每天的人流量,选择抽样调查D.为了了解中秋节期间重庆市场上的月饼质量,选择全面调查6.如图,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=60°,则∠DEF的度数是()A.10°B.20°C.30°D.40°7.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数8.在寻找马航MH370航班过程中,某搜寻飞机在空中A处发现海面上一块疑似漂浮目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=1500米,,则飞机距疑似目标B的水平距离BC为()A.米B.米C.米D.米9.如图,AB是⊙O的直径,点C、点D在⊙O上,连结AC、BC、AD、CD,若∠BAC=50°,则∠ADC 的度数等于()A.30°B.35°C.40°D.45°10.张老师带育才艺术团去北京参加文艺汇演,他们乘坐校车从南开大校门口出发到机场赶飞机.车开了一段时间后,张老师发现有一包演出服落在了校门口门卫处,于是马上打出租车返回去取,拿到服装后,他立即乘同一辆出租车追赶校车(下车取服装的时间忽略不计),结果,张老师在机场附近追上校车.设张老师与校车之间的距离为S,校车出发的时间为t,则下面能反映S与t的函数关系的大致图象是()A.B.C.D.11.观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7,….,将这组数排成如图的形式,按照如图规律排下去,则第11行中从左边数第10个数是()A.﹣110 B.110 C.﹣111 D.11112.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.二、填空题(本大题6个小题,每小题3分,共24分),请将答案直接填在题后的横线上.13.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为.14.计算:2×(﹣π)0﹣12016+的值为.15.若△ABC∽△DEF,且周长比为2:3,则相似比为.16.如图,扇形OAB的圆心角为90°、半径为2cm,半圆O1和半圆O2的直径分别为OA和OB,则图中阴影部分的面积为cm2.17.从﹣3,﹣2,﹣1,1,2,3六个数中任选一个数记为k,则使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为.18.如图,直角三角形ABC中,∠ACB=90°,BC=3,AC=6,E为BC延长线上一点,且EC=,过点E作EF⊥AB交AB于F,将△ABC沿AB翻折,得到△ABD,将△ABD绕点B旋转,在旋转过程中,记旋转中△ABD为△A′B′D′.设直线A′D′与射线EF交于点M,与射线EB交于点N,当△EMN是以∠MEN 为底角的等腰三角形时,EN=.三、解答题:(本大题2个小题,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19.(1)解方程:(2)解方程组:.20.如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AB=DE.求证:AC∥DF.四、解答题:(本大题4个小题,每小题0分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(2014•万州区校级模拟)先化简,再求值:,其中a是不等式组的整数解.22.(2016春•重庆校级月考)创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共件,其中B班征集到作品件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).23.(2016春•重庆校级月考)某公司研发一款新型的测角仪,这种测角仪能更精确的测量角度,减少误差.(1)如图,小明为了得到教学楼BC上旗杆AB的高度,用新型测角仪在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,请你帮小明求出旗杆AB的高度.(结果精确到0.1m.参考数据:∠AGB=90°≈1.41,sin52°≈0.79,tan52°≈1.28)(2)目前公司有100台机器,平均每台能生产400套,由于该仪器大受欢迎,工厂计划增加产量;但是由于机器故障,每台平均生产套数将减少1.25a%(20<a<30),要使生产总量增加10%,则机器台数需增加2.4a%,求a的值.24.(2016春•重庆校级月考)若整数a能被整数b整除,则一定存在整数n,使得,即a=bn.例如若整数a能被整数3整除,则一定存在整数n,使得,即a=3n.(1)若一个多位自然数的末三位数字所表示的数与末三位数以前的数字所表示的数之差(大数减小数)能被13整除,那么原多位自然数一定能被13整除.例如:将数字306371分解为306和371,因为371﹣306=65,65是13的倍数,所以306371能被13整除.请你证明任意一个四位数都满足上述规律.(2)如果一个自然数各数位上的数字从最高位到个位仅有两个数交替排列组成,那么我们把这样的自然数叫做“摆动数”,例如:自然数12121212从最高位到个位是由1和2交替出现组成,所以12121212是“摆动数”,再如:656,9898,37373,171717,…,都是“摆动数”,请你证明任意一个6位摆动数都能被13整除.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.(2015•重庆校级二模)如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E 在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.26.(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N 是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2015-2016学年九年级(下)入学数学试卷参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案.其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在,﹣1,0,2这四个数中,属于负数的是()A.B.﹣1 C.0 D.2【分析】根据负数是小于0的数,可得答案.【解答】解:A、不是负数,故A错误;B、﹣1是负数,故B正确;C、0不是负数,故C错误;D、是正数,故D错误;故选:B2.计算2a3•(﹣a5)的结果是()A.2a8B.﹣2a8C.2a15D.﹣2a15【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2a3•(﹣a5)=﹣2a8.故选:B.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.4.函数中,自变量x的取值范围是()A.x>3 B.x≥3 C.x<3 D.x≤3【分析】根据二次根式的性质的意义,被开方数大于等于0,列不等式求解.【解答】解:依题意,得3﹣x≥0,解得x≤3,故选D.5.下列调查中,调查方式选择正确的是()A.为了了解某品牌手机的屏幕是否耐摔,选择全面调查B.为了了解玉兔号月球车的零部件质量,选择抽样调查C.为了了解南开步行街平均每天的人流量,选择抽样调查D.为了了解中秋节期间重庆市场上的月饼质量,选择全面调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、为了了解某品牌手机的屏幕是否耐摔,宜选择抽样调查,故A错误;B、为了了解玉兔号月球车的零部件质量,精确度要求高,故已选择全面调查,故B错误;C、为了了解南开步行街平均每天的人流量,选择抽样调查,故C正确;D、为了了解中秋节期间重庆市场上的月饼质量,宜选择抽样调查,故D错误;故选:C.6.如图,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=60°,则∠DEF的度数是()A.10°B.20°C.30°D.40°【分析】根据两直线平行,内错角相等可得∠1=∠B,根据垂直的定义可得∠AEB=90°,然后根据平角等于180°列式计算即可得解.【解答】解:∵AB∥CD,∴∠1=∠B=60°,∵BE⊥AF,∴∠AEB=90°,∴∠DEF=180°﹣∠1﹣∠AEB=180°﹣60°﹣90°=30°.故选C.7.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.8.在寻找马航MH370航班过程中,某搜寻飞机在空中A处发现海面上一块疑似漂浮目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=1500米,,则飞机距疑似目标B的水平距离BC为()A.米B.米C.米D.米【分析】利用所给角的正切函数求得线段BC的长即可.【解答】解:由题意得:AC=1500米,tan∠B=,∴在Rt△ACB中,BC===2500米,故选D.9.如图,AB是⊙O的直径,点C、点D在⊙O上,连结AC、BC、AD、CD,若∠BAC=50°,则∠ADC 的度数等于()A.30°B.35°C.40°D.45°【分析】先由直径所对的圆周角为90°,可得:∠ACB=90°,然后由∠BAC=50°,根据三角形内角和定理可得:∠B=40°,然后根据同弧所对的圆周角相等,即可求出∠ADC的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=40°,∴∠ADC=∠B=40°.故选C.10.张老师带育才艺术团去北京参加文艺汇演,他们乘坐校车从南开大校门口出发到机场赶飞机.车开了一段时间后,张老师发现有一包演出服落在了校门口门卫处,于是马上打出租车返回去取,拿到服装后,他立即乘同一辆出租车追赶校车(下车取服装的时间忽略不计),结果,张老师在机场附近追上校车.设张老师与校车之间的距离为S,校车出发的时间为t,则下面能反映S与t的函数关系的大致图象是()A.B.C.D.【分析】根据老师在校车上时S为零,打出租车返回路程变化快,乘车追赶时路程变化慢,可得答案.【解答】解:老师乘校车时路程为零,打车返回学校时两车行驶方向相反路程变化快,乘车追赶路程变化慢,故B符合题意.故选:B.11.观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7,….,将这组数排成如图的形式,按照如图规律排下去,则第11行中从左边数第10个数是()A.﹣110 B.110 C.﹣111 D.111【分析】首先观察已知数列中,绝对值为奇数的符号为“﹣”,绝对值为偶数的符号为“+”,其次观察数列排列中,每一行的第一个数的绝对值,与所在行数的关系:第n行的第一个数的绝对值为:(n﹣1)2+1,由此即可进行判断.【解答】解:观察数列排列中,第n行的第一个数的绝对值为:(n﹣1)2+1,所以第11行的第一个数的绝对值为:(11﹣1)2+1=101,第11行中从左边数第10个数的绝对值是:101+(10﹣1)=110,观察已知数列中,绝对值为奇数的符号为“﹣”,绝对值为偶数的符号为“+”,所以:第11行中从左边数第10个数是:110.故选B.12.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.【分析】作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,﹣x),根据正方形的性质求得对角线解得F的坐标,根据直线OB的解析式设出直线AC 的解析式为:y=﹣x+b,代入交点坐标求得解析式,然后把A,C的坐标代入即可求得k的值.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(x,),则C(,﹣x),∵点B的坐标为(1,4),∴OB==,直线OB为:y=4x,∵AC和OB互相垂直平分,∴它们的交点F的坐标为(,2),设直线AC的解析式为:y=﹣x+b,代入(,2)得,2=﹣×+b,解得b=,直线AC的解析式为:y=﹣x+,把A(x,),C(,﹣x)代入得,解得k=﹣.故选C.二、填空题(本大题6个小题,每小题3分,共24分),请将答案直接填在题后的横线上.13.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为 6.75×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.【解答】解:67 500=6.75×104.故答案为:6.75×104.14.计算:2×(﹣π)0﹣12016+的值为2.【分析】原式利用零指数幂法则,乘方的意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=2﹣1+3=4﹣2=2,故答案为:215.若△ABC∽△DEF,且周长比为2:3,则相似比为2:3.【分析】由△ABC∽△DEF,且周长比为2:3,根据相似三角形的周长比等于相似比,即可求得答案.【解答】解:∵△ABC∽△DEF,且周长比为2:3,∴相似比为:2:3.故答案为:2:3.16.如图,扇形OAB的圆心角为90°、半径为2cm,半圆O1和半圆O2的直径分别为OA和OB,则图中阴影部分的面积为1cm2.【分析】连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出阴影部分的面积=S△AOD,故可得出结论.【解答】解:连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S阴影=S△AOD=×2×1=1.故答案为:1.17.从﹣3,﹣2,﹣1,1,2,3六个数中任选一个数记为k,则使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为.【分析】首先利用分式方程的知识求得当k=﹣3,﹣2,﹣1,3,使得关于x的分式方程=k﹣2有解,再利用一次函数的性质,求得当k=﹣1,1,2,3时,关于x的一次函数y=(k+)x+2不经过第四象限,再利用概率公式即可求得答案.【解答】解:∵方程两边同乘以(x+1),∴k﹣1=(k﹣2)(x+1),∴当k=2或k=1时,关于x的分式方程=k﹣2无解,∴当k=﹣3,﹣2,﹣1,3,使得关于x的分式方程=k﹣2有解;∵关于x的一次函数y=(k+)x+2不经过第四象限,∴k+>0,∴k>﹣,∴当k=﹣1,1,2,3时,关于x的一次函数y=(k+)x+2不经过第四象限,∴得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的有﹣1,3;∴使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为:=.故答案为:.18.如图,直角三角形ABC中,∠ACB=90°,BC=3,AC=6,E为BC延长线上一点,且EC=,过点E作EF⊥AB交AB于F,将△ABC沿AB翻折,得到△ABD,将△ABD绕点B旋转,在旋转过程中,记旋转中△ABD为△A′B′D′.设直线A′D′与射线EF交于点M,与射线EB交于点N,当△EMN是以∠MEN为底角的等腰三角形时,EN=13或+3.【分析】情形1:如图1中,当∠BEF=∠NME时,易证BN=NA′,设BN=NA′=x,在RT△BND′利用勾股定理即可解决问题.情形2:如图2中,当∠MEN=∠MNE时,证明BN=BA′即可解决问题.【解答】解:如图1中,当∠BEF=∠NME时,∵∠BEF+∠ABC=90°,∠A+∠ABC=90°,∴∠BEF=∠A=∠BA′D′=∠NME,∴BA′∥EM,∴∠NBA′=∠BEF=∠BA′N,∴NB=NA′,设BN=NA′=x,在RT△BND′中,∵BD′2+ND′2=BN2,∴32+(6﹣x)2=x2,x=,∴EN=EB+BN=EC+BC+BN=+3+=13,如图2中,当∠MEN=∠MNE时,∵∠MEN=∠BAC=∠BA′N=∠A′NE,∴BA′=BN=AB===3,∴EN=EC+BC+BN=+3=3=+3.故答案为13或+3.三、解答题:(本大题2个小题,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19.(1)解方程:(2)解方程组:.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程组利用代入消元法求出解即可.【解答】解:(1)去分母得:x2+2x﹣x2+4=1,解得:x=﹣1.5,经检验x=﹣1.5是分式方程的解;(2),把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.20.如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AB=DE.求证:AC∥DF.【分析】首先由BE=CF可以得到BC=EF,然后利用边边边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.【解答】证明:∵BE=CF,∴BE+EC=CF+EC即BC=EF,∵AB∥DE,∴∠B=∠DEF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS)∴∠ACB=∠F,∴AC∥DF.四、解答题:(本大题4个小题,每小题0分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(2014•万州区校级模拟)先化简,再求值:,其中a是不等式组的整数解.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,计算即可得到结果,求出不等式组解集确定出a的值,代入计算即可求出值.【解答】解:原式=+•﹣3=+﹣3==﹣,由不等式组得到<a<3,∵a为整数,∴a=1或2,又∵a≠1,∴a=2,当a=2时,原式=﹣2.22.(2016春•重庆校级月考)创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共12件,其中B班征集到作品3件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).【分析】(1)用C的度数除以360度求出所占的百分比,由C的件数除以所占的百分比即可得到调查的总件数;进而求出B的件数;(2)画树状图得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【解答】解:(1)张老师所调查的4个班征集到作品有:=12(件),其中B班征集到作品数为:12﹣2﹣5﹣2=3(件),补全图形如下:(2)画树状图如下:所有等可能的情况有12种,其中一男一女有8种,则P==;故答案为:(1)12,3.23.(2016春•重庆校级月考)某公司研发一款新型的测角仪,这种测角仪能更精确的测量角度,减少误差.(1)如图,小明为了得到教学楼BC上旗杆AB的高度,用新型测角仪在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,请你帮小明求出旗杆AB的高度.(结果精确到0.1m.参考数据:∠AGB=90°≈1.41,sin52°≈0.79,tan52°≈1.28)(2)目前公司有100台机器,平均每台能生产400套,由于该仪器大受欢迎,工厂计划增加产量;但是由于机器故障,每台平均生产套数将减少1.25a%(20<a<30),要使生产总量增加10%,则机器台数需增加2.4a%,求a的值.【分析】(1)过E点作EH⊥BC于H点,在RT△BEH中利用三角函数求得BH的长,然后在直角△EAH 中,利用三角函数求得AH的长,根据AB=AH﹣BH即可求解;(2)根据机器的总生产量等于机器数与每台生产的产品数即可列方程求解.【解答】解:(1)过E点作EH⊥BC于H点,由题:∠AEH=52°,∠BEH=45°,EH=12m,在RT△BEH中,∵∠BEH=45°∴BH=EH=12m在Rt△EAH中,AH=EH•tan52°=15.36m∴AB=AH﹣BH≈3.4m(2)由题意得:40000(1+10%)=400(1﹣1.25a%)•100(1+2.4a%),解得:a1=25,a2=.∵20<a<30,∴a=25.答:a的值为25.24.(2016春•重庆校级月考)若整数a能被整数b整除,则一定存在整数n,使得,即a=bn.例如若整数a能被整数3整除,则一定存在整数n,使得,即a=3n.(1)若一个多位自然数的末三位数字所表示的数与末三位数以前的数字所表示的数之差(大数减小数)能被13整除,那么原多位自然数一定能被13整除.例如:将数字306371分解为306和371,因为371﹣306=65,65是13的倍数,所以306371能被13整除.请你证明任意一个四位数都满足上述规律.(2)如果一个自然数各数位上的数字从最高位到个位仅有两个数交替排列组成,那么我们把这样的自然数叫做“摆动数”,例如:自然数12121212从最高位到个位是由1和2交替出现组成,所以12121212是“摆动数”,再如:656,9898,37373,171717,…,都是“摆动数”,请你证明任意一个6位摆动数都能被13整除.【分析】(1)设一个四位数的末三位数为B,末三位数以前的数为A,根据题意可得A=13n+B,即这个四位数是1000(13n+B)+B=13(1000n+77B),可得;(2)设任意一个6位摆动数的十位数字为a、个位数字为b,表示出末三位数为100b+10a+b,末三位数以前的数为100a+10b+a,将二者相减分解出因数13可得.【解答】解:(1)设一个四位数的末三位数为B,末三位数以前的数为A,则这个四位数为:1000A+B,由题意:A﹣B=13n(n为整数),∴A=13n+B,从而1000A+B=1000(13n+B)+B=13000n+1001B=13(1000n+77B),∴这个四位数能被13整除∴任意一个四位数都满足上述规律;(2)设任意一个6位摆动数的十位数字为a,个位数字为b,所以这个6位摆动数的末三位数为:100b+10a+b,末三位数以前的数为:100a+10b+a,∵100a+10b+a﹣(100b+10a+b)=91a﹣91b=13(7a﹣7b)∴这个6位摆动数的末三位数以前的数与末三位数之差能被13整除,∴任意一个6位摆动数能被13整除.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.(2015•重庆校级二模)如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E 在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.【分析】(1)由AE=DE,∠AED=90°,AD=3,可求得AE=DE=3,在Rt△BDE中,由DE=3,BE=4,可知BD=5,又F是线段BD的中点,所以EF=BD=2.5;(2)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF=EF;(3)思路同(1).连接CF,延长EF交CB于点G,先证△EFC是等腰三角形,要证明EF=FG,需要证明△DEF和△FGB全等.由全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此得出结论.【解答】解:(1)∵∠AED=90°,AE=DE,AD=3,∴AE=DE=3,在Rt△BDE中,∵DE=3,BE=4,∴BD=5,又∵F是线段BD的中点,∴EF=BD=2.5;(2)如图1,连接CF,线段CE与FE之间的数量关系是CE=FE;解法1:∵∠AED=∠ACB=90°∴B、C、D、E四点共圆且BD是该圆的直径,∵点F是BD的中点,∴点F是圆心,∴EF=CF=FD=FB,∴∠FCB=∠FBC,∠ECF=∠CEF,由圆周角定理得:∠DCE=∠DBE,∴∠FCB+∠DCE=∠FBC+∠DBE=45°∴∠ECF=45°=∠CEF,∴△CEF是等腰直角三角形,∴CE=EF.解法2:∵∠BED=∠AED=∠ACB=90°,∵点F是BD的中点,∴CF=EF=FB=FD,∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,∴∠DFE=2∠ABD,同理∠CFD=2∠CBD,∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,即∠CFE=90°,∴CE=EF.(2)(1)中的结论仍然成立.解法1:如图2﹣1,连接CF,延长EF交CB于点G,∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDF=∠GBF,在△EDF和△GBF中,,∴△EDF≌△GBF,∴EF=GF,BG=DE=AE,∵AC=BC,∴CE=CG,∴∠EFC=90°,CF=EF,∴△CEF为等腰直角三角形,∴∠CEF=45°,∴CE=FE;解法2:如图2﹣2,连结CF、AF,∵∠BAD=∠BAC+∠DAE=45°+45°=90°,又∵点F是BD的中点,∴FA=FB=FD,在△ACF和△BCF中,,∴△ACF≌△BCF,∴∠ACF=∠BCF=∠ACB=45°,∵FA=FB,CA=CB,∴CF所在的直线垂直平分线段AB,同理,EF所在的直线垂直平分线段AD,又∵DA⊥BA,∴EF⊥CF,∴△CEF为等腰直角三角形,∴CE=EF.26.(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N 是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求出抛物线的解析式,进而求出顶点D的坐标;(2)由平移性质,可知重叠部分为一平行四边形.如答图2,作辅助线,利用相似比例式求出平行四边形的边长和高,从而求得其面积的表达式;然后利用二次函数的性质求出最值;(3)本问涉及两个动点,解题关键是利用平行四边形的判定与性质,区分点N在x轴上方、下方两种情况,分类讨论,避免漏解.设M(t,0),利用全等三角形求出点N的坐标,代入抛物线W′的解析式求出t的值,从而求得点M的坐标.【解答】方法一:解:(1)设抛物线W的解析式为W=ax2+bx+c,∵抛物线W经过O(0,0)、A(4,0)、C(﹣2,3)三点,∴,解得:∴抛物线W的解析式为W=x2﹣x.∵W=x2﹣x=(x﹣2)2﹣1,∴顶点D的坐标为(2,﹣1).(2)由▱OABC得,CB∥OA,CB=OA=4.又∵C点坐标为(﹣2,3),∴B点的坐标为(2,3).如答图2,过点B作BE⊥x轴于点E,由平移可知,点C′在BE上,且BC′=m.。
2015~2016学年第一学期初一数学期中考试试卷(考试时间:90分钟 满分:100分) 一、细心选一选 (每小题3分,共24分)1.下面的计算正确的是 ( )A .6a -5a =1B .a + 2a 2 =3a 3C .-(a -b ) =-a + bD .2(a + b ) =2a + b 2.在(-1)3,(-1)2012,-22,(-3)2这四个数中,最大的数与最小的数的差等于 ( ) A .10 B .8 C .5 D .13 3.下列各组代数式中,是同类项的是 ( )A .5x 2 y 与15xy B .-522 y 与15yx 2 C .5ax 2与15yx 2 D .83与x 34.给出下列判断:①单项式5×103x 2的系数是5;②x -2xy + y 是二次三项式;③多项式-3a 2 b +7a 2b 2-2ab +1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是( )A .1个B .2个C .3个D .4个5.有理数a ,b ,c 在数轴上的位置如图所示, 则a c ++c b --b a += ( )A .-2bB .0C .2cD .2c -2b 6.若m =3,n =5且m -n >0,则m + n 的值是 ( )A .-2B .-8或-2C .-8或8D .8或-27.上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为 ( ) A .a b x y++ B .ax by ab+ C .ax by a b++ D .2x y +8.观察图中每一个正方形各顶点所标数字的规律,2 012应标在 ( )A .第502个正方形左上角顶点处B .第502个正方形右上角顶点处C .第503个正方形左上角顶点处D .第503个正方形右上角顶点处二、认真填一填 (每小题2分,共20分)9.-23的倒数为 ;绝对值等于3的数是 .10.钓鱼岛是钓鱼岛列岛的主岛,是中国固有领土,位于中国东海,面积4 384 000 m 2,将这个数据用科学记数法可表示为 m 2. 11.比较大小,用“<”“>”或“一”连接:(1) -34--(-23) (2) -3.14 -π-12.已知4x 2m y m+n 与3x 6 y 2是同类项,则m -n = .13.数轴上与表示-2的点距离3个长度单位的点所表示的数是 . 14.已知代数式x -2y 的值是12,则代数式-2x + 4y -1的值是 .15·若a ,b 互为相反数,c ,d 互为倒数,m 到原点的距离为2,则代数式m —cd +a b m+的值为 .16.定义新运算“⊗”,规定:a ⊗b =13a -4b ,则12⊗(-1) = .17.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .18.观察表一,寻找规律.表二,表三,表四分别是从表一中截取的一部分,其中a + b + c的值为 .三、耐心解一解 (共56分)19.计算:(每小题3分,共12分)(1) -10-(-16)+(-24); (2) 5÷(-35)×53(3) -22×7-(-3)×6+5 (4) (113+18-2.75)×(-24)+(-1)2014+(-3)3.20.化简:(每小题3分,共6分)(1) 2x +(5x -3y )一(3x + y ); (2) 3(4x 2-3x +2)-2(1-4x 2-x ).21.(5分) 将-2.5,12,2,-2,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来.22.(5分) 已知多项式A,B,其中A=x2-2x + 1,小马在计算A+B时,由于粗心把A+B看成了A-B求得结果为-3x2-2x-1,请你帮小马算出A+B的正确结果.23.(本题满分8分)“十一”国庆期间,俄罗斯特技飞行队在黄山湖公园特技表演,其中一架飞机起飞后的高度变化如左下表:(1) 此时这架飞机比起飞点高了多少千米?(2) 如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?(3) 如果飞机做特技表演时,有4个规定动作,起飞后高度变化如下:上升3.8千米,下降2.9千米,再上升1.6千米.若要使飞机最终比起飞点高出1千米,问第4个动作是上升还是下降,上升或下降多少千米?24.(10分) 在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移a格(当a 为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移b格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(a,b).例如,从A到B记为:A→B (+1,+3);从C到D记为:C→D (+1,-2).回答下列问题:(1) 如图1,若点A的运动路线为:A→B→C→A,请计算点A运动过的总路程.(2) 若点A运动的路线依次为:A→M(+2,+3),M→N (+1,-1),N→P(-2,+2),P→Q(+4,-4).请你依次在图2上标出点M,N,P,Q的位置.(3) 在图2中,若点A经过(m,n)得到点E,点E再经过(p,q)后得到Q,则m与p满足的数量关系是;n与q满足的数量关系是.25.(10分) 如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,a +(c-7)2=0.且a,b满足2(1) a=,b=,c=.(2) 若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.(3) 点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.2015~2016学年第一学期初一数学期中考试试卷参考答案1.C 2.D 3.B 4.A 5.B 6.B 7.C 8.C 9.-323或-310.4.384×10611.< > 12.4 13.-5,1 14.-2 15. 1 16.8 17.3018.76 19.(1) -18 (2) -1259 (3) -5 (4) 5 20.(1) 4x -4y (2) 20x 2-7x + 421.画图略,-2.5<-2-<0<12<2<-(-3) 22.B =4x 2 + 2 A +B =5x 2-2x + 323.解:(1) +4.4+(-3.2)+1.1+(-1.5) =0.8(km) 答:这架飞机比起飞点高了0.8千米 (2) 2×( 4.4++ 3.2-+ 1.1++ 1.5-=20.4(升),答:4个动作表演完,一共消耗20.5升燃油. (3) 3.8-2.9+1.6-1=1.5, 答:第4个动作下降1.5千米. 24.(1) 1+3+2+1+3+4=14 (2)(3) m + p =5,n + q =0 25.(1) a =2,b =1,c =7 (2) 4 (3) AB =3t + 3,AC =5t + 9,BC =2t + 6 (4) 不变,始终为12.。
专题16 双等腰直角三角形问题前解法分析【专题综述】一个等腰直角三角形绕另一等腰直角三角形旋转,形成以双等腰直角三角形为背景的数学问题,在近年各地中考试卷中大量出现.本文拟通过对不同类型的双等腰直角三角形问题的剖析,找到某些共性,以达到帮助大家提高解题题能力的目的.【方法解读】一、共直角顶点的两个等腰直角三角形例1 (2016内蒙古呼和浩特市)已知,如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB 边上一点.(1)求证:△ACE ≌△BCD ; (2)求证:2222=CD AD DB .【举一反三】如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD=∠BGC . (1)求证:AD=BC ; (2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线互相垂直,求AD:EF 的值.【来源】湖北武汉市硚口区六十中学2017年九年级数学中考模拟试卷二、共底角顶点的两个等腰直角三角形例2 如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.如图2,若∠MON=150°,求证:△ABR为等边三角形;(3)如图3,若△ARB∽△PEQ,求∠MON大小.【举一反三】已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.【来源】2013年初中毕业升学考试(湖南常德卷)数学(带解析)三、一直角顶点和一底角顶点重合的两个等腰直角三角形例3 如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的数量..及位置..关系,并证明你的猜想.【举一反三】如图△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,△DEA 绕点A旋转,边AD、AE 与BC分别与AD、AE相交于点F、G,CB=5.回答下列问题:(1)求证:△GAF∽△GBA;(2)求证:AF2=FG•FC;(3)设y=AF2+AG2,FG=x,求y与x的函数关系式;(不要求写出自变量的取值范围)(4)探究BF2、FG2、GC2之间的关系,证明你的结论.【来源】2016届江苏省南京市汇文中学九年级上学期期中数学试卷(带解析)四、一直角顶点和一底边中点重合的两个等腰直角三角形例4 (2016四川省资阳市)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE 是等腰直角三角形;②∠CDE=∠COE ;③若AC=1,则四边形CEOD 的面积为14;④22222AD BE OP DP PE +-=⋅,其中所有正确结论的序号是 .【举一反三】已知:△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,(1)如图,E ,F 分别是AB ,AC 上的点,且BE =AF ,求证:△DEF 为等腰直角三角形;(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE =AF ,其他条件不变,那么,△DEF 是否仍为等腰直角三角形?证明你的结论.【来源】2012-2013年福建仙游承璜第二学校八年级上期末考试数学试题(带解析)【强化训练】1.如图,已知,△ABC 与△DCE 为一小一大的两个等腰直角三角形,顶点C 互相重合。
高三阶段性教学质量检测数学(科学)试题第Ⅰ卷(共50分)一、选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
【题文】1.集合A={0,2,a},B={1,2, 2a },若A ∪B={-4,0,1,2,16},则a 的值为( )A .1B .2C .-4D .4 【知识点】集合及其运算A1【答案解析】C ∵集合A={0,2,a},B={1,2,a 2},A ∪B={-4,0,1,2,16}, ∴a ∈{-4,16},a 2∈{-4,16},故a=-4,或a 2=-4(舍去),故a=-4,故选C【思路点拨】由A={0,2,a},B={1,2,a 2},若A ∪B={-4,0,1,2,16},可得:a=-4,或a 2=-4,讨论后,可得答案.【题文】2.53,(3)2,(3)bx cx f f -+-=已知函数f(x)=ax 则的值为A ..2B .-2C .6D .-6 【知识点】函数的奇偶性与周期性B4【答案解析】B ∵函数f (x )=ax 5-bx 3+cx ,∴f (-x )=-f (x )∵f (-3)=2,∴f (3)=-2,故选B 【思路点拨】函数f (x )=ax 5-bx 3+cx ,可判断奇函数,运用奇函数定义式求解即可. 【题文】31,5x ααα=设是第二象限角,p(x,4)为其终边上的一点,且cos =则tan2 24.7A 24.7B - 12.7C 12.7D - 【知识点】两角和与差的正弦、余弦、正切C5 【答案解析】A 由三角函数的定义可得cosα=224x x +,又∵cosα=15x ,∴224xx +=15x , 又α是第二象限角,∴x <0,故可解得x=-3∴cosα=-35,sinα=21cos -∂=45, ∴tanα=sin cos ∂∂=-43∴tan2α=22tan 1tan ∂-∂=247故选A 【思路点拨】由三角函数的定义可得x 的方程,解方程可得cosα,再由同角三角函数的基本关系可得tanα,由二倍角的正切公式可得.【题文】4.(2,3),(1,2),42a b ma b a b m ==-+-已知向量若与共线,则的值为1.2A .2B 1.2C - .2D - 【知识点】平面向量基本定理及向量坐标运算F2【答案解析】D ∵a =(2, 3),b =(-1, 2)∴m a +4b =(2m-4,3m+8);a -2b =(4,-1)∵(m a +4b )∥(a -2b )∴4-2m=4(3m+8)解得m=-2故答案为D【思路点拨】利用向量的坐标运算求出两个向量的坐标;利用向量共线的充要条件列出方程求出m 的值. 【题文】5.若定义在R 上的函数y=f(x)满足55()(),22f x f x +=-且5()()02x f x '-<则对于任意的12x x <,都有1212()5f x x x +)>f(是x >的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【知识点】函数的单调性与最值B3【答案解析】C ∵55()()22f x f x +=-∴f (x )=f (5-x ),即函数y=f (x )的图象关于直线x=52对称.又因(x-52)f′(x )>0, 故函数y=f (x )在(52,+∞)上是增函数.再由对称性可得,函数y=f (x )在(-∞,52)上是减函数. ∵任意的x 1<x 2,都有f (x 1)>f (x 2),故x 1和x 2在区间(-∞,52)上,∴x 1+x 2<5.反之,若 x 1+x 2<5,则有x 2 -52<52-x 1,故x 1离对称轴较远,x 2 离对称轴较近,由函数的图象的对称性和单调性,可得f (x 1)>f (x 2).综上可得,“任意的x 1<x 2,都有f (x 1)>f (x 2)”是“x 1+x 2<5”的充要条件,故选C .【思路点拨】由已知中55()()22f x f x +=-可得函数y=f (x )的图象关于直线x=52对称, 由(x-52)f′(x )<0可得函数y=f (x )在( 52,+∞)上是增函数,在(-∞,52)上是减函数,结合函数的图象和性质和充要条件的定义,可判断f (x 1)>f (x 2)和x 1+x 2>5的充要关系,得到答案.【题文】6.如图,阴影区域的边界是直线y=0,x=2,x=0及曲线23y x =,则这个区域的面积是A 4B 8 C13 D 12【知识点】定积分与微积分基本定理B13 【答案解析】B 这个区域的面积是20⎰3x 2dx= 32x=23-0=8,故选B .【思路点拨】将阴影部分的面积是函数在[0,2]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案.【题文】7.2120ABC b A ==在中,若,,三角形的面积3S =,则三角形外接圆的半径为.3A .2B .23C .4D【知识点】解三角形C8【答案解析】B △ABC 中,∵b=2,A=120°,三角形的面积S=3=12bc•sinA=c•32,∴c=2=b ,故B=12(180°-A )=30°.再由正弦定理可得 02sin sin 30b cR B ===4,∴三角形外接圆的半径R=2,故选B .【思路点拨】由条件求得 c=2=b ,可得B 的值,再由正弦定理求得三角形外接圆的半径R 的值.【题文】8.已知222,0()1,0x tx t x f x x t x x ⎧-+⎪=⎨++⎪⎩≤>,若(0)f 是()f x 的最小值,则t 的取值范围为A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【知识点】函数的单调性与最值B3【答案解析】D 法一:排除法.当t=0时,结论成立,排除C ;当t=-1时,f (0)不是最小值,排除A 、B ,选D . 法二:直接法.由于当x >0时,f (x )=x+1x+t 在x=1时取得最小值为2+t ,由题意当x≤0时,f (x )=(x-t )2,若t≥0,此时最小值为f (0)=t 2,故t 2≤t+2,即t 2-t-2≤0,解得-1≤t≤2,此时0≤t≤2,若t <0,则f (t )<f (0),条件不成立,选D .【思路点拨】法1利用排除法进行判断,法2根据二次函数的图象以及基本不等式的性质即可得到结论. 【题文】9.已知2//1()cos ,()()()4f x x x f x f x f x =+为的导函数,则的图像是【知识点】导数的应用B12【答案解析】A 由题意得1()sin 2f x x x '=-为奇函数,所以排除B D ,当x= 6π, ()0f x '<,所以排除D ,故选A【思路点拨】求出导数判断奇偶性,然后利用特殊值求出结果。
潍坊市2015-2016学年第一学期期中考试初三数学试题
同学们,学期已经过半,相信你又学到了好多新的知识。
下面的题目都是大家平时接触过的,只要做题时你能放松自己,平心静气,相信你会越做越有信心。
温馨提示: 1.本试卷分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷为选择题;请把选择题答案填入答案卡内。
第Ⅱ卷为非选择题。
一、选择题。
(本题共12个小题,在每小题所列四个选项中,只有一个选项符合题意,把符合题意的选项写在答题卡中)
1.在一次游戏当中,小明将下面四张扑克牌中的三张旋转了180°,得到的图案和原来的一模一样.小芳看了后,很快知道没有旋转的那张扑克牌是( )
A .黑桃Q
B .梅花2
C .梅花6
D .方块9
2.下列说法:①三角形的外心到三角形各顶点的距离相等②经过三个点一定可以作圆 ③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧。
正确的命题有( )
A.1个
B.2个
C.3个
D.4个 3.把二次函数2
114
y x x =
+-化为y =a (x -h)2+k 的形式是( ) A .21(1)24y x =++ B .2
1(2)24y x =+-
C .21(2)24y x =-+
D .2
1(2)24
y x =--
4.某种商品零售价经过两次降价后,每件的价格由原来的800元降为现在的578元,则平均每次降价的百分率为( ) A .10%
B .12%
C .15%
D .17%
5.已知二次函数y =ax 2+bx -1(a ≠0)的图象经过点(1,1),则代数式1-a -b 的值为( ) A .-3
B .-1
C .2
D .5
6.如图所示,AB 是⊙O 的直径,CD 是⊙O 的切线,切点为D,CD 与AB 的延长线交于点C ,∠A=
,给出下面3个结论:①AD=CD ;②BD=BC ;③AB=2BC,
其中正确结论的个数是()。
A.3
B.2
C.1
D.0
7. 下列方程中有实数根的是()
A.x2-3x+4=0 B.x2+2x+3=0 C.x2+x+1=0D.x2+x-1=0
8.点A的坐标为(-2,3),点B与点A关于原点对称,则点B的坐标为( )
A.(-3,2) B.(-2,-3) C.(3,-2) D.(2,-3)
9.二次函数y=a x2+bx+c(a≠0)的图象如图,下列结论正确的是()
A.a<0 B.b2-4ac<0
C.当-1<x<3时,y>0 D.=1
10、圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为()。
A. B. C. D.
11.用一把带有刻度的直角尺,①可以画出两条平行的直线a与b,如图(1);②可以画出∠AOB的平分线OP,如图(2);③可以检验工作的凹面是否成半圆,如图(3);•④可以量出一个圆的半径,如图(4).
(1) (2) (3) (4)
上述四个方法中,正确的个数是()
A.1个B.2个C.3个D.4个
12、同圆的内接正三角形、正方形、正六边形边长的比是()
A .1:2:3 B.1:: C.::1 D3:4:6
二、填空题。
13.一元二次方程(a+1)x 2-ax+a 2-1=0的一个根为0 ,则a=____________。
14.将抛物线2
1(5)33
y x =--+向左平移5个单位,再向上平移3个单位后得到的抛物线
的解析式为 .
15.⊙O 的直径为10cm ,AB,CD 是⊙O 的两条弦,AB ∥CD ,AB=8cm , CD=6cm ,则AB
和CD 的距离是 。
16.如图,四边形ABCD 内接于⊙O ,若∠BOD=160°,则∠BCD= ________
17.如图所示,D 为等腰直角三角形斜边BC 上的一点,△ABD 绕点A 旋转后与
△ACE 重合,如果AD=1,那么DE=
18、若一个三角形的外心在它的一条边上,那么这个三角形一定是 19.某一型号飞机着陆后滑行的距离y (单位:m )与滑行时间x (单位:s )之间的函数表达式是y =60x 1.5x 2,该型号飞机着陆后需滑行 m 才能停下来.
20. ⊙O 的半径为R ,点O 到直线AB 的距离为d ,R ,d 是方程-4x+m=0的 两根,当直线AB 与⊙O 相切时,m 的值为
A
三、解答题 21、解下列方程
(1)0542=-+x x (配方法) (2) x (x-4)=2-8x (公式法) (3)()2
3x 43x -=-(因式分解法)
22、已知关于x 的一元二次方程0132=-++m x x
(1)请选取一个你喜爱的m 的值,使方程有两个不相等的实数根。
(2)设1x 、2x 使(1)中所得方程的两个根,求1x 2x +1x +2x 的值。
23、如图A (4、4),B (-2,2),
C (3,0),
(1)画出它的以原点O 为对称中心的 △AˊBˊCˊ (2)写出 Aˊ,Bˊ,Cˊ三点的坐标。
(3)把每个小正方形的边长看作1,试求 △ABC 的面积。
24.如图.在⊙O 中.弦BC 垂直于半径OA .垂足为E .D 是优弧BC 上一点.连接BD 、
AD 、OC ,∠ADB=30°。
(1)求∠AOC 的度数;
(2)若弦BC=6cm .求图中阴影部分的面积。
25. 某超市销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与
销售单价x (元)之间的关系可近似的看作一次函数:10500y x =-+.
(1)设超市每月获得利润为W (元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果超市想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果超市想要每月获得的利润不低于2000元,那么超市每月的成本最少需要多少元?(成本=进价×销售量)
26、如图,抛物线y=ax2+bx+c的对称轴为直线x=-3,该抛物线交x轴于A、B两点,
交y轴于点C(0,4),以AB为直径的⊙M恰好经过点C.
(1)求这条抛物线所对应的函数关系式;并求它的顶点坐标和最值,并分析它的增减性。
(2)设⊙M与y轴的另一个交点为D,请在抛物线的对称轴上求作一点E,使得△BDE 的周长最小,并求出点E的坐标;
参考答案及评分标准
一、选择题。
(本题共12个小题,每小题3分,共36分)
二、填空题。
(每空3分,共24分) 13、-1 14、y=-63
12
+-x 15、7cm 或1cm 16、100° 17、2 18、直角三角形 19、600 20、4
三、解答题。
(共60分。
解答时应写出必要步骤,只写出最后答案的不能得分。
)
21、每小题4分,共12分(1) 1x =1,2x =-5 (2) 1x =-2+62x =-2-6 (3)
1x =3,2x =
4
13 22、每小题3分,共6分(1)满足m >-4
5
的值 (2)略 23、(本题9分)(1)略 --------3分
(2)A ˊ(-4,-4) B ˊ(2,-2) C ˊ(-3,0) ----------3分
(3)11----------------2分
24、(本题8分)(1)∠AOC=60° -----------2分 (2)4π﹣33 --------------6分
25、(本题11分)解:(1)由题意,得:w= (x -20)·y=(x -20)·(10500x -+)
21070010000x x =-+-
= -10(x-35)2+2250.
答:当销售单价定为35元时,每月可获得最大利润为2250元.(4分)
(2)由题意,得:210700100002000x x -+-=
解这个方程得:x 1= 30,x 2=40.
答:李明想要每月获得2000元的利润,销售单价应定为30元或40元.(7分)
答:超市每月的成本最少需要3600元。
(11分)
26.(本题共14分)(1)连结MC .在Rt △MCO 中,由勾股定理得MC =5.
∴MA =MB =5,∴A (-8,0)、B (2,0).(2分)
由A (-8,0)、B (2,0)、C (0,4)可求得这条抛物线所对应的函数关系式为y =-14x 2-3
2
x +4(5分) 顶点坐标(-3,) (6分) 当x=-3时,取最大值为 (7分)
当x ﹥-3时,y 随x 的增大而减小;当x ﹤-3时,y 随x 的增大而增大。
(9分) (2)连结AD 交抛物线的对称轴于点E ,则点E 即为所求作的点.…………(11分) 由A (-8,0)、D (0,-4)可求得直线AD 所对应的函数关系式为y =-1
2x -
4.………………(13分)
当x =-3时,y =-52.∴点E 的坐标为(-3,-5
2).……………………(14分)。