高考数学总复习基础知识与典型例题08圆锥曲线
- 格式:doc
- 大小:3.19 MB
- 文档页数:7
圆锥曲线一、知识结构 1.方程的曲线在平面直角坐标系中,如果某曲线C 看作适合某种条件的点的集合或轨迹 上的点与一个二元方程fx,y=0的实数解建立了如下的关系:1曲线上的点的坐标都是这个方程的解;2以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线.点与曲线的关系 若曲线C 的方程是fx,y=0,则点P 0x 0,y 0在曲线C 上⇔fx 0,y=0;点P 0x 0,y 0不在曲线C 上⇔fx 0,y 0≠0两条曲线的交点 若曲线C 1,C 2的方程分别为f 1x,y=0,f 2x,y=0,则 f 1x 0,y 0=0 点P 0x 0,y 0是C 1,C 2的交点⇔f 2x 0,y 0 =0方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有 交点.2.圆圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: 1标准方程圆心在ca,b,半径为r 的圆方程是x-a 2+y-b 2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 22一般方程当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为-2D ,-2E,半径是24F-E D 22+.配方,将方程x 2+y 2+Dx+Ey+F=0化为x+2D 2+y+2E 2=44F -E D 22+当D 2+E 2-4F=0时,方程表示一个点-2D ,-2E; 当D 2+E 2-4F <0时,方程不表示任何图形.点与圆的位置关系 已知圆心Ca,b,半径为r,点M 的坐标为x 0,y 0,则 |MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +. 3直线和圆的位置关系①直线和圆有相交、相切、相离三种位置关系 直线与圆相交⇔有两个公共点 直线与圆相切⇔有一个公共点 直线与圆相离⇔没有公共点②直线和圆的位置关系的判定 i 判别式法ii 利用圆心Ca,b 到直线Ax+By+C=0的距离d=22C Bb Aa BA +++与半径r 的大小关系来判定.3.椭圆、双曲线和抛物线基本知识4.圆锥曲线的统一定义平面内的动点Px,y到一个定点Fc,0的距离与到不通过这个定点的一条定直线l的距离之比是一个常数ee>0,则动点的轨迹叫做圆锥曲线.其中定点Fc,0称为焦点,定直线l称为准线,正常数e称为离心率.当0<e<1时,轨迹为椭圆,当e=1时,轨迹为抛物线当e>1时,轨迹为双曲线5.坐标变换坐标变换在解析几何中,把坐标系的变换如改变坐标系原点的位置或坐标轴的方向叫做坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点的坐标与曲线的方程.坐标轴的平移坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫做坐标轴的平移,简称移轴.坐标轴的平移公式设平面内任意一点M,它在原坐标系xOy中的坐标是9x,y,在新坐标系x ′O′y′中的坐标是x′,y′.设新坐标系的原点O′在原坐标系xOy 中的坐标是h,k,则x=x′+h x′=x-h1 或2y=y′+k y′=y-k公式1或2叫做平移或移轴公式.中心或顶点在h,k的圆锥曲线方程见下表.方程焦点焦线对称轴椭圆22h)-(xa+22k)-(yb=1 ±c+h,k x=±ca2+hx=hy=k 22h)-(xb+22k)-(ya=1h,±c+k y=±ca2+kx=hy=k双曲线22h)-(xa-22k)-(yb=1 ±c+h,k=±ca2+kx=hy=k 22k)-(ya-22h)-(xb=1 h,±c+h y=±ca2+kx=hy=k抛物线y-k2=2px-h2p+h,k x=-2p+h y=ky-k2=-2px-h -2p+h,k x=2p+h y=kx-h2=2py-k h,2p+k y=-2p+k x=hx-h2=-2py-k h,-2p+k y=2p+k x=h二、知识点、能力点提示一曲线和方程,由已知条件列出曲线的方程,曲线的交点说明在求曲线方程之前必须建立坐标系,然后根据条件列出等式进行化简 .特别是在求出方程后要考虑化简的过程是否是同解变形,是否满足已知条件,只有这样求出的曲线方程才能准确无误.另外,要求会判断曲线间有无交点,会求曲线的交点坐标.三、考纲中对圆锥曲线的要求:考试内容:. 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程;. 双曲线及其标准方程.双曲线的简单几何性质;. 抛物线及其标准方程.抛物线的简单几何性质;考试要求:. 1掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程;. 2掌握双曲线的定义、标准方程和双曲线的简单几何性质;. 3掌握抛物线的定义、标准方程和抛物线的简单几何性质;. 4了解圆锥曲线的初步应用;四.对考试大纲的理解高考圆锥曲线试题一般有3题1个选择题, 1个填空题, 1个解答题, 共计22分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查以圆锥曲线的基本概念和性质为主, 难度在中等以下,一般较容易得分,解答题常作为数学高考中的压轴题,综合考查学生数形结合、等价转换、分类讨论、逻辑推理等诸方面的能力,重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 往往结合平面向量进行求解,在复习应充分重视;求圆锥曲线的方程复习要点求指定的圆锥曲线的方程是高考命题的重点,主要考查识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法.一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤.定形——指的是二次曲线的焦点位置与对称轴的位置.定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx 2+ny 2=1m >0,n >0.定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小. 例题【例1】 双曲线2224b y x =1b ∈N 的两个焦点F 1、F 2,P 为双曲线上一点,|OP |<5,|PF 1|,|F 1F 2|,|PF 2|成等比数列,则b 2=_________.解:设F 1-c ,0、F 2c ,0、Px ,y ,则 |PF 1|2+|PF 2|2=2|PO |2+|F 1O |2<252+c 2, 即|PF 1|2+|PF 2|2<50+2c 2,又∵|PF 1|2+|PF 2|2=|PF 1|-|PF 2|2+2|PF 1|·|PF 2|, 依双曲线定义,有|PF 1|-|PF 2|=4, 依已知条件有|PF 1|·|PF 2|=|F 1F 2|2=4c 2 ∴16+8c 2<50+2c 2,∴c 2<317,又∵c 2=4+b 2<317,∴b 2<35,∴b 2=1.【例2】 已知圆C 1的方程为()()3201222=-+-y x ,椭圆C 2的方程为12222=+b y a x ()a b >>0,C 2的离心率为22,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程;解:由,2,22,22222b c a a c e ====得设椭圆方程为.122222=+b y b x设).1,2().,().,(2211由圆心为y x B y x A 又,12,12222222221221=+=+b y b x b y b x两式相减,得.022222122221=-+-b y y b x x 又.1.2.421212121-=--=+=+x x yy y y x x 得即3+-=x y 将得代入,1232222=++-=b y b x x y由.3204)(222122121=-+=-=x x x x x x B A 得.3203722422=-⋅b 解得 .82=b 故所有椭圆方程.181622=+y x【例3】 过点1,0的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =21x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程. 解法一:由e =22=a c ,得21222=-a b a ,从而a 2=2b 2,c =b .设椭圆方程为x 2+2y 2=2b 2,Ax 1,y 1,Bx 2,y 2在椭圆上. 则x 12+2y 12=2b 2,x 22+2y 22=2b 2,两式相减得,x 12-x 22+2y 12-y 22=0,.)(221212121y y x x x x y y ++-=--设AB 中点为x 0,y 0,则k AB =-02y x , 又x 0,y 0在直线y =21x上,y 0=21x 0,于是-02y x =-1,k AB =-1,设l 的方程为y =-x +1.右焦点b ,0关于l 的对称点设为x由点1,1-b 在椭圆上,得1+21-b 2=2b 2,b 2=89,1692=a .∴所求椭圆C的方程为2291698y x + =1,l的方程为y =-x +1.解法二:由e =21,22222=-=a b a a c 得,从而a 2=2b 2,c =b .设椭圆C 的方程为x 2+2y 2=2b 2,l 的方程为y =kx -1, 将l 的方程代入C 的方程,得1+2k 2x 2-4k 2x +2k 2-2b 2=0, 则x 1+x 2=22214k k +,y 1+y 2=kx 1-1+kx 2-1=kx 1+x 2-2k =-2212k k +.直线l :y =21x 过AB 的中点2,22121y y x x ++,则2222122121k k k k +⋅=+-, 解得k =0,或k =-1.若k =0,则l 的方程为y =0,焦点Fc ,0关于直线l 的对称点就是F 点本身,不能在椭圆C 上,所以k =0舍去,从而k =-1,直线l 的方程为y =-x -1,即y =-x +1,以下同解法一.解法3:设椭圆方程为)1()0(12222>>=+b a by ax直线l 不平行于y 轴,否则AB 中点在x 轴上与直线AB x y 过21=中点矛盾; 故可设直线)2()1(-=x k y l 的方程为)()(2211y x B y x A ,,设,22222212ba k a k x x +=+知:21221=+-x x k k ,212222222=+⋅-∴a k b a k k k ,2122=--∴ka b k k ,22=e 又122)(22222222-=+-=--=-=∴e a c a a b k ,x y l -=∴1的方程为直线,222b a =此时,02243)3(22=-+-b x x 化为方程,0)13(8)1(241622>-=--=∆b b33>∴b ,)4(22222b y x C =+的方程可写成:椭圆,2222b b a c =-=又,)0(,右焦点b F ∴,)(00y x l F ,的对称点关于直线设点,则b y x b x y b x y -=-⇒⎪⎪⎩⎪⎪⎨⎧+-==-11212100000,, 得:在椭圆上,代入,又点)4()11(b -22)1(21b b =-+,3343>=∴b ,1692=∴b , 892=a 所以所求的椭圆方程为:11698922=+y x 【例4】 如图,已知△P 1OP 2的面积为427,P 为线段P 1P 2的一个三等分点,求以直线OP 1、OP 2为渐近线且过点P 的离心率为213的双曲线方程.解:以O 为原点,∠P 1OP 2的角平分线为x 轴建立如图所示的直角坐标系. 设双曲线方程为2222by ax -=1a >0,b >0由e 2=2222)213()(1=+=a b a c ,得23=a b .∴两渐近线OP 1、OP 2方程分别为y =23x 和y =-23x设点P 1x 1, 23x 1,P 2x 2,-23x 2x 1>0,x 2>0,则由点P 分21P P 所成的比λ=21PP PP =2,得P 点坐标为22,322121x x x x -+,又点P 在双曲线222294ay ax -=1上, 所以222122219)2(9)2(a x x a x x --+=1,即x 1+2x 22-x 1-2x 22=9a 2,整理得8x 1x 2=9a 2 ①即x 1x 2= 29②由①、②得a 2=4,b 2=9 故双曲线方程为9422y x -=1.【例5】 过椭圆C :)0(12222>>=+b a b x a y 上一动点P 引圆O :x 2 +y 2 =b 2的两条切线P A 、P B ,A 、B 为切点,直线AB 与x 轴,y 轴分别交于M 、N 两点;1 已知P 点坐标为x 0,y 0 并且x 0y 0≠0,试求直线AB 方程;2 若椭圆的短轴长为8,并且1625||||2222=+ON b OM a ,求椭圆C 的方程;3 椭圆C 上是否存在点P,由P 向圆O 所引两条切线互相垂直若存在,请求出存在的条件;若不存在,请说明理由; 解:1设Ax 1,y 1,Bx 2, y 2切线P A :211b y y x x =+,P B :222b y y x x =+ ∵P 点在切线P A 、P B 上,∴202022101b y y x x b y y x x =+=+∴直线AB 的方程为)0(00200≠=+y x b y y x x2在直线AB 方程中,令y =0,则M 02x b ,0;令x =0,则N0,2y b∴1625)(||||22220220222222==+=+ba b x a y b a ON b OM a ①∵2b =8 ∴b =4 代入①得a 2 =25, b 2 =16 ∴椭圆C 方程:)0(1162522≠=+xy x y 注:不剔除xy ≠0,可不扣分3 假设存在点P x 0,y 0满足P A ⊥P B ,连接O A 、O B 由|P A |=|P B |知,四边形P A O B 为正方形,|OP|=2|O A | ∴220202b y x =+ ① 又∵P 点在椭圆C 上 ∴22202202b a y b x a =+ ②由①②知x2222202222220,)2(b a b a y b a b a b -=--=∵a >b >0 ∴a 2-b 2>01当a 2-2b 2>0,即a >2b 时,椭圆C 上存在点,由P 点向圆所引两切线互相垂直; 2当a 2-2b 2<0,即b <b 时,椭圆C 上不存在满足条件的P 点【例6】 已知椭圆C 的焦点是F 1-3,0、F 23,0,点F 1到相应的准线的距离为33,过F 2点且倾斜角为锐角的直线l 与椭圆C 交于A 、B 两点,使得|F 2B|=3|F 2A|.1求椭圆C 的方程;2求直线l 的方程. 解:1依题意,椭圆中心为O0,0,3=c点F 1到相应准线的距离为1333,322=⨯=∴=b cb, a 2=b 2+c 2=1+3=4∴所求椭圆方程为1422=+y x2设椭圆的右准线l '与l 交于点P,作AM ⊥l ',AN⊥l ',垂足分别为M 、N. 由椭圆第二定义, 得||||||||22AM e AF e AM AF =⇒=同理|BF 2|=e|BN| 由Rt △PAM ~Rt △PBN,得||2||2||21||2AM e A F AB PA ===…9分 l ePA AM PAM ⇒=⨯===∠∴33232121||||cos 的斜率2tan =∠=PAM k .∴直线l 的方程062)3(2=---=y x x y 即【例7】 已知点B -1,0,C1,0,P 是平面上一动点,且满足.||||CB PB BC PC ⋅=⋅1求点P 的轨迹C 对应的方程;x2已知点Am,2在曲线C 上,过点A 作曲线C 的两条弦AD 和AE,且AD ⊥AE,判断:直线DE 是否过定点试证明你的结论.3已知点Am,2在曲线C 上,过点A 作曲线C 的两条弦AD,AE,且AD,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.解:1设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入【例8】 已知曲线332)0,0(12222=>>=-e b a by ax 的离心率,直线l 过A a ,0、B0,-b 两点,原点O 到l 的距离是.23 Ⅰ求双曲线的方程;Ⅱ过点B 作直线m 交双曲线于M 、N 两点,若23-=⋅ON OM ,求直线m 的方程. 解:Ⅰ依题意,,0,1=--=-+ab ay bx byax l 即方程 由原点O 到l 的距离为23,得2322==+c ab ba ab 又332==ac e 3,1==∴a b故所求双曲线方程为1322=-y xⅡ显然直线m 不与x 轴垂直,设m 方程为y =k x -1,则点M 、N 坐标11,y x 、22,y x 是方程组 ⎪⎩⎪⎨⎧=--=13122y x kx y 的解 消去y ,得066)31(22=-+-kx x k ① 依设,,0312≠-k 由根与系数关系,知136,136221221-=-=+k x x k k x x =1)()1(21212++-+x x k x x k =113613)1(62222+---+k k k k =11362+-k23-=⋅ON OM ∴11362+-k =-23,k=±21 当k=±21时,方程①有两个不等的实数根 故直线l 方程为121,121--=-=x y x y 或【例9】 已知动点P 与双曲线13222=-y x 的两个焦点1F 、2F 的距离之和为定值,且21cos PF F ∠的最小值为91-.1求动点P 的轨迹方程;2若已知)3,0(D ,M 、N 在动点P 的轨迹上且DN DM λ=,求实数λ的取值范围. 解:1由已知可得: 5=c ,912)2(2222-=-+a c a a ∴ 4,92222=-==c a b a∴ 所求的椭圆方程为 14922=+y x . 2方法一:由题知点D 、M 、N 共线,设为直线m,当直线m 的斜率存在时,设为k,则直线m 的方程为 y = k x +3 代入前面的椭圆方程得 4+9k 2 x 2 +54 k +45 = 0 ① 由判别式 045)94(4)54(22≥⨯+⨯-=∆k k ,得952≥k . 再设M x 1 , y 1 , N x 2 , y 2,则一方面有))3(,()3,()3,(222211-=-==-=y x y x DN y x DM λλλλ,得另一方面有 2219454kk x x +-=+,2219445k x x += ②将21x x λ=代入②式并消去 x 2可得94)1(532422+=+k λλ,由前面知, 536402≤<k ∴ 581)1(532492≤+<λλ,解得 551<<λ.又当直线m 的斜率不存在时,不难验证:551==λλ或, 所以 551≤≤λ为所求;方法二:同上得设点M 3cos α,2sin α,N 3cos β,2sin β 则有⎩⎨⎧-=-=)3sin 2(3sin 2cos cos βλαβλα由上式消去α并整理得)(1251813sin 22λλλλβ-+-=, 由于1sin 1≤≤-β∴ 1)(1251813122≤-+-≤-λλλλ, 解得551≤≤λ为所求. 方法三:设法求出椭圆上的点到点D 的距离的最大值为5,最小值为1. 进而推得λ的取值范围为551≤≤λ;求圆锥曲线的方程练习一、选择题1.已知直线x +2y -3=0与圆x 2+y 2+x -6y +m =0相交于P 、Q 两点,O 为坐标原点,若OP ⊥OQ ,则m 等于B.-3D.-12.中心在原点,焦点在坐标为0,±52的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为二、填空题3.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_________.4.已知圆过点P 4,-2、Q -1,3两点,且在y 轴上截得的线段长为43,则该圆的方程为_________.三、解答题5.已知椭圆的中心在坐标原点,焦点在x 轴上,它的一个焦点为F ,M 是椭圆上的任意点,|MF |的最大值和最小值的几何平均数为2,椭圆上存在着以y =x 为轴的对称点M 1和M 2,且|M 1M 2|=3104,试求椭圆的方程.6.某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长.7.已知圆C 1的方程为x -22+y -12=320,椭圆C 2的方程为2222by ax +=1a >b >0,C 2的离心率为22,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程.参考答案一、1.解析:将直线方程变为x =3-2y ,代入圆的方程x 2+y 2+x -6y +m =0, 得3-2y 2+y 2+3-2y +m =0.整理得5y 2-20y +12+m =0,设Px 1,y 1、Qx 2,y 2 则y 1y 2=512m +,y 1+y 2=4.又∵P 、Q 在直线x =3-2y 上, ∴x 1x 2=3-2y 13-2y 2=4y 1y 2-6y 1+y 2+9 故y 1y 2+x 1x 2=5y 1y 2-6y 1+y 2+9=m -3=0,故m =3. 答案:A2.解析:由题意,可设椭圆方程为:2222b x a y + =1,且a 2=50+b 2,即方程为222250b x b y ++=1.将直线3x -y -2=0代入,整理成关于x 的二次方程. 由x 1+x 2=1可求得b 2=25,a 2=75. 答案:C二、3.解析:所求椭圆的焦点为F 1-1,0,F 21,0,2a =|PF 1|+|PF 2|.欲使2a 最小,只需在直线l 上找一点P .使|PF 1|+|PF 2|最小,利用对称性可解.答案:4522y x + =14.解析:设所求圆的方程为x -a 2+y -b 2=r 2则有⎪⎪⎩⎪⎪⎨⎧=+=-+--=--+-222222222)32(||)3()1()2()4(ra rb a r b a ⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⇒2745130122r b a r b a 或由此可写所求圆的方程.答案:x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0三、5.解:|MF |ma x =a +c ,|MF |min =a -c ,则a +ca -c =a 2-c 2=b 2, ∴b 2=4,设椭圆方程为14222=+y a x ① 设过M 1和M 2的直线方程为y =-x +m② 将②代入①得:4+a 2x 2-2a 2mx +a 2m 2-4a 2=0③设M 1x 1,y 1、M 2x 2,y 2,M 1M 2的中点为x 0,y 0, 则x 0=21x 1+x 2=224a m a +,y 0=-x 0+m =244a m +.代入y =x ,得222444amam a +=+,由于a 2>4,∴m =0,∴由③知x 1+x 2=0,x 1x 2=-2244aa +,又|M 1M 2|=31044)(221221=-+x x x x ,代入x 1+x 2,x 1x 2可解a 2=5,故所求椭圆方程为:4522y x + =1.6.解:以拱顶为原点,水平线为x 轴,建立坐标系,如图,由题意知,|AB |=20,|OM |=4,A 、B 坐标分别为-10,-4、10,-4 设抛物线方程为x 2=-2py ,将A 点坐标代入,得100=-2p ×-4,解得p =, 于是抛物线方程为x 2=-25y .由题意知E 点坐标为2,-4,E ′点横坐标也为2,将2代入得y =-,从而|EE ′|=---4=.故最长支柱长应为米.7.解:由e =22,可设椭圆方程为22222b y b x +=1,又设Ax 1,y 1、Bx 2,y 2,则x 1+x 2=4,y 1+y 2=2, 又2222222212212,12by bx by bx +=+=1,两式相减,得22221222212by y bx x -+-=0,即x 1+x 2x 1-x 2+2y 1+y 2y 1-y 2=0. 化简得2121x x y y --=-1,故直线AB 的方程为y =-x +3, 代入椭圆方程得3x 2-12x +18-2b 2=0. 有Δ=24b 2-72>0,又|AB |=3204)(221221=-+x x x x ,得3209722422=-⋅b ,解得b 2=8.故所求椭圆方程为81622y x +=1.直线与圆锥曲线复习要点直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长即应用弦长公式;涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍. 例题【例1】 已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程.解:设椭圆方程为mx 2+ny 2=1m >0,n >0,Px 1,y 1,Qx 2,y 2 由⎪⎩⎪⎨⎧=++=1122ny mx x y 得m +nx 2+2nx +n -1=0,Δ=4n 2-4m +nn -1>0,即m +n -mn >0,由OP ⊥OQ ,所以x 1x 2+y 1y 2=0,即2x 1x 2+x 1+x 2+1=0, ∴nm nn m n --+-2)1(2+1=0,∴m +n =2①又2)210()(4=+-+nm mn n m 2, 将m +n =2,代入得m ·n =43②由①、②式得m =21,n =23或m =23,n =21 故椭圆方程为22x +23y 2=1或23x 2+21y 2=1.【例2】 如图所示,抛物线y 2=4x 的顶点为O ,点A 的坐标为5,0,倾斜角为4π的直线l 与线段OA 相交不经过点O 或点A 且交抛物线于M 、N 两点,求△AMN 面积最大时直线l 的方程,并求△AMN 的最大面积.解:由题意,可设l 的方程为y =x +m ,-5<m <0. 由方程组⎪⎩⎪⎨⎧=+=xy mx y 42,消去y ,得x 2+2m -4x +m 2=0……………①∵直线l 与抛物线有两个不同交点M 、N ,∴方程①的判别式Δ=2m -42-4m 2=161-m >0, 解得m <1,又-5<m <0,∴m 的范围为-5,0设Mx 1,y 1,Nx 2,y 2则x 1+x 2=4-2m ,x 1·x 2=m 2, ∴|MN |=4)1(2m -. 点A 到直线l 的距离为d =25m +.∴S △=25+m m -1,从而S △2=41-m 5+m 2 =22-2m ·5+m 5+m ≤235522mm m ++++-3=128.∴S △≤82,当且仅当2-2m =5+m ,即m =-1时取等号. 故直线l 的方程为y =x -1,△AMN 的最大面积为82.【例3】 已知双曲线C :2x 2-y 2=2与点P 1,2;1求过P 1,2点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点;2若Q 1,1,试判断以Q 为中点的弦是否存在.解:1当直线l 的斜率不存在时,l 的方程为x =1, 与曲线C 有一个交点.当l 的斜率存在时,设直线l 的方程为y -2=kx -1, 代入C 的方程,并整理得2-k 2x 2+2k 2-2kx -k 2+4k -6=0………………ⅰ当2-k 2=0,即k =±2时,方程有一个根,l 与C 有一个交点 ⅱ当2-k 2≠0,即k ≠±2时Δ=2k 2-2k 2-42-k 2-k 2+4k -6=163-2k①当Δ=0,即3-2k =0,k =23时,方程有一个实根,l 与C 有一个交点.②当Δ>0,即k <23,又k ≠±2,故当k <-2或-2<k <2或2<k <23时,方程有两不等实根,l 与C 有两个交点.③当Δ<0,即k >23时,方程无解,l 与C 无交点.综上知:当k =±2,或k =23,或k 不存在时,l 与C 只有一个交点;当2<k <23,或-2<k <2,或k <-2时,l 与C 有两个交点;当k >23时,l 与C 没有交点.2假设以Q 为中点的弦存在,设为AB ,且Ax 1,y 1,Bx 2,y 2,则2x 12-y 12=2,2x 22-y 22=2两式相减得:2x 1-x 2x 1+x 2=y 1-y 2y 1+y 2又∵x 1+x 2=2,y 1+y 2=2 ∴2x 1-x 2=y 1-y 1 即k AB =2121x x y y --=2但渐近线斜率为±2,结合图形知直线AB 与C 无交点,所以假设不正确,即以Q 为中点的弦不存在.【例4】 如图,已知某椭圆的焦点是F 1-4,0、F 24,0,过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10,椭圆上不同的两点Ax 1,y 1,Cx 2,y 2满足条件:|F 2A |、|F 2B |数列.1求该弦椭圆的方程; 2求弦AC 中点的横坐标;3设弦AC 的垂直平分线的方程为y =kx 求m 的取值范围.解:1由椭圆定义及条件知,2a =|F 1B |+|F 2B |=10,得a =5,又c =4,所以b =22c a -=3.故椭圆方程为92522y x +=1.2由点B 4,y B 在椭圆上,得|F 2B |=|y B |=59.因为椭圆右准线方程为x =425,离心率为54,根据椭圆定义,有|F 2A |=54425-x 1,|F 2C |=54425-x 2,由|F 2A |、|F 2B |、|F 2C |成等差数列,得54425-x 1+54425-x 2=2×59,由此得出:x 1+x 2=8.设弦AC 的中点为Px 0,y 0,则x 0=221x x +=4.3解法一:由Ax 1,y 1,Cx 2,y 2在椭圆上.得⎪⎩⎪⎨⎧⨯=+⨯=+25925925925922222121y x y x①-②得9x 12-x 22+25y 12-y 22=0, 即9×)()2(25)2(21212121x x y y y y x x --⋅+++=0x 1≠x 2 将kx x y y y y y x x x 1,2,422121021021-=--=+==+ k ≠0代入上式,得9×4+25y 0-k1=0k ≠0即k =3625y 0当k =0时也成立.由点P 4,y 0在弦AC 的垂直平分线上,得y 0=4k +m , 所以m =y 0-4k =y 0-925y 0=-916y 0.由点P 4,y 0在线段BB ′B ′与B 关于x 轴对称的内部, 得-59<y 0<59,所以-516<m <516.解法二:因为弦AC 的中点为P 4,y 0,所以直线AC 的方程为y -y 0=-k1x -4k ≠0③将③代入椭圆方程92522y x +=1,得9k 2+25x 2-50ky 0+4x +25ky 0+42-25×9k 2=0 所以x 1+x 2=259)4(5020++k k =8,解得k =3625y 0.当k =0时也成立①以下同解法一.【例5】 已知双曲线G 的中心在原点,它的渐近线与圆2210200x y x +-+=相切.过点()4,0P -作斜率为14的直线l ,使得l 和G 交于,A B 两点,和y 轴交于点C ,并且点P 在线段AB 上,又满足2PA PB PC ⋅=. 1求双曲线G 的渐近线的方程; 2求双曲线G 的方程;3椭圆S 的中心在原点,它的短轴是G 的实轴.如果S 中垂直于l 的平行弦的中点的轨迹恰好是G 的渐近线截在S 内的部分,求椭圆S 的方程.解:1设双曲线G 的渐近线的方程为:y kx =, 则由渐近线与圆2210200x y x +-+==所以,12k =±.双曲线G 的渐近线的方程为:12y x =±. 2由1可设双曲线G 的方程为:224x y m -=.把直线l 的方程()144y x =+代入双曲线方程,整理得2381640x x m ---=. 则8164, 33A B A B mx x x x ++==-∵ 2PA PB PC ⋅=,,,,P A B C 共线且P 在线段AB 上, ∴ ()()()2P A B P P C x x x x x x --=-,即:()()4416B A x x +--=,整理得:()4320A B A B x x x x +++= 将代入上式可解得:28m =.所以,双曲线的方程为221287x y -=. 3由题可设椭圆S的方程为:(222128x y a a+=>.下面我们来求出S 中垂直于l 的平行弦中点的轨迹.设弦的两个端点分别为()()1122,,,M x y N x y ,MN 的中点为()00,P x y ,则2211222222128128x y a x y a ⎧+=⎪⎪⎨⎪+=⎪⎩. 两式作差得:()()()()121212122028x x x x y y y y a-+-++=由于12124y y x x -=--,1201202,2x x x y y y +=+= 所以,0024028x y a -=, 所以,垂直于l 的平行弦中点的轨迹为直线24028x ya-=截在椭圆S 内的部分. 又由题,这个轨迹恰好是G 的渐近线截在S 内的部分,所以,211122a =.所以,256a =,椭圆S 的方程为:2212856x y +=. 点评:解决直线与圆锥曲线的问题时,把直线投影到坐标轴上也即化线段的关系为横坐标或纵坐标之间的关系是常用的简化问题的手段;有关弦中点的问题,常常用到“设而不求”的方法;判别式和韦达定理是解决直线与圆锥曲线问题的常用工具.【例6】 设抛物线过定点()1,0A -,且以直线1x =为准线.1求抛物线顶点的轨迹C 的方程;2若直线l 与轨迹C 交于不同的两点,M N ,且线段MN 恰被直线12x =-平分,设弦MN 的垂直平分线的方程为y kx m =+,试求m 的取值范围.解:1设抛物线的顶点为(),G x y ,则其焦点为()21,F x y -.由抛物线的定义可知:12AF A x ==点到直线的距离=.所以2=.所以,抛物线顶点G 的轨迹C 的方程为:2214y x += ()1x ≠.2因为m 是弦MN 的垂直平分线与y 轴交点的纵坐标,由MN 所唯一确定.所以,要求m 的取值范围,还应该从直线l 与轨迹C 相交入手.显然,直线l 与坐标轴不可能平行,所以,设直线l 的方程为1:l y x b k=-+,代入椭圆方程得:由于l 与轨迹C 交于不同的两点,M N ,所以,()22222441440b k b k k ⎛⎫+∆=--> ⎪⎝⎭,即:()222410 0k k b k -+>≠.又线段MN 恰被直线12x =-平分,所以,2212241M N bk x x k ⎛⎫+==⨯- ⎪+⎝⎭.所以,2412k bk +=-.代入可解得:() 022k k -<<≠. 下面,只需找到m 与k 的关系,即可求出m 的取值范围.由于y kx m =+为弦MN 的垂直平分线,故可考虑弦MN 的中点01,2P y ⎛⎫- ⎪⎝⎭.在1:l y x b k=-+中,令12x =-,可解得:2011412222k y b k k k k +=+=-=-. 将点1,22P k ⎛⎫-- ⎪⎝⎭代入y kx m =+,可得:32k m =-.所以,0m m <<≠. 从以上解题过程来看,求m 的取值范围,主要有两个关键步骤:一是寻求m 与其它参数之间的关系,二是构造一个有关参量的不等式.从这两点出发,我们可以得到下面的另一种解法:解法二.设弦MN 的中点为01,2P y ⎛⎫- ⎪⎝⎭,则由点,M N 为椭圆上的点,可知:22224444M M N N x y x y ⎧+=⎪⎨+=⎪⎩. 两式相减得:()()()()40M N M N M N M N x x x x y y y y -++-+= 又由于01121, 2, 2M N M N M N M N y y x x y y y x x k -⎛⎫+=⨯-=-+=- ⎪-⎝⎭=,代入上式得:02y k =-.又点01,2P y ⎛⎫- ⎪⎝⎭在弦MN 的垂直平分线上,所以,012y k m =-+. 所以,001324m y k y =+=. 由点01,2P y ⎛⎫- ⎪⎝⎭在线段BB ’上B ’、B 为直线12x =-与椭圆的交点,如图,所以,'0B B y y y <<.也即:0y <<所以,3333044m m -<<≠且 点评:解决直线和圆锥曲线的位置关系问题时,对于消元后的一元二次方程,必须讨论二次项系数和判别式,有时借助图形的几何性质更为方便.涉及弦中点问题,利用韦达定理或运用平方差法时设而不求,必须以直线与圆锥曲线相交为前提,否则不宜用此法.从构造不等式的角度来说,“将直线l 的方程与椭圆方程联立所得判别式大于0”与“弦MN 的中点01,2P y ⎛⎫- ⎪⎝⎭在椭圆内”是等价的.【例7】 设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线与抛物线交于A 、B 两点.又M 是其准线上一点.试证:直线MA 、MF 、MB 的斜率成等差数列.证明 依题意直线MA 、MB 、MF 的斜率显然存在,并分别设为1k ,2k ,3k 点A 、B 、M 的坐标分别为A 1x ,1y ,B 2x ,2y ,M 2p -,m由“AB 过点F 2p ,0”得 AB l :2p ty x +=将上式代入抛物线px y 22=中得:0222=--p pty y可知221p y y -=⋅又依“1212px y =及2222px y =”可知 因此22221121p x my p x m y k k +-++-=+而p m p p m k -=---=)2(203故3212k k k =+即直线MA 、MF 、MB 的斜率成等差数列.【例8】 已知a =x,0,b =1,y )3()3(b a b a -⊥+1求点Px,y 的轨迹C 的方程;2若直线l :y=kx+mkm ≠0与曲线C 交于A 、B 两端,D0,-1,且有|AD|=|BD|,试求m 的取值范围;解:1)3,3(),1(3)0,(y x y x a +=+=+∵((a a -⊥+∴((a a -⋅+=0∴0)3(3)3)(3(=-⋅+-+y y x x 得1322=-y x∴P 点的轨迹方程为1322=-y x2考虑方程组⎪⎩⎪⎨⎧=-+=1322y x m kx y 消去y,得1-3k 2x 2-6kmx -3m 2-3=0 显然1-3k 2≠0 △=6km 2-4-3m 2-3=12m 2+1-3k 2>0设x 1,x 2为方程的两根,则221316kkmx x -=+ 故AB 中点M 的坐标为2313k km -,231k m-∴线段AB 的垂直平分线方程为:)313)(1(3122k kmx k k m y ---=--将D0,-1坐标代入,化简得:4m=3k 2-1故m 、k 满足⎪⎩⎪⎨⎧-=>-+134031222k m k m ,消去k 2得:m 2-4m>0 解得:m<0或m>4又∵4m=3k 2-1>-1 ∴m>-41 故m ),4()0,41(+∞⋃-∈.直线与圆锥曲线练习一、选择题1.斜率为1的直线l 与椭圆42x +y 2=1相交于A 、B 两点,则|AB |的最大值为B.554C.5104D.51082.抛物线y =ax 2与直线y =kx +bk ≠0交于A 、B 两点,且此两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则恒有=x 1+x 2=x 1x 3+x 2x 3 +x 2+x 3=0+x 2x 3+x 3x 1=0二、填空题3.已知两点M 1,45、N -4,-45,给出下列曲线方程:①4x +2y -1=0,②x 2+y 2=3,③22x +y 2=1,④22x -y 2=1,在曲线上存在点P 满足|MP |=|NP |的所有曲线方程是_________.4.正方形ABCD 的边AB 在直线y =x +4上,C 、D 两点在抛物线y 2=x 上,则正方形ABCD 的面积为_________.5.在抛物线y 2=16x 内,通过点2,1且在此点被平分的弦所在直线的方程是_________.三、解答题6.已知抛物线y 2=2pxp >0,过动点Ma ,0且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,且|AB |≤2p .1求a 的取值范围.2若线段AB 的垂直平分线交x求△NAB 面积的最大值.7.已知中心在原点,顶点A 1、A 2在x e =321的双曲线过点P 6,6.1求双曲线方程.2动直线l 经过△A 1PA 2的重心G ,与双曲线交于不同的两点M 、N ,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.8.已知双曲线C 的两条渐近线都过原点,且都以点A 2,0为圆心,1为半径的圆相切,双曲线的一个顶点A 1与A 点关于直线y =x 对称.1求双曲线C 的方程.2设直线l 过点A ,斜率为k ,当0<k <1时,双曲线C 的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时B 点的坐标.直线与圆锥曲线参考答案一、1.解析:弦长|AB |=55422t -⋅⋅≤5104.答案:C2.解析:解方程组⎪⎩⎪⎨⎧+==bkx y ax y 2,得ax 2-kx -b =0,可知x 1+x 2=ak ,x 1x 2=-ab ,x 3=-kb ,代入验证即可.答案:B二、3.解析:点P 在线段MN 的垂直平分线上,判断MN 的垂直平分线于所给曲线是否存在交点.答案:②③④4.解析:设C 、D 所在直线方程为y =x +b ,代入y 2=x ,利用弦长公式可求出|CD |的长,利用|CD |的长等于两平行直线y =x +4与y =x +b 间的距离,求出b 的值,再代入求出|CD |的长.答案:18或505.解析:设所求直线与y 2=16x 相交于点A 、B ,且Ax 1,y 1,Bx 2,y 2,代入抛物线方程得y 12=16x 1,y 22=16x 2,两式相减得,y 1+y 2y 1-y 2=16x 1-x 2.即⇒+=--21212116y y x x y y k AB =8. 故所求直线方程为y =8x -15. 答案:8x -y -15=0三、6.解:1设直线l 的方程为:y =x -a ,代入抛物线方程得x -a 2=2px ,即x 2-2a +px +a 2=0∴|AB |=224)(42a p a -+⋅≤2p .∴4ap +2p 2≤p 2,即4ap ≤-p 2又∵p >0,∴a ≤-4p .2设Ax 1,y 1、Bx 2,y 2,AB 的中点 Cx ,y , 由1知,y 1=x 1-a ,y 2=x 2-a ,x 1+x 2=2a +2p , 则有x =222,2212121ax x y y y p a x x -+=+=+=+=p .∴线段AB 的垂直平分线的方程为y -p =-x -a -p ,从而N 点坐标为a +2p ,0点N 到AB 的距离为p a p a 22|2|=-+从而S △NAB =2222224)(4221p ap p p a p a +=⋅-+⋅⋅当a 有最大值-4p 时,S 有最大值为2p 2.7.解:1如图,设双曲线方程为2222b y a x -=1.由已知得321,16622222222=+==-ab a e b a ,解得a 2=9,b 2=12.所以所求双曲线方程为12922y x -=1.2P 、A 1、A 2的坐标依次为6,6、3,0、-3,0, ∴其重心G 的坐标为2,2假设存在直线l ,使G 2,2平分线段MN ,设Mx 1,y 1,Nx 2,y 2.则有34912441089121089122121212122222121==--⇒⎪⎪⎩⎪⎪⎨⎧=+=+=-=-x x y y y y x x y x y x ,∴k l =34∴l 的方程为y =34x -2+2,由⎪⎩⎪⎨⎧-==-)2(3410891222x y y x ,消去y ,整理得x 2-4x +28=0.∵Δ=16-4×28<0,∴所求直线l 不存在. 8.解:1设双曲线的渐近线为y =kx ,由d =1|2|2+k k =1,解得k =±1.即渐近线为y =±x ,又点A 关于y =x 对称点的坐标为0,2. ∴a =2=b ,所求双曲线C 的方程为x 2-y 2=2.2设直线l :y =kx -20<k <1),依题意B 点在平行的直线l ′上,且l 与l ′间的距离为2.设直线l ′:y =kx +m ,应有21|2|2=++k m k ,化简得m 2+22k m=2. ②把l ′代入双曲线方程得k 2-1x 2+2mkx +m 2-2=0, 由Δ=4m 2k 2-4k 2-1m 2-2=0. 可得m 2+2k 2=2③②、③两式相减得k =2m ,代入③得m 2=52,解设m =510,k =552,此时x =2212=--k mk ,y =10.故B 22,10.。
高中数学圆锥曲线基本知识与典型例题第一部分:椭圆1.椭圆的概念在平面与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质典型例题例1.F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段例2. 已知ABC ∆的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( )(A)1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(1251622≠=+y y x例3. 若F (c ,0)是椭圆22221x y a b+=的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F点的距离等于2M m+的点的坐标是( ) (A)(c ,2b a ±) 2()(,)b B c a-± (C)(0,±b ) (D)不存在例4. 设F 1(-c ,0)、F 2(c ,0)是椭圆22x a +22y b=1(a >b >0)的两个焦点,P 是以F 1F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5∠PF 2F 1,则椭圆的离心率为( )(A)2 (B)32 (D)3例5 P 点在椭圆1204522=+y x 上,F 1、F 2是两个焦点,若21PF PF ⊥,则P 点的坐标是 .例6.写出满足下列条件的椭圆的标准方程:(1)长轴与短轴的和为18,焦距为6; .(2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的31; ____. (4)离心率为23,经过点(2,0); . 例7 12F F 、是椭圆2214x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ⋅的最大值是 .第二部分:双曲线1.双曲线的概念平面动点P与两个定点F1、F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a(2a<2c),则点P的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a、c为常数且a>0,c>0:(1)当a<c时,P点的轨迹是双曲线;(2)当a=c时,P点的轨迹是两条射线;(3)当a>c时,P点不存在.2.双曲线的标准方程和几何性质典型例题例8.命题甲:动点P 到两定点A 、B 的距离之差的绝对值等于2a (a >0);命题乙: 点P 的轨迹是双曲线。
专题08 双曲线中的参数范围及最值问题一、单选题1.若点O 和点F 分别为双曲线2212x y -=的中心和左焦点,点P 为该双曲线上的任意一点,则OP FP ⋅的最小值为( ) A.2B.2C .12D .32-【解析】由题意,点()0,0O,点()F ,设点(),P x y ,则2212x y -=,2212x y =-,(),2,x ⎡∈-∞+∞⎣,所以()(),,OP x y FP x y ==,所以(2222331222OP FP x x y x x x ⎛-=- ⎝⋅=+=++⎭, 所以当x =OP FP ⋅取最小值233222⎛-= ⎝⎭.故选:B. 2.过双曲线()222103x y a a-=>的右焦点F 作直线l 与双曲线交于A ,B 两点,使得||6AB =,若这样的直线有且只有两条,则实数a 的取值范围是( ) A .(]()0,13,⋃+∞ B .()()0,13,+∞C .()0,1D .()3,+∞【解析】若A ,B 在同一支上,当min ||AB 时AB 为双曲线的通经,即有2min 26||b AB a a==; 若A ,B 不在同一支上,则min ||2AB a =.因为6a 与2a 不可能同时等于6,所以2666a a >⎧⎪⎨<⎪⎩或2666a a<⎧⎪⎨>⎪⎩,解得3a >或01a <<,故选:B3.已知0(M x ,0)y 是双曲线2222:1x y C a b-=上的一点,半焦距为c ,若||MO c (其中O 为坐标原点),则20y 的取值范围是( )A .420,b c ⎡⎤⎢⎥⎣⎦B .420,a c ⎡⎤⎢⎥⎣⎦C .42,b c ⎡⎫+∞⎪⎢⎣⎭D .42,a c ⎡⎫+∞⎪⎢⎣⎭【解析】||MO c 2220a b +222200x y a b ++,又2200221x y a b -=,所以222002(1)y x a b=+,所以 22222002(1)y a y a b b ++≤+,可得4422220b b y a b c =+,故选:A 4.设双曲线)(2222:1,0x y C a b a b-=>的焦距为2,若以点)()(,P m n m a <为圆心的圆P 过C 的右顶点且与C 的两条渐近线相切,则OP 长的取值范围是( )A .10,2⎛⎫⎪ ⎭⎝B .)(0,1C .1,12⎛⎫⎪ ⎭⎝D .11,42⎛⎫⎪ ⎭⎝【解析】由题可得渐近线方程为by x a=±,1c =, 由于圆P 与两条渐近线都相切,则P 在x 轴或y 轴上,又圆P 过C 的右顶点,则P 在x 轴正半轴上,即)()(,00P m m a <<,圆心)(,0P m bm =,又圆半径为a m -,则由题可得a m bm -=,即1am b =+, 又221a b +=,则()()2222211211111a b b m b b b b --====-+++++, ()0,1b ∈,()20,1m ∴∈,()0,1m ∴∈,则OP 长的取值范围是)(0,1.故选:B.5.设双曲线2222:1(0,0)x y C ab a b -=>>A ,B 是双曲线C 上关于原点对称的两个点,M 是双曲线C 上异于A ,B 的动点,直线,MA MB 斜率分别12,k k ,若11,23k ⎡⎤∈⎢⎥⎣⎦,则2k 的取值范围为( ) A .[24,4]--B .31,816⎡⎤--⎢⎥⎣⎦C .[4,24]D .13,168⎡⎤⎢⎥⎣⎦【解析】设00(,)M x y 11(,)A x y ,则11(,)B x y --,那么2200221x y a b -=,2211221x y a b-=两式相减得:22220101220x x y y a b ---=,整理得:222010101222010101()()()()y y y y y y b x x x x x x a --+==--+ 即2122b k k a = ,又因为双曲线2222:1(0,0)x y C ab a b -=>>所以c e a ==,所以2218b a =,故1218k k =,其中11,23k ⎡⎤∈⎢⎥⎣⎦,所以21113,8168k k ⎡⎤=∈⎢⎥⎣⎦,故选:D.6.已知M 、N 是双曲线()2222:10,0x y C a b a b-=>>上关于原点对称的两点,P 是C 上异于M 、N 的动点,设直线PM 、PN 的斜率分别为1k 、2k .若直线12y x =与曲线C 没有公共点,当双曲线C 的离心率取得最大值时,且123k ≤≤,则2k 的取值范围是( ) A .11,128⎡⎤⎢⎥⎣⎦B .11,812⎡⎤--⎢⎥⎣⎦C .11,32⎡⎤⎢⎥⎣⎦D .11,23⎡⎤--⎢⎥⎣⎦【解析】因为直线12y x =与双曲线()2222:10,0x y C a b a b -=>>没有公共点,所以双曲线C 的渐近线的斜率12b k a =≤, 而双曲线C的离心率c e a ==当双曲线C 的离心率取最大值时,b a 取得最大值12,即12b a =,即2a b =,则双曲线C 的方程为222214x y b b-=,设()11,M x y 、()11,N x y --、()00,P x y ,则2211222200221414x y b b x y b b ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式相减得:()()()()10101010224x x x x y y y y b b +-+-=,即1010101014y y y y x x x x -+⋅=-+,即1214k k ⋅=, 又123k ≤≤,211,128k ⎡⎤∈⎢⎥⎣⎦.故选:A.7.已知P 是双曲线22:14y x E m-=上任意一点,M ,N 是双曲线上关于坐标原点对称的两点,且直线PM ,PN 的斜率分别为()1212,0k k k k ≠,若122k k +的最小值为1,则实数m 的值为( ) A .16B .32C .1或16D .2或8【解析】双曲线22:14y x E m -=中0m >,设()11,M x y ,()11,N x y --,()22,P x y ,则221114y x m-=,222214y x m -=,所以相减得2222121204y y x x m---=,∴221222124y y x x m -=-, 因此2221212112222121214y y y y y y k k x x x x x x m -+-=⋅==-+-.从而1221k k +≥=,所以32m =(当且仅当122k k =时取等号).故选:B .8.已知点()15,0F -,()25,0F .设点P 满足126PF PF -=,且12MF =,21NF =,则PM PN -的最大值为( )A .7B .8C .9D .10【解析】因为12610PF PF -=<,所以点P 在以1F ,2F 为焦点,实轴长为6,焦距为10的双曲线的右支上,则双曲线的方程为221916x y -=.由题意知M 在圆()221:54F x y ++=上,N 在圆()222:51F x y -+=上,如图所示,12PM PF ≤+,21PN PF ≥-,则()()12122139PM PN PF PF PF PF -≤+--=-+=.当M 是1PF 延长线与圆1F 的交点,N 是2PF 与圆2F 的交点时取等号.故选:C .二、多选题9.如果双曲线2222-1(0b 0)x y a a b=>,>的一条渐近线上的点(M -关于另一条渐近线的对称点恰为右焦点F P ,为双曲线上的动点,已知(3,1)A ,则PA PF +的值可能为( )A .32B .2C .72D .4【解析】由(M -在双曲线的渐近线上知,ba=(c,0)F ,由M 与F 关于b y x a ==1=-,故2c =,1a =,b =2213y x -=,设双曲线左焦点为1(2,0)F -,若P 在左支上,由双曲线定义知,112222PA PF PA PF AF +=++≥+=若P 在右支上,由双曲线定义知,112222PA PF PA PF AF +=+-≥-==则根据选项的数值大小关系知,CD 满足条件; 故选:CD10.已知动点P 在左、右焦点分别为1F 、2F 的双曲线C 22:13y x -=上,下列结论正确的是( )A .双曲线C 的离心率为2B .当P 在双曲线左支时,122PF PF 的最大值为14C .点P 到两渐近线距离之积为定值D .双曲线C的渐近线方程为y x = 【解析】在双曲线C 22:13y x -=中,实半轴长1a =,虚半轴长b =2c =.对于AD ,双曲线的离心率2ce a==,渐近线方程为y =,故A 正确,D 错误; 对于B ,当P 在双曲线的左支上时,12111,22PF c a PF a PF PF ≥-==+=+,故()11122221111111484424PF PF PF PF PF PF PFPF PF ===≤=+++++,当且仅当114PF PF =时,即12=PF 时等号成立,故122PF PF 的最大值为18,故B 错误; 对于C ,设00(,)P x y ,则220013y x -=,即220033x y -=,0y +=0y -=,故00(,)P x y22003344x y -==为定值,故C 正确. 故选:AC.11.已知双曲线()22*1x y n n n-=∈N ,不与x 轴垂直的直线l 与双曲线右支交于点B ,C ,(B在x 轴上方,C 在x 轴下方),与双曲线渐近线交于点A ,D (A 在x 轴上方),O 为坐标原点,下列选项中正确的为( ) A .AC BD =恒成立B .若13BOC AOD S S =△△,则AB BC CD ==C .AOD △面积的最小值为1D .对每一个确定的n ,若AB BC CD ==,则AOD △的面积为定值【解析】设:l y kx b =+,代入22x y n -=得()222120k x bkx b n ----=,① 显然1k ≠±,()()22224410b k k b n ∆=+-+>,即()2210b n k +->,设()11,B x y ,()22,C x y ,则1x ,2x 是方程①的两个根,有12221kb x x k +=-,()21221b n x x k -+=-,设()33,A x y ,()44,D x y ,由y kx b y x =+⎧⎨=⎩得31bx k =-, 由y kx b y x =+⎧⎨=-⎩,得41b x k -=+;所以34221kbx x k +=-,所以AD 和BC 的中点重合, 所以AB CD =,所以AC BD =恒成立.故A 正确.因为AD 和BC 的中点重合为P ,所以AB CD =,又13BOC AOD S S =△△,所以13BC AD =,所以AB BC CD ==,故B 正确.设直线l 方程为x ty m =+,(1,0)(0,1),1t m ∈->,由x ty m y x =+⎧⎨=⎩得31m y t =-,由x ty m y x =+⎧⎨=-⎩得41my t -=+,OA =OD =90AOD ∠=︒,2221||||121AODm S OA OD m t==>>-△,故C 错误. 因为AB BC CD ==,所以13BC AD =,得1234x x -=-,即()229108nb k =->,所以0n >,21k >,又OA =,OD =,90AOD ∠=︒,所以2219218AODb nS OA OD k ===-△是定值.故D 正确. 故选:ABD.12.已知1l ,2l 是双曲线T :()222210,0x y a b a b-=>>的两条渐近线,直线l 经过T 的右焦点F ,且1//l l ,l 交T 于点M ,交2l 于点Q ,交y 轴于点N ,则下列说法正确的是( ) A .FOQ △与OQN △的面积相等B .若T 的焦距为4,则点M 到两条渐近线的距离之积的最大值为14C .若FM MQ =,则T 的渐近线方程为y x =±D .若12,23FM FQ ⎡⎤∈⎢⎥⎣⎦,则T 的离心率[]2,3e ∈ 【解析】,A 由题可知,(c,0)F ,不妨记1l :b y x a =,2l :by x a=-.由1//l l 可得l 的方程为()b y x c a =-,与2l 的方程联立可解得2Q c x =,2Q bc y a =-,即点,22c bc Q a ⎛⎫- ⎪⎝⎭.对于()b y x c a =-,令0x =,可得bc y a =-,即点0,bc N a ⎛⎫- ⎪⎝⎭,所以21224FOQ bc bcS c a a=⨯⨯=△,21224OQNc bc bc S a a=⨯⨯=△,所以FOQ OQN S S =△△,所以选项A 正确; ,B 设点M 的坐标为00,x y ,则2200221x y a b-=,即22222200b x a y a b -=,所以M 到两条渐近线的222222002222b x a y a b a b a b-==++,因为T 的焦距为4,所以2c =,所以2222224a b a b a b =+,因为2242a b ab =+≥,所以2ab ≤,224a b ≤,所以22222214a b a b a b =≤+,所以点M 到两条渐近线的距离之积的最大值为1,所以选项B 错误;,C 由FM MQ =得M 为QF 的中点,则03224cc c x +==,0224bc bc a y a=-=-,即点3,44c bc M a ⎛⎫- ⎪⎝⎭,代入双曲线T 的方程得22223441c bc a a b⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭-=,即222c a =,又222c a b =+,所以22a b =,所以a b =,所以双曲线T 的渐近线方程为y x =±,所以选项C 正确;,D 由()b y x c a =-与22221x y a b-=,得222M c a x c +=,所以MF QF =22211221,232F M F Q c a c x x c c x x e c +--⎡⎤==-∈⎢⎥-⎣⎦-,得[]22,3e ∈,所以e ∈,所以选项D 错误. 故选:AC . 三、填空题13.已知()00,M x y 是双曲线2222:1x y C a b-=上的一点,半焦距为c ,若MO c ≤(其中O 为坐标原点),则20y 的取值范围是___________.【解析】因为MO c ≤,所以MO ≤222200x y a b +≤+,又2200221x y a b -=,可得2222002a y x a b=+, 所以,22222222222000022a y c y x y a y a a b b b +=++=+≤+,所以,42020b y c≤≤.14.已知双曲线C :22221x y a b-=(0a >,0b >)的渐近线方程为y =,若动点P 在C的右支上,1F ,2F 分别为C 的左,右焦点,2OP OF ⋅的最小值是2a (其中O 为坐标原点),则212||||PF PF 的最小值为___________ 【解析】设(),P x y ,且x a ≥,()2,0F c ,则(),OP x y =,()2,0OF c =,因此2OP OF cx ⋅=,当x a =时,2OP OF ⋅取得最小值,且最小值为2ac a =,即2c =,所以2222ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩,解得1a =,b =2PF t =(1t ≥),则12PF t =+,所以()221224448PF t t PF tt +==++≥=,(当4t t =即2t =时取等号),即212||||PF PF 的最小值为8.15.过点()1,1P 作直线l 与双曲线222y x λ-=交于A ,B 两点,若点P 恰为线段AB 的中点,则实数λ的取值范围是______.【解析】因为双曲线方程为222y x λ-=,则0λ≠,设()11,A x y ,()22,B x y ,因为点P 恰为线段AB 的中点,则12122,2x x y y +=+=,则2211222222y x y x λλ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减并化简可得1212121222y y x x x x y y -+=⨯=-+ ,即直线l 的斜率为2,,所以直线l 的方程为21y x =- , 22212y x y x λ=-⎧⎪⎨-=⎪⎩,化简可得224210x x λ-++=, 因为直线l 与双曲线有两个不同的交点,所以()1642210λ∆=-⨯⨯+>, 解得12λ<且0λ≠,所以λ的取值范围为()1,00,2⎛⎫-∞⋃ ⎪⎝⎭16.已知双曲线的方程为221916x y -=,点12,F F 是其左右焦点,A 是圆22(5)1x y +-=上的一点,点M 在双曲线的右支上,则1||||MF MA +的最小值是__________. 【解析】如图∵双曲线的方程为221916x y -=,右焦点坐标为()25,0F ,连接22,AF MF .由双曲线的定义,得1226MF MF a -==.∴12266MF MA MF MA AF +=++≥+. 因为点A 是圆()2251x y +-=上的点,此时圆心为(0),5,半径为1,∴2211AF CF ≥-=,∴1265MF MA AF +≥+≥,当点M ,A 在线段2CF 上时上式取等号,即1MF MA +的最小值为5. 四、解答题17.已知双曲线2212y x -=,斜率为k (0)k ≠的直线l 与双曲线的左、右两支分别交于A ,B两点.(1)若直线l 过(0,1)P ,且3PB AP =,求直线l 的斜率k .(2)若线段AB 的垂直平分线与两坐标轴围成的三角形的面积为92,求k 的取值范围.【解析】(1)设11()A x y ,,22()B x y ,,因为3BP AP =,所以3PB AP →→=,即2211(,1)3(,1)x y x y -=--,所以2121343x x y y =-⎧⎨=-⎩,所以2211221112(43)(3)12y x y x ⎧-=⎪⎪⎨-⎪--=⎪⎩,所以11x =-,10y =,即(10)A -,, 所以1011AP k k -===. (2)设直线l 的方程为y kx m =+(0k ≠).由2212y kx my x =+⎧⎪⎨-=⎪⎩,整理得222(2)220k x kmx m ----=.则12222km x x k +=-,212222m x x k --=-, 因为直线l 与双曲线的左、右两支分别交于A ,B 两点,于是22k -≠0,且222(2)4(2)(2)0km k m ∆=-+-+>.,整理得2220m k +->.设线段AB 的中点坐标00(,)x y ,则120222x x km x k +==-,00222my kx m k =+=-. 所以AB 的垂直平分线方程为2221()22m km y x k k k -=----. 此直线与x 轴,y 轴的交点坐标分别为23(,0)2km k -,23(0,)2mk -. 由题可得221339||||2222km m k k ⋅=--.整理得222(2)||k m k -=,0k ≠. 所以可得222(2)20||k k k -+->,整理得22(2)(||2)0k k k --->,0k ≠.解得0||k <<或||2k >. 所以k 的取值范围是,2)(,0)(0,(22)(2,)-∞--+∞. 18.在平面直角坐标系xOy 内,已知双曲线Γ:2221y x b-=(0b >),(1)若Γ的一条渐近线方程为2y x =,求Γ的方程;(2)设1F 、2F 是Γ的两个焦点,P 为Γ上一点,且12PF PF ⊥,△12PF F 的面积为9,求b 的值;(3)若直线:21l y x =+与Γ交于A 、B 两点,且坐标原点O 始终在以AB 为直径的圆内,求b 的取值范围.【解析】(1)由双曲线Γ:2221y x b-=(0b >)可得其渐近线方程为y bx ±=,而Γ的一条渐近线方程为2y x =,故2b =即Γ的方程为:2214y x -=.(2)不妨设P 在第一象限,1F 、2F 分别为左右焦点,则122PF PF -=,()1F ,)2F而22221212=44PF PF F F b +=+,所以21224PF PF b =,所以2122PF PF b =,故12PF F △的面积为2b ,所以29b =,因为0b >,故3b =.(3)设()()1122,,,A x y B x y ,因为坐标原点O 始终在以AB 为直径的圆内, 故AOB ∠为钝角,所以0OA OB ⋅<即12120x x y y +<, 故()()121221210x x x x +++<即()12125210x x x x +++<.由222221y x b x y b =+⎧⎨-=⎩可得()2224410b x x b ----=,所以212122241,44b x x x x b b ++==---,又2040b ∆>⎧⎨-≠⎩,故()()221644102b b b ⎧+-+>⎪⎨≠±⎪⎩,故b >2b ≠.又22214521044b b b ⎛⎫+⋅-+⋅+< ⎪--⎝⎭可化简为2255840b b --++-<,该不等式对任意的b >2b ≠恒成立.故b >2b ≠.19.如图,在平面直角坐标系xOy 中,已知等轴双曲线()2222:10,0x y E a b a b-=>>的左顶点A,过右焦点F 且垂直于x 轴的直线与E 交于B ,C 两点,若ABC 1.(1)求双曲线E 的方程;(2)若直线:1l y kx =-与双曲线E 的左,右两支分别交于M ,N 两点,与双曲线E 的两条渐近线分别交于P ,Q 两点,求MNPQ的取值范围. 【解析】(1)因为双曲线()2222:10,0x y E a b a b-=>>为等轴双曲线,所以a b =,设双曲线的焦距为2c ,0c >,故2222c a b a =+=,即c =. 因为BC 过右焦点F ,且垂直于x 轴,将B x c =代入22221x y a b-=,可得B y a =,故2BC a =.将ABC 1,所以112BC AF ⨯⨯=,即()1212a a c ⨯⨯+=,所以21a =,1a =,故双曲线E 的方程为221x y -=.(2)依题意,直线:1l y kx =-与双曲线E 的左,右两支分别交于M ,N 两点,联立方程组221,1,x y y kx ⎧-=⎨=-⎩消去y 可得,()221220k x kx -+-=,所以()()()222210,24120,20,1M Nk k k x x k ⎧⎪-≠⎪⎪∆=--⨯->⎨⎪-⎪=<⎪-⎩解得11k -<<,且222,12.1M N M N k x x k x x k -⎧+=⎪⎪-⎨-⎪=⎪-⎩ 所以M N MN x =-== 联立方程组,1,y x y kx =⎧⎨=-⎩得11P x k =-,同理11Q x k =+,所以11P Q PQ x k =-=+.所以MN PQ =11k -<<,所以(MN PQ ∈. 20.已知双曲线2222:1x y C a b-=的离心率为32(1)求双曲线C 的标准方程;(2)若以(0)k k ≠为斜率的直线l 与双曲线C 相交于两个不同的点M ,N ,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为8116,求实数k 的取值范围. 【解析】(1)焦点(),0c ±到渐近线0bx ay ±=b ==,又32c a =,∴22222954c a a b a ==+=+,∴24a =,∴双曲线C 的标准方程为22145x y -=. (2)设直线l 的方程为()0y kx m k =+≠,()11,M x y ,()22,N x y , 则由22145x y y kx m ⎧-=⎪⎨⎪=+⎩消去y ,可得()2225484200k x kmx m ----=,根据题意可知2540k -≠,且()()()22284544200km k m ∆=----->,即22540m k +->①,设线段MN 的中点坐标为()00,x y ,则12024254x x km x k +==-,002554my kx m k =+=-, ∴线段MN 的垂直平分线方程为225145454m km y x k k k ⎛⎫-=-- ⎪--⎝⎭,此直线与x 轴,y 轴的交点坐标分别为29,054km k ⎛⎫ ⎪-⎝⎭,290,54m k ⎛⎫ ⎪-⎝⎭,∴22199812545416km m k k ⋅⋅=--,化简可得()222548k m k -=②,将②代入①得()222545408k k k-+->,即()()22454850k k k --->,解得0k <<52k >,∴实数k 的取值范围是5555,,00,,2222⎛⎫⎛⎫⎛⎫⎛⎫-∞--+∞ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 21.已知椭圆1C 的方程为2214xy +=,双曲线2C 的左、右焦点分别是1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点. (1)求双曲线2C 的方程;(2)若直线:=l y kx 2C 恒有两个不同的交点A 和B ,且2OA OB >(其中O 为原点),求k 的取值范围.【解析】(1)设双曲线2C 的方程为()222210,0x ya b a b-=>>,则2234a c =,=,再由222a b c +=,得21.b=故2C 的方程为2213xy -=(2)将y kx =代入2213x y -=,得22(13)90k x -=--由直线l 与双曲线2C 交于不同的两点,得()()()22221306236133610k k k k ⎧-≠⎪⎨=-+-=->⎪⎩22113k k ∴≠<且①,设1122()()A x y B x y,,,,则1212229,1313x x x x k k =---+= (12121212(x x y y x x kx kx ∴+=+()2212122371()231k k x x x x k +++=-=+又2OA OB >,得12122x x y y +>,2237231k k +∴>-,即2239031k k -+>-,解得2133k <<②,由①②得13<k 2<1,故k的取值范围31,,13⎛⎛⎫- ⎪ ⎪⎝⎭⎝⎭22.己知等轴双曲线N 的顶点分别是椭圆22:162x y C +=的左、右焦点1F 、2F .(1)求等轴双曲线N 的方程;(2)Q 为该双曲线N 上异于顶点的任意一点,直线1QF 和2QF 与椭圆C 的交点分别为E ,F 和G ,H ,求4EF GH +的最小值.【解析】(1)由椭圆22:162x y C +=可得2c =,所以等轴双曲线N 的顶点为(20),设等轴双曲线N 为22221x ya b-=,所以2a b ==,所以等轴双曲线N 的方程为22144x y -=;(2)设11(,)E x y ,22(,)F x y ,33(,)G x y ,44(,)H x y ,设直线1QF 的方程为2x my =-,直线2QF 的方程为2x ny =+, 由222162x my x y =-⎧⎪⎨+=⎪⎩得:22(3)420m y my +--=,所以0∆>显然成立,所以12122242,33m y y y y m m +==-++, 同理可得34342242,33n y y y y nn +=-=-++, 所以EFGH ==,联立直线1QF 和2QF :22x my x ny =-⎧⎨=+⎩,解得224m n x m ny m n +⎧=⎪⎪-⎨⎪=⎪-⎩,所以224(,)m n Q m n m n +--, 因为Q 在双曲线上,所以222(22)1614()4()m n m n m n +-=--,解得1mn =, 所以222222221111146(4)6(4)13333m n m m EF GH m n m m +++++=+⨯=+⨯++++ 222222222222*********(4)(4)()313431311m m m m m m m m m m m m ++++++=+⨯=⨯+⨯+++++++,22221334)313m m m m ++=++⨯≥+=++.当且仅当22221334313m m m m ++=⨯++,即25m =。
高中数学《圆锥曲线的离心率问题》基础知识与练习题(含答案解析)离心率是圆锥曲线的一个重要几何性质,一方面刻画了椭圆,双曲线的形状,另一方面也体现了参数,a c 之间的联系。
一、基础知识: 1、离心率公式:ce a=(其中c 为圆锥曲线的半焦距) (1)椭圆:()0,1e ∈ (2)双曲线:()1,+e ∈∞2、圆锥曲线中,,a b c 的几何性质及联系 (1)椭圆:222a b c =+,① 2a :长轴长,也是同一点的焦半径的和:122PF PF a += ② 2b :短轴长 ③ 2:c 椭圆的焦距 (2)双曲线:222c b a =+① 2a :实轴长,也是同一点的焦半径差的绝对值:122PF PF a −=② 2b :虚轴长 ③ 2:c 椭圆的焦距3、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,,a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向:(1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a 有关,另一条边为焦距。
从而可求解 (2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用,,a b c 进行表示,再利用条件列出等式求解2、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求。
如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口(2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可(3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞ 二、典型例题:例1:设12,F F 分别是椭圆()2222:10x y C a b a b +=>>的左、右焦点,点P 在椭圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=,则椭圆的离心率为( ) A .33 B .36C .13D .16思路:本题存在焦点三角形12PF F ,由线段1PF 的中点在y 轴上,O 为12F F 中点可得2PF y ∥轴,从而212PF F F ⊥,又因为1230PF F ∠=,则直角三角形12PF F 中,1212::2:1:3PF PF F F =,且12122,2a PF PF c F F =+=,所以12122323F F c c e a a PF PF ∴====+ 答案:A小炼有话说:在圆锥曲线中,要注意O 为12F F 中点是一个隐含条件,如果图中存在其它中点,则有可能与O 搭配形成三角形的中位线。
高考数学总复习题型分类汇《圆锥曲线》篇经典试题大汇总目录【题型归纳】题型一求曲线的方程 (3)题型二最值(范围)问题 (4)题型三定点定值与存在性 (6)【巩固训练】题型一求曲线的方程 (8)题型二最值(范围)问题 (9)题型三定点定值与存在性 (11)高考数学《圆锥曲线》题型归纳与训练【题型归纳】题型一 求曲线的方程例1 已知定点()0,3-G ,S 是圆()723:22=+-y x C (C 为圆心)上的动点,SG 的垂直平分线与SC 交于点E ,设点E 的轨迹为M . 求M 的方程. 【答案】见解析【解析】由题意知ES EG =,所以26=+=+EC ESEC EG ,又因为266<=GC .所以点E 的轨迹是以G ,C 为焦点,长轴长为26的椭圆,动点E 的轨迹方程为191822=+y x . 例2 设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过点M 作x 轴的垂线,垂足为N , 点P 满足2NP NM =.求点P 的轨迹方程.【答案】见解析【解析】如图所示,设(),P x y ,(),0N x ,()1,M x y . 由2NP NM =知,12y y =,即12y =.又点M 在椭圆2212x y +=上,则有22122x y +=,即222x y +=.例3 如图,矩形ABCD 中, ()()()()2,0,2,0,2,2,2,2A B C D -- 且,AM AD DN DC λλ==,[]0,1,AN λ∈交BM 于点Q .若点Q 的轨迹是曲线P 的一部分,曲线P 关于x 轴、y 轴、原点都对称,求曲线P 的轨迹方程.【答案】Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【解析】设(),Q x y ,由,AM AD DN DC λλ==,求得()()2,2,42,2M N λλ--, ∵1,22QA AN QB BM k k k k λλ====-,∴11224QA QB k k λλ⎛⎫⋅=⋅-=- ⎪⎝⎭, P x,y ()NM Oxy∴1224y y x x ⋅=-+-,整理得()22120,014x y x y +=-≤≤≤≤.可知点Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【易错点】求轨迹问题学生容易忽视范围 【思维点拨】高考中常见的求轨迹方程的方法有:1.直译法与定义法:直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简; 定义法求轨迹方程:轨迹方程问题中,若能得到与所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.2.相关点法:找动点之间的转化关系(平移,伸缩,中点,垂直等),用要求的代替已知轨迹的,代入化简3.参数法:可用联立求得参数方程,消参.注意此种问题通常范围有限制.4.交轨法:联立求交点,变形的轨迹. 题型二 最值(范围)问题例1 已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则DE AB +的最小值为( )A. 16B. 14C. 12D. 10 【答案】A【解析】设()()()()11223344,,,,,,,A x y B x y D x y E x y ,直线1l 的方程为()11y k x =-,联立方程()214 1y xy k x ==-⎧⎪⎨⎪⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=- 212124k k +=, 同理直线2l 与抛物线的交点满足:22342224k x x k ++=, 由抛物线定义可知12342AB DE x x x x p +=++++=22122222121224244448816k k k k k k ++++=++≥=, 当且仅当121k k =-=(或1-)时,取等号.【易错点】本题考查抛物线的焦点弦长,利用抛物线的焦点弦长公式,表示出DE AB +,然后利用基本不等式求最值.对相关流程应有所熟练例2 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【答案】见解析【解析】(1)2(c,0)F c c 设,由条件知,222=2, 1.c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (2)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12PQ x =-=从而O PQ d OPQ =∆又点到直线的距离所以的面积21=241OPQ S d PQ k ∆⋅=+244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即OPQ ∆所以,当的面积最大时,l 的方程为2222y x y x =-=--或. 【思维点拨】 圆锥曲线中的取值范围问题常用的方法有以下几个:(1)利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;(2)利用基本不等式求出参数的取值范围;(3)利用函数的值域的求法(甚至求导),确定参数的取值范围. 题型三 定点定值与存在性问题例1 已知椭圆C :()222210x y a b a b +=>>上.(1)求C 的方程.(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .直线OM 的斜率与直线l 的斜率的乘积为定值. 【答案】见解析【解析】 (1=22421a b+=,解得28a =,24b =. 所以C 的方程为22184x y +=. (2)设直线l :()00y kx b kb =+≠≠,,()11A x y ,, ()22B x y ,,()M M M x y ,.将 y kx b =+代入22184x y +=得()22221+4280k x kbx b ++-=. 故1222221M x x kb x k +-==+,221M M by kx b k =+=+ . 于是直线OM 的斜率12M OM M y k x k ==-,即12OM k k ⋅=-. 所以直线OM 的斜率与直线l 的斜率的乘积为定值.【思维点拨】解析几何是高考必考内容之一,在命题时多从考查各种圆锥曲线方程中的基本量关系及运算,在直线与圆锥曲线关系中.一般用方程的思想和函数的观点来解决问题,并会结合中点坐标,方程根与函数关系来求解.例2 已知抛物线2:4C y x =,点()0,m M 在x 轴的正半轴上,过M 点的直线l 与抛物线C 相交于A ,B 两点,O 为坐标原点.(1) 若1=m ,且直线l 的斜率为1,求以AB 为直径的圆的方程;(2) 是否存在定点M ,使得不论直线:l x ky m =+绕点M 如何转动,2211AMBM+恒为定值?【答案】(1)()()223216x y -+-=. (2)存在定点M (2, 0). 【解析】(1)当1=m 时,()0,1M ,此时,点M 为抛物线C 的焦点,直线l 的方程为1-=x y ,设()()1122,,A x y B x y ,,联立24{ 1y xy x ==-,消去y 得, 2610x x -+=,∴126x x +=, 121224y y x x +=+-=,∴圆心坐标为(3, 2).又1228AB x x =++=,∴圆的半径为4,∴圆的方程为()()223216x y -+-=. (2)由题意可设直线l 的方程为x ky m =+,则直线l 的方程与抛物线2:4C y x =联立,消去x 得: 2440y ky m --=,则124y y m =-, 124y y k +=,()()22222211221111AMBMx m y x m y +=+-+-+()()()22122222222121211111y y k y k y k y y +=+=+++ ()()()()222121222222221221682111621y y y y k m k mky y k m m k +-++===+++ 对任意k R ∈恒为定值, 于是2=m ,此时221114AMBM+=. ∴存在定点()0,2M ,满足题意. 【易错点】定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果(取特殊位置或特殊值),因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.【思维点拨】定点、定值问题通常先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.在求解中通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.【巩固训练】题型一 求曲线的方程1.设圆222150x y x ++-=的圆心为A ,直线l 过点()0,1B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC的平行线交AD 于点E .证明EA EB +为定值,并写出点E 的轨迹方程.【答案】13422=+y x (0≠y ) 【解析】因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为13422=+y x (0≠y ).2.已知动圆G 过定点()4,0F ,且在y 轴上截得的弦长为8.求动圆G 的圆心点G 的轨迹方程; 【答案】28y x =【解析】设动圆圆心(),G x y ,设圆交y 轴于,M N 两点,连接,GF GM , 则GF GM =,过点G 作GH MN ⊥,则点H 是MN 的中点, 显然()22224,4GM x GF x y =+=-+,于是()222244x y x -+=+,化简整理得28y x =,故的轨迹方程为28y x =.3.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.【答案】(1)见解析; (2)12-=x y .【解析】由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(1)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=.所以FQ AR ∥. (2)设l 与x 轴的交点为)0,(1x D , 则1111,2222ABF PQF a b S b a FD b a x S -=-=--=△△. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y .题型二 最值(范围)问题1.已知动点E 到点A ()2,0与点B ()2,0-的直线斜率之积为14-,点E 的轨迹为曲线C . (1)求C 的方程;(2)过点D ()1,0作直线l 与曲线C 交于P , Q 两点,求OP OQ ⋅的最大值.【答案】(1)()22124x y x +=≠±(2)14 【解析】(1)设(),E x y ,则2x ≠±.因为E 到点A ()2,0,与点B ()2,0-的斜率之积为14-,所以122y yx x ⋅=-+-,整理得C 的方程为()22124x y x +=≠±. (2)当l 垂直于轴时,l 的方程为1x =,代入2214x y +=得P ⎛ ⎝⎭,1,Q ⎛ ⎝⎭.11,4OP OQ ⎛⎛⋅=⋅= ⎝⎭⎝⎭. 当l 不垂直于x 轴时,依题意可设()()10y k x k =-≠,代入2214x y +=得 ()2222148440k xk x k +-+-=.因为()216130k ∆=+>,设()11,P x y , ()22,Q x y .则2122814k x x k +=+, 21224414k x x k -=+.()()21212121211OP OQ x x y y x x k x x ⋅=+=+-- ()()22212121k x x k x x k =+-++14+21174416k =-+ 14< 综上OP OQ ⋅ 14≤,当l 垂直于x 轴时等号成立,故OP OQ ⋅的最大值是14.2.设椭圆()2222:10x y M a b a b +=>>经过点12,,P F F ⎭是椭圆M 的左、右焦点,且12PF F ∆的面积为2. (1)求椭圆M 的方程;(2)设O 为坐标原点,过椭圆M 内的一点()0,t 作斜率为k 的直线l 与椭圆M 交于,A B 两点,直线,OA OB 的斜率分别为12,k k ,若对任意实数k ,存在实数m ,使得12k k mk +=,求实数m 的取值范围.【答案】(1)22143x y +=;(2)[)2,m ∈+∞. 【解析】(1)略(2)设直线l 的方程为y kx t =+,由221{ 43x y y kx t+==+,得()2223484120k x ktx t +++-=,设()()1122,,,A x y B x y ,则21212228412,3434kt t x x x x k k -+=-=++,()212121221212122223t x x y y t t kt k k k k k k x x x x x x t ++=+=+++=+=--, 由12k k mk +=对任意k 成立,得22223t m t =--,∴()232m t m-=,又()0,t 在椭圆内部中,∴203t ≤<,∴2m ≥,即[)2,m ∈+∞.题型三 定点定值与存在性问题1.已知12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,离心率为12, ,M N 分别是椭圆的上、下顶点,22•2MF NF =-.(1)求椭圆E 的方程;(2)若直线y kx m =+与椭圆E 交于相异两点,A B ,且满足直线,MA MB 的斜率之积为14,证明:直线AB 恒过定点,并求定点的坐标.【答案】(1)22143x y +=(2)直线AB恒过定点(0,.【解析】(1)由题知()0,2c F ,()b M ,0,()b N -,0,22222-=-=⋅∴b c NF MF ①由21==a c e ,得c a 2= ② 又222cb a =- ③ 由①②③联立解得:42=a ,32=b ∴椭圆E 的方程为13422=+y x . (2)证明:由椭圆E 的方程得,上顶点()3,0M ,设()11,y x A ,()22,y x B ,由题意知,01≠x ,02≠x由⎪⎩⎪⎨⎧=++=13422y x m kx y 得:()()034843222=-+++m kmx x k∴221438kkmx x +-=+,()22214334k m x x +-=, 又111133x m kx x y k MA -+=-=,222233x m kx x y k MB -+=-=, 由41=⋅NB MA k k ,得()()2121334x x m kx m kx =-+-+, ()()()()()()0433483414342222=+-+--+--k m km m k k m ,化简得:06332=+-m m 解得:3=m 或32=m ,结合01≠x ,02≠x 知32=m ,即直线AB 恒过定点()32,0.2.已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.【答案】(1) 1422=+y x (2)见解析. 【解析】(1)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (2)由(1)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y .令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN .综上,BM AN ⋅为定值.3. 在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点 到(0,2)Q 的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y += 相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.【答案】(1) 2213x y += (2)见解析【解析】(1)由2223c e c a a ==⇒=,所以222213b ac a =-= 设(,)P x y 是椭圆C 上任意一点,则22221x y a b+=,所以222222(1)3y x a a y b =-=-||PQ ===所以,当1y =-时,||PQ 3=,可得a =1,b c ==故椭圆C 的方程为:2213x y += (2)存在点M 满足要求,使OAB ∆得面积最大.假设直线:1l mx ny +=与圆22:1O x y +=相交于不同两点,A B , 则圆心O 到l的距离1d =<,∴221m n +> ①因为(,)M m n 在椭圆C 上,所以2213m n +=②,由①②得:203m <∵||AB ==所以1||2OABSAB d =⋅=2213m n =-代入上式得213221213OABmS m m ∆==+⋅,当且仅当22231(0,3]32m m =⇒=∈,∴2231,22m n ==,此时满足要求的点(M 有四个. 此时对应的OAB ∆的面积为12. 4.已知过抛物线()022>=p px y 的焦点F 的直线交抛物线于()()()112212,,,A x y B x y x x < 两点,且6AB =.(1)求该抛物线E 的方程;(2)过点F 任意作互相垂直的两条直线12,l l ,分别交曲线E 于点,C D 和,M N .设线段,CD MN 的中点分别为,P Q ,求证:直线PQ 恒过一个定点.【答案】(1)24y x = (2)直线PQ 恒过定点()3,0.【解析】(1)抛物线的焦点,02p F ⎛⎫⎪⎝⎭,∴直线AB 的方程为:2p y x ⎫=-⎪⎭联立方程组22{ 2y pxp y x =⎫=-⎪⎭,消元得: 22204p x px -+=, ∴212122,4px x p xx +==∴6AB ===,解得2p =±.∵0p >,∴抛物线E 的方程为:24y x =.(2)设,C D 两点坐标分别为()()1122,,,x y x y ,则点P 的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭..由题意可设直线1l 的方程为()()10y k x k =-≠. 由()24{1y x y k x ==-,得()2222240k x k x k -++=.()24224416160k k k ∆=+-=+>因为直线1l 与曲线E 于,C D 两点,所以()1212122442,2x x y y k x x k k+=++=+-=. 所以点P 的坐标为2221,k k ⎛⎫+⎪⎝⎭. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为()212,2k k +-. 当1k ≠±时,有222112k k+≠+,此时直线PQ 的斜率2222221112PQ kk k k k k k+==-+--. 所以,直线PQ 的方程为()222121k y k x k k+=---,整理得()230yk x k y +--=. 于是,直线PQ 恒过定点()3,0; 当1k=±时,直线PQ 的方程为3x =,也过点()3,0.综上所述,直线PQ 恒过定点()3,0.新课程标准的内容与现形课标内容的对比如下表:与现形课标对比,必修3中的“算法初步”删掉了;删掉了必修5中的解三角形,不等式的大部分内容。
高考数学专题复习-完美版圆锥曲线知识点总结1.椭圆的概念椭圆是平面内与两个定点F1、F2的距离的和等于常数2a (大于|F1F2|)的点的轨迹。
这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。
若M为椭圆上任意一点,则有|MF1|+|MF2|=2a。
椭圆的标准方程为:x^2/a^2+y^2/b^2=1(a>b>0,焦点在x轴上)或x^2/b^2+y^2/a^2=1(a>b>0,焦点在y轴上)。
2.椭圆的性质①范围:由标准方程得知,椭圆位于直线x=±a,y=±b所围成的矩形里。
②对称性:椭圆关于x轴、y轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心。
③顶点:椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。
同时,线段A1A2、B1B2分别叫做椭圆的长轴和短轴,它们的长分别为2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长。
④离心率:椭圆的焦距与长轴的比e=c/a。
其中,c表示焦距,a表示长半轴长。
椭圆的离心率可以通过长轴和短轴的长度计算得出。
由于长轴大于短轴,因此离心率e的值介于0和1之间。
当离心率接近1时,短轴b的长度会越来越小,导致椭圆变得越扁;反之,当离心率接近0时,短轴b的长度会越来越接近长轴a的长度,此时椭圆会趋向于圆形。
当长轴和短轴的长度相等时,椭圆的两个焦点重合,这时椭圆就变成了圆形,其方程为x+y=a。
双曲线是平面上距离两个定点距离之差绝对值等于常数2a的动点轨迹。
需要注意的是,这里的距离差的绝对值是小于焦距F1F2的。
当距离差等于2a时,得到的是双曲线的一支;当距离差等于-2a时,得到的是双曲线的另一支(含F1的一支)。
当距离差等于0时,得到的是两条射线;当距离差大于2a时,得不到任何图形。
双曲线的焦点是F1和F2,焦距为F1F2.双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1.由此可以看出,双曲线在坐标系中的范围为两条直线x=±a的外侧。
高考数学圆锥曲线详解与实例现代数学是应用数学和纯粹数学两大分支的结合,其中纯粹数学又包含了数学的许多分支,例如代数学、几何学、拓扑学等等,而几何学更是涉及到了各种图形的研究。
圆锥曲线作为几何学中的一种非常基础的图形,在高中数学中就已经开始进行系统的学习,而在高考中也是经常出现的考点。
本文将详细讲解圆锥曲线的基本概念及其应用实例,帮助大家更好地理解和掌握这一知识点。
一、圆锥曲线的概念圆锥曲线指的是通过按一定规律割圆锥而得到的曲线,其中包括圆、椭圆、双曲线和抛物线。
以割圆锥的方式命名的原因是因为,圆锥曲线最初是通过圆锥割切而得到的。
圆锥曲线的基本定义为平面上满足二次方程的点集,其中二次方程的形式为Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C不全为0。
二、圆的特点圆是一类非常基础的圆锥曲线,通常用来描述一些圆形问题。
圆的特点是,它是由平面上所有到某一点距离相等的所有点组成的。
这一点通常被称作圆心,而到圆心距离的长度则被称作半径。
圆的一些基本性质包括面积公式πr²以及周长公式2πr,其中r为半径长度。
三、椭圆的特点椭圆是圆锥曲线中比圆复杂的一种曲线,它的定义为平面上满足二次方程x²/a² + y²/b² = 1的点的集合,其中a和b分别是椭圆的半长轴和半短轴。
椭圆的一些基本性质包括离心率e=sqrt(1-b²/a²)以及面积公式πab。
椭圆还可以被视为一个圆沿着其周长不断拉伸而成的。
四、双曲线的特点双曲线是圆锥曲线中比椭圆更为复杂的一种曲线,它的定义为平面上满足二次方程x²/a² - y²/b² = 1的点的集合(或者换为y²/b² -x²/a² = 1)。
双曲线和椭圆的一个重要区别在于它们的离心率。
数学基础知识与典型例题(第八章圆锥曲线)|+|MF 2|=6,则M 点的轨迹(D)线段则动点的轨迹方程是( )(D))0(1251622≠=+y y x数学基础知识与典型例题(第八章圆锥曲线)答案例1. D 例2. B 例3. C 先考虑M+m =2a ,然后用验证法. 例4. B 提示:e =54,P 点到左准线的距离为2.5,它到左焦点的距离是2, 2a =10, P 点到右焦点的距离是8,∴P 点到右焦点的距离与到左焦点的距离之比是4 : 1;例5. B ∵1212||||||||22sin15sin 751sin15sin 75sin15cos15PF PF PF PF c a +====︒︒︒+︒︒+︒,∴22c e a ===例6. C 提示:椭圆3x 2+4y 2=48中,a =4, c =2, e =21, 设椭圆上的P 点到右准线的距离为d ,则d|PF |=21, ∴|AP |+2|PF |=|AP |+d , ∴当AP 平行于x 轴且P 点在A 点与右准线之间时,|AP |+d 为一直线段,距离最小,此时P 点纵坐标等于3,∴P 点坐标是(23,3)例7. (3,±4) 或(-3, ±4)例8. (1)1162522=+y x 或1251622=+y x ; (2) 13622=+y x ; (3)1922=+y x 或181922=+y x ; (4) 1422=+y x 或116422=+y x . 例9. 12||||PF PF ⋅≤2212||||()42PF PF a +== 例10. 解:设椭圆方程为22a x +22by =1,(a >b >0)⑴P Q ⊥x 轴时,F(-c ,0),|FP|=a b 2,又|F Q |=|FP|且OP ⊥O Q ,∴|OF|=|FP|,即c =ab 2∴ac =a 2-c 2,∴e 2+e -1=0,∴e =215-与题设e =23不符,所以P Q 不垂直x 轴.⑵P Q ∶y =k (x +c ),P(x 1,y 1),Q (x 2,y 2),∵e =23,∴a 2=34c 2,b 2=31c 2,所以椭圆方程可化为:3x 2+12y 2-4c 2=0,将P Q 方程代入,得(3+12k 2)x 2+24k 2cx +12k 2c 2-4c 2=0,∴x 1+x 2=2212324k c k +-,x 1x 2=2222123412k c c k +-由|P Q |=920得21k +·2222222123)412(4)12324(k c c k k c k +--+=920① ∵OP ⊥O Q,∴11x y·22x y = -1即x 1x 2+y 1y 2=0,∴(1+k 2)x 1x 2+k 2c (x 1+x 2)+c 2k 2=0②把21x x +,21x x 代入,解②得k 2=114,把1142=k 代入①解得c 2=3∴a 2=4,b 2=1,则所求椭圆方程为42x +y 2=1.例11. B例12. C 例13. D例14. C 例15. C例16. A假设12PF PF >,由双曲线定义12PF PF -=12PF PF +=解得12PF PF =12F F =1212112PF F S PF PF =⋅=[点评]考查双曲线定义和方程思想.例17.)2(112422-<=-xy x 例18. 12 例19.⑴设双曲线方程为22916x y λ-=(λ≠0),∴ 2(3)9λ-=∴ 14λ=,∴ 双曲线方程为22144x y -=;⑵设双曲线方程为221164x y k k -=-+16040k k ->⎛⎫ ⎪+>⎝⎭∴ 2214k-=+,解之得k =4,∴ 双曲线方程为221128x y -= 评注:与双曲线22221x y a b -=共渐近线的双曲线方程为2222x y a bλ-=(λ≠0),当λ>0时,焦点在x 轴上;当λ<0时,焦点在y 轴上。
与双曲线22221x y a b-=共焦点的双曲线为22221x y a k b k-=+-(a 2+k >0,b 2-k >0)。
比较上述两种解法可知,引入适当的参数可以提高解题质量,特别是充分利用含参数方程的几何意义,可以更准确地理解解析几何的基本思想. 例20. 解题思路分析:法一:显然AB 斜率存在设AB :y -2=k (x -1) 由22212y kx ky x =+-⎧⎪⎨-=⎪⎩得:(2-k 2)x 2-2k (2-k )x -k 2+4k -6=0 当△>0时,设A (x 1,y 1),B (x 2,y 2) 则122(2)22x x k k k +-==- ∴ k =1,满足△>0∴ 直线AB :y =x +1法二:设A (x 1,y 1),B (x 2,y 2)则221122221212y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩两式相减得:(x 1-x 2)(x 1+x 2)=21(y 1-y 2)(y 1+y 2)∵ x 1≠x 2∴ 121212122()y y x x x x y y -+=-+∴ 2112AB k ⨯== ∴ AB :y =x +1代入2212y x -=得:△>0 评注:法一为韦达定理法,法二称为点差法,当涉及到弦的中点时,常用这两种途径处理。
在利用点差法时,必须检验条件△>0是否成立。
(2)此类探索性命题通常肯定满足条件的结论存在,然后求出该结论,并检验是否满足所有条件.本题应着重分析圆的几何性质,以定圆心和定半径这两定为中心设A 、B 、C 、D 共圆于⊙OM ,因AB 为弦,故M 在AB 垂直平分线即CD 上;又CD 为弦,故圆心M 为CD 中点。
因此只需证CD 中点M 满足|MA|=|MB|=|MC|=|MD|由22112y x y x =+⎧⎪⎨-=⎪⎩得:A (-1,0),B (3,4)又CD 方程:y =-x +3由22312y x y x =-+⎧⎪⎨-=⎪⎩得:x 2+6x -11=0设C (x 3,y 3),D (x 4,y 4),CD 中点M (x 0,y 0) 则340003,362x x x y x +==-=-+=∴ M (-3,6) ∴ |MC|=|MD|=21|CD|=102又|MA|=|MB|=102∴ |MA|=|MB|=|MC|=|MD| ∴ A 、B 、C 、D 在以CD 中点,M (-3,6)为圆心,102为半径的圆上评注:充分分析平面图形的几何性质可以使解题思路更清晰,在复习中必须引起足够重视.例21. B(22,4282pp x py y =-=-==-即) 例22. B例23. B(过P 可作抛物线的切线两条,还有一条与x 轴平行的直线也满足要求。
) 例24. C 作为选择题可采用特殊值法,取过焦点,且垂直于对称轴的直线与抛物线相交所形成线段分别为p ,q ,则p =q =|F K |1||2FK a=而, 112241()2a p q p a∴+===例25. 解析:运用抛物线的准线性质.答案:B 例26. x 2=8y 例27. -p 2例28.223()94x y ++= 例29.[0,arctan[arctan )22ππ- 例30. 解:由题意,直线A B 不能是水平线, 故可设直线方程为:p x ky 2-=.又设),(),,(B B A A y x B y x A ,则其坐标满足⎩⎨⎧=-=.2,22px y p x ky 消去x 得04222=--p pky y由此得⎩⎨⎧-==+.4,22p y y pk y y B A B A ∴⎪⎩⎪⎨⎧==+=++=+22224)2()(,)24()(4p p y y x x p k y y k p x x B A B A B A B A 因此0A B A B OA OB x x y y ⋅=+=,即OA OB ⊥.故O 必在圆H 的圆周上.又由题意圆心H (H H y x ,)是A B 的中点,故⎪⎪⎩⎪⎪⎨⎧=+=+=+=.2,)2(22kp y y y p k x x x B A B B A H 由前已证OH 应是圆H 的半径, 且p k k y x OH H H 45||2422++=+=.从而当k=0时,圆H 的半径最小,亦使圆H 的面积最小.此时,直线A B 的方程为:x =2p.注:1.解决直线和圆锥曲线的位置关系问题,一般方法是联立方程组,消元得一元二次方程,必须讨论二次项系数和判别式△,利用韦达定理寻找两根之和与两根之积之间的关系.求解有时借助图形的几何性质更为简洁.此题设直线方程为x =k y +2p ;因为直线过x 轴上是点Q(2p ,0),通常可以这样设,可避免对直线的斜率是否存在讨论.2.凡涉及弦的中点及中点弦问题,利用平方差法;涉及垂直关系往往也是利用韦达定理,设而不求简化运算.3.在引入点参数(本题中以A B 弦的两个端点的坐标作为主参数)时,应尽量减少参数的个数,以便减少运算量.由O A ⊥OB 得x 1x 2+y 1y 2=O 这个关系对于解决此类问题十分有用.4.列出目标函数,|OH|=4524++k k P ,运用函数思想解决解析几何中的最值问题是解决此类问题的基本思路,也可利用基本不等式a 2+b 2≥2a b 当且仅当a =b 时“=”成立求解.例31. B 例32. D 例33. C 例34. A 例35. B例36. 9x +16y =0 (椭圆内部分 例37. y 2=-8x 例38.221259x y += 例39. 解析:∵S △AFB =2S △AOF ,∴当点A 位于短轴顶点处面积最大.答案:D 例40. D41. B 42. B 数形结合估算出D 例43. D例40. C ∵由已知得曲线1C 的准线为4x =,∴焦点在x 轴上且24a c=,24a =, ∴2,1a c ==,∴23k b ==例45.k<332332>-k 或 例46.23 例47. (0,23) 例48. 解:设AB :y=-21x+m,代入双曲线方程得11x 2+4mx -4(m 2+1)=0, 这里△=(4m )2-4×11[-4(m 2+1)]=16(2m 2+11)>0恒成立,设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),则x 1+x 2=-11m4,∴x 0=-112m ,y 0=-21x 0+m=1112m ,若A 、B 关于直线y =2x 对称,则M 必在直线y=2x 上,∴1112m =-114m得m=1,由双曲线的对称性知,直线y=-21x 与双曲线的交点的A 、B 必关于直线y=2x 对称. ∴存在A 、B 且求得A (112,-111),B (-112,111)。