最新人教版七年级数学上册第三章3.2.1合并同类项解一元一次方程
- 格式:docx
- 大小:43.11 KB
- 文档页数:7
人教版数学七年级上册3.2《解一元一次方程(一)——合并同类项与移项1》教学设计一. 教材分析人教版数学七年级上册3.2《解一元一次方程(一)——合并同类项与移项》这一节主要让学生掌握一元一次方程的解法。
通过前面的学习,学生已经了解了方程的概念和一元一次方程的定义,本节内容将进一步引导学生学习如何解一元一次方程。
教材首先介绍了合并同类项和移项的概念,然后通过具体的例题让学生掌握解一元一次方程的方法。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和运算能力,对于方程的概念和一元一次方程的定义已经有了一定的理解。
但是,学生在解方程的过程中,可能对合并同类项和移项的概念理解不深,需要通过具体的例题和练习来巩固。
三. 教学目标1.了解合并同类项和移项的概念。
2.学会解一元一次方程的方法。
3.能够独立完成解一元一次方程的练习。
四. 教学重难点1.合并同类项和移项的概念。
2.解一元一次方程的方法。
五. 教学方法采用讲解法、例题演示法、练习法、小组讨论法等。
六. 教学准备1.PPT课件。
2.例题和练习题。
3.笔记本和文具。
七. 教学过程1.导入(5分钟)教师通过复习方程的概念和一元一次方程的定义,引导学生进入本节内容。
2.呈现(15分钟)教师讲解合并同类项和移项的概念,并通过PPT展示具体的例题,让学生理解并掌握解一元一次方程的方法。
3.操练(10分钟)教师给出一些练习题,让学生独立完成,检验学生对合并同类项和移项概念的理解以及对解一元一次方程方法的掌握。
4.巩固(10分钟)教师挑选一些学生的作业进行讲解,分析其解题思路,引导学生总结解题方法。
5.拓展(5分钟)教师给出一些拓展题目,让学生分组讨论,培养学生的合作能力和解决问题的能力。
6.小结(5分钟)教师对本节课的内容进行总结,强调合并同类项和移项的概念以及解一元一次方程的方法。
7.家庭作业(5分钟)教师布置一些家庭作业,让学生巩固本节课所学内容。
8.板书(5分钟)教师在黑板上列出本节课的重点内容,方便学生复习。
人教版数学七年级上册3.2《解一元一次方程(一)——合并同类项与移项1》教案一. 教材分析人教版数学七年级上册 3.2《解一元一次方程(一)——合并同类项与移项1》这一节主要介绍了合并同类项与移项的概念,以及如何在解一元一次方程时运用这两个概念。
合并同类项是将方程中的同类项合并,使方程更简洁;移项则是将方程中的项移动到等式的另一边,以便于求解。
这一节的内容是解一元一次方程的基础,对于学生掌握解题技巧和方法具有重要意义。
二. 学情分析七年级的学生已经掌握了整数、分数、有理数等基础知识,具备一定的数学运算能力。
但是,对于解一元一次方程这一概念,学生可能较为陌生,需要通过具体的例子和练习来逐步理解和掌握。
此外,学生在学习过程中可能对合并同类项和移项的运用存在困难,需要教师进行详细的讲解和指导。
三. 教学目标1.知识与技能目标:使学生理解合并同类项和移项的概念,掌握合并同类项和移项的方法,能够运用合并同类项和移项来解一元一次方程。
2.过程与方法目标:通过自主学习、合作交流、探究发现等方法,培养学生解决实际问题的能力,提高学生的数学思维能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,使学生感受到数学在生活中的应用,培养学生的团队协作精神。
四. 教学重难点1.重点:合并同类项和移项的概念及方法。
2.难点:如何在解一元一次方程时灵活运用合并同类项和移项。
五. 教学方法采用自主学习、合作交流、探究发现等教学方法。
通过具体的例子和练习,让学生在实际操作中理解合并同类项和移项的概念,掌握解一元一次方程的方法。
六. 教学准备1.教师准备:熟练掌握合并同类项和移项的概念和方法,准备相关的例子和练习题。
2.学生准备:预习相关知识,了解合并同类项和移项的概念。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题,例如:“小明有苹果和香蕉两种水果,苹果的数量是香蕉的2倍,如果小明吃了3个苹果,那么他剩下的水果总数是多少?”让学生思考如何解决这个问题,从而引出合并同类项和移项的概念。
3.2.1 一元一次方程的解法(一)合并同类项 分层作业1.对于方程8x +6x -10x =8,合并同类项正确的是( )A .3x =8B .4x =8C -4x =8D .2x =82.下列方程中可直接用合并同类项解的是( )A. 0.562B. 32111C. 5237 D. 724x x x x x x y y y +=--=++=+=+ 3.下列解为x =4的方程是( )A .7x -3x =-4B .x +x =5+3C .x =-1+3D .-2x =84.方程353122x x --=-的解为( ) A.x=-3 B.x=−13 C.x=3 D.x=135.下列解方程的过程中,正确的是( )A .-2m +3m =4,得-5m =4B .4y -2y +y =4,得(4-2)y =4C .-12x =0,得x =0 D .2x =-3,得x =-236.下列各方程合并同类项不正确的是( ) A.由3x-2x=4合并同类项,得x=4 B.由2x-3x=3合并同类项,得-x=3C.由5x-2x+3x=12合并同类项,得x=-2D.由7252x x -+=合并同类项,得352x -= 7. 挖一条长为1200米的水渠,由甲、乙两队从两头同时施工,甲队每天挖150米,乙队每天挖90米,需要几天才能挖好?设需要x 天才能挖好,则列出的方程为( )A .150x +90x =1200B .150+90x =1200C .150x +90=1200D .150x -90x =12008.解方程8x -3x =10,合并同类项得__________,解得x =_____;若3a -1与1-2a 互为相反数,则a =_____.9.某数的5倍比这个数的8倍少12,则这个数是_________.10.若关于x 的方程231mx m +=-与363x x +=-的解相同,则m 的值为 .11.某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量是去年的2倍,则前年这个学校购买了 台计算机;12.小王的妈妈买回一筐苹果,小王吃了13,弟弟吃了12,还剩下4个苹果,则妈妈买回的这筐苹果共有_______个.13.某班学生共40人,外出参加植树活动,根据任务不同,要分成三个小组且使甲、乙、丙三个小组人数之比为1︰2︰5,则甲组有________人.14.一个长方体的长、宽、高之比为5:4:3,长比高长4cm ,那么这个长方体的体积是 ;15.在日历中圈出一竖列上相邻的3个数,使它们的和为42,则所圈数中最小的是 .16.解下列方程:(1)4x +6x =2+6; (2)23y -y =10-5; (3)2.4x -3x -1.4x =5.2-8;17.同一个箱子,如果装橙子可以装 18 个,如果装梨可以装 16个,现有橙子、梨共 400个而且装梨的箱子的个数是装橙子的箱子的 2 倍请问装橙子和装梨的箱子各有多少个?18.某校为开展乒乓球运动,花钱购买了一些乒兵球运动器材,其中购买球网、球拍和乒兵球的总费用是1320 元,购买这三样器材的费用之比是3:6:2那么购买球网的费用是多少元?19.某种药含有甲、乙、丙3种草药,这3种草药的质量比是2:3:7,现在要配制1440g 这种中药,这3种草药分别需要多少克?20.若x m =是关于x 的方程112x m -=的解,则m 的值为( ) A.0 B.2 C.-2 D.-621.若三个连续偶数的和为24,则它们的积为( )A.48B.480C.240D.12022.小涵在 2020 年某月的月历上圈出了三个数 a ,b ,c ,并求出了它们的和为 30,则这三个数在月历中的排列位置不可能是()23.对任意四个有理数a ,b ,c ,d ,定义新运算:⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,已知⎪⎪⎪⎪⎪⎪2x -4x 1=18,则x 的值是_____. 24.如图,8块相同的长方形地砖拼成了一个长方形图案(地砖间的缝隙忽略不计),求每块地砖的宽.设每块地砖的宽为x cm ,根据题意,列出的方程为_______________________.25.现有一些分别标有-1,2,-4,8,-16,32,…的卡片,这些卡片上的数字是按一定规律排列的,小明拿到了相邻的三张卡片,且卡片上的数字之和为96,则小明拿到的三张卡片上分别标有什么数字?26.某体育场的环形跑道长400 米,二人在跑道练习跑步,已知甲平均每分钟跑250 米,乙平均每分钟跑290米.(1)两人同时从同一地点同向而行,经过多长时间两人才能第一次相遇?(2)两人同时从同一地点出发,相向而行,经过多少分钟两人第一次相遇?3.2.1 一元一次方程的解法(一)合并同类项 分层作业1.对于方程8x +6x -10x =8,合并同类项正确的是( )A .3x =8B .4x =8C -4x =8D .2x =8【答案】B.【分析】根据合并同类项法则,即可判断【详解】8x +6x -10x =8合并同类项,得 4x=8故选B.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项法则是解题的关键.2.下列方程中可直接用合并同类项解的是( )A. 0.562B. 32111C. 5237 D. 724x x x x x x y y y +=--=++=+=+ 【答案】B.【分析】根据合并同类项解一元一次方程的特征,即可判断【详解】略【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项法则是解题的关键.3.下列解为x =4的方程是( )A .7x -3x =-4B .x +x =5+3C .x =-1+3D .-2x =8【答案】B.【分析】根据合并同类项法则,求出解,即可判断【详解】A .7x -3x =-4 合并同类项,得4x=-4,系数化为1,得 x=-1B .x +x =5+3 合并同类项,得2x=8,系数化为1,得 x=4C .x =-1+3 合并同类项,得x=2D .-2x =8 系数化为1,得 x=-4故选B.题的关键.4.方程353122x x --=-的解为( ) A.x=-3 B.x=−13 C.x=3 D.x=13【答案】A.【分析】根据合并同类项法则,求出解,即可判断【详解】353122--=-x x 合并同类项,得−92x=32.系数化为1,得 x=-3.故选A.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.5.下列解方程的过程中,正确的是( )A .-2m +3m =4,得-5m =4B .4y -2y +y =4,得(4-2)y =4C .-12x =0,得x =0 D .2x =-3,得x =-23【答案】C.【分析】根据合并同类项法则和系数化为1,求出解,即可判断【详解】A .-2m +3m =4,得-m =4B .4y -2y +y =4,得(4-2+1)y =4,3y=4C .-12x =0,得x =0 D .2x =-3,得x =-32故选C.题的关键.6.下列各方程合并同类项不正确的是()A.由3x-2x=4合并同类项,得x=4B.由2x-3x=3合并同类项,得-x=3C.由5x-2x+3x=12合并同类项,得x=-2D.由7252x x-+=合并同类项,得352x-=【答案】C.【分析】根据合并同类项法则,求出解,即可判断【详解】A.由3x-2x=4合并同类项,得x=4 ,正确;B.由2x-3x=3合并同类项,得-x=3,正确;C.由5x-2x+3x=12合并同类项,得x=-2,合并后应为6x=12,解得x=2,错误;D.由7252x x-+=合并同类项,得352x-=,正确.故选C【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.7. 挖一条长为1200米的水渠,由甲、乙两队从两头同时施工,甲队每天挖150米,乙队每天挖90米,需要几天才能挖好?设需要x天才能挖好,则列出的方程为( )A.150x+90x=1200 B.150+90x=1200 C.150x+90=1200 D.150x-90x=1200【答案】A.【分析】根据题意,找等量关系,设未知数,列方程.【详解】解设需要x天才能挖好.由题意得,150x+90x=1200故选A8.解方程8x-3x=10,合并同类项得__________,解得x=_____;若3a-1与1-2a互为相反数,则a=_____.【答案】5x=10;2;0.【分析】根据合并同类项法则,求出解.【详解】8x -3x =10,合并同类项,得5x=10系数化为1,得x =2.因为若3a -1与1-2a 互为相反数,∴3a-1+1-2a=0合并同类项,得a=0【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.9.某数的5倍比这个数的8倍少12,则这个数是_________.【答案】4.【分析】列出方程,根据合并同类项法则,求出解.【详解】8x -5x =12,合并同类项,得3x=12系数化为1,得x=4.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.10.若关于x 的方程231mx m +=-与363x x +=-的解相同,则m 的值为 . 【答案】37- 【分析】同解方程,根据合并同类项法则,求出363+=-x x 的解.再把解代入到231+=-mx m 中,求出m 的值.【详解】363+=-x x合并同类项,得9x=-3系数化为1,得x=-13.把x=-13代入231+=-mx m 中,得-23m+3m=-1解得m=-3711.某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量是去年的2倍,则前年这个学校购买了 台计算机;【答案】20【分析】根据题意,找等量关系,设未知数,列方程,利用合并同类项的方法解方程,即可求解.【详解】解设前年购买x 台计算机,则去年购买2x 台,今年购买4x 台。
人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》说课稿3一. 教材分析《人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》》是学生在学习了方程概念和一元一次方程的解法的基础上,进一步深化对一元一次方程的理解和应用。
这一节内容主要介绍了合并同类项和移项的方法,这是解一元一次方程的基础。
通过合并同类项和移项,学生可以更灵活地操作方程,从而更好地解决实际问题。
教材通过丰富的例题和练习题,帮助学生掌握这一技能。
二. 学情分析七年级的学生已经具备了一定的数学基础,对一元一次方程有了初步的了解。
但是,他们在解决实际问题时,可能会遇到难以将实际问题转化为方程,或者在操作方程时出现错误。
因此,在教学过程中,我需要引导学生将实际问题转化为方程,并通过合并同类项和移项的方法操作方程,从而解决问题。
三. 说教学目标1.知识与技能:学生能理解合并同类项和移项的概念,掌握合并同类项和移项的方法,并能运用到实际问题中。
2.过程与方法:通过自主学习、合作交流,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和细心。
四. 说教学重难点1.教学重点:合并同类项和移项的方法。
2.教学难点:如何将实际问题转化为方程,并运用合并同类项和移项的方法解决问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等。
2.教学手段:利用多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何将实际问题转化为方程,激发学生的学习兴趣。
2.讲解:讲解合并同类项和移项的概念和方法,通过例题展示如何运用合并同类项和移项的方法解决问题。
3.练习:学生独立完成练习题,巩固所学知识。
4.应用:学生分组讨论,运用合并同类项和移项的方法解决实际问题。
5.总结:对本节课的内容进行总结,强调合并同类项和移项在解一元一次方程中的重要性。
3.2解一元一次方程(一)——合并同类项与移项
第1课时合并同类项解一元一次方程
能力提升
1.下列一元一次方程的同类项合并,正确的是()
A.已知x+7x-6x=2-5,则-2x=-3
B.已知0.5x+0.9x+0.1=0.4+0.9x,则1.5x=1.3
C.已知25x+4x=6-3,则29x=3
D.已知5x+9x=4x+7,则18x=7
2.如果关于x的方程7x-4x=3a+6b的解为x=1,那么a与b应满足的关系式为()
A.a+2b=-1
B.a-2b=1
C.3a+6b=11
D.a+2b=1
3.如图所示,8块相同的长方形地砖拼成了一个长方形图案(地砖间的缝隙忽略不计),求每块地砖的长和宽.设每块地砖的宽为x cm,根据题意,列出的方程为()
A.x+x=80
B.x+2x=80
C.x+3x=80
D.3x=80
4.已知关于x的方程2x+k=5的解为正整数,则k所能取的正整数值为()
A.1
B.1或3
C.3
D.2或3
5.若商店将商品按进价提价40%,然后再打出“九折酬宾”的广告,结果每个商品仍可获利195元,则商品的进价为元.
6.解方程:(1)11x-2x=9;(2)-4+16=.
7.甲、乙、丙三辆卡车所运货物的吨数比为6∶7∶4.5,已知甲车比乙车少运货物12 t,则三辆卡车共运货物多少吨?
8.A,B两地相距15 km,一辆汽车以50 km/h的速度从A地出发,另一辆汽车以40 km/h的速度从B地出发,相向而行,问经过多长时间两车相距3 km?
★9.海宝在研究一元一次方程应用时,被这样一个问题难住了:
神厨小福贵对另一个厨师说:“我做的面包不是100个,我现在的面包加上和我现在的面包数目相等的面包,再加上现在面包数目一半的面包,再加上现在面包数目一半的一半的面包,另外再加上一个面包,那么恰好是100个面包了.请你算算我做了多少个面包?”
请你帮忙算一下小福贵做了多少个面包?
★10.太阳下山晚霞红,我把鸭子赶回笼.一半在外闹哄哄,一半的一半进笼中,剩下十五围着我,请问共有多少只鸭子?你能列出方程来解决这个问题吗?
创新应用
★11.已知+…+=1-+…+=1-,则方程
+…+=2 015的解是多少?
参考答案
能力提升
1.C A中,合并同类项,得2x=-3;B中,0.1与0.5x+0.9x不是同类项,不能合并;0.4与0.9x不是同类项,不能合并;D中,5x+9x与4x不在方程的同一边,不能直接合并,所以A,B,D错误,故选C.
2.D由题意,得7-4=3a+6b,即3a+6b=3,利用等式的性质,等式两边都除以3得a+2b=1.
3.C观察图形可知,长方形地砖的长恰好是宽的3倍,设每块地砖的宽为x cm,则长为3x cm,根据长+宽=80cm,可得方程3x+x=80.
4.B
5.750设进价为x元,根据题意,列出方程为(1+40%)×0.9x-x=195,解得x=750.
6.解:(1)合并同类项,得9x=9,系数化为1,得x=1.
(2)合并同类项,得=12,系数化为1,得y=24.
7.解:设甲、乙、丙三辆卡车所运货物的吨数分别为6x,7x,4.5x,则7x-6x=12,解得x=12.
6x+7x+4.5x=17.5x=17.5×12=210(t).
答:三辆卡车共运货物210t.
8.分析:两车相距3km,可能是相遇前,也可能是相遇后,要分两种情况考虑.
解:(1)设经过x h,两车相遇前相距3km,依题意,得(50+40)x=15-3.
解得x=.
(2)设经过x h,两车相遇后又相距3km,依题意,得(50+40)x=15+3.解得x=.
答:经过h或h两车相距3km.
9.解:设现在面包数为x,
根据题意,得x+x+x+x=100-1,
合并同类项,得x=99,
系数化为1,得x=36.
答:小福贵做了36个面包.
10.解:设共有x只鸭子,
根据题意,得x+x+15=x,
解得x=60.
答:共有60只鸭子.
创新应用
11.解:原方程可变为+…+x=2015,
-+…+x=2015,
-x=2015,x=2016.。