证明不等式的基本方法
- 格式:doc
- 大小:196.00 KB
- 文档页数:23
不等式证明的基本方法
1.数学归纳法:归纳法是数学证明中最常用的方法之一,通常用来证
明自然数的性质。
对于不等式证明来说,如果我们希望证明不等式对于所
有自然数都成立,可以使用数学归纳法。
首先证明当自然数为1时不等式
成立,然后假设当自然数为k时不等式成立,再证明当自然数为k+1时不
等式也成立。
通过这种逐步推导的方法,可以证明不等式对于所有自然数
都成立。
2.数学推理法:数学推理法是一种基于数学定理和公理的推理方法,
通过逻辑推理来证明不等式的成立。
这种方法通常需要使用一些已知的数
学定理和性质来推导出不等式。
例如,可以使用数学的四则运算定律、平
方差公式、三角不等式等来推导不等式。
3.数学变换法:数学变换法是一种将不等式进行变换的方法,通过变
换不等式的形式来证明不等式的成立。
这种方法通常需要使用一些数学中
常见的变换方法,例如平方去根、换元法、倍加倍减等。
通过适当的变换,可以将不等式转化为更简单的形式,从而更容易证明。
无论采用哪种方法,不等式的证明都需要逻辑严谨、推理正确,以及
对数学定理和性质的熟练应用。
在实际证明中,常常需要综合运用多种方
法来解决问题,使得证明更加简洁和明了。
此外,证明中的每一步变换和
推理都需要严格地说明和证明,避免出现漏洞和错误。
证明基本不等式的方法基本不等式是解决数学不等式问题中常用的方法,其核心思想是将一个不等式转化为另一个更简单的不等式,从而得到所需的解集。
在证明基本不等式的方法上,可以分为以下几种常见的方式:1.数学归纳法:数学归纳法是证明基本不等式的一种常用方法。
首先,我们需要证明当不等式成立时,对于一些特定的值$n$,不等式也成立。
接着,我们假设当$n=k$时不等式成立,可以通过这个假设证明当$n=k+1$时不等式成立。
最后,根据归纳法的原理,我们可以得出不等式对于所有自然数$n$成立。
2.递推法:递推法是证明基本不等式的另一种常用方法。
我们首先找到一个较小的数$k$,证明不等式对于这个特定的数成立。
然后,我们假设当$n=k$时不等式成立,接着通过这个假设证明当$n=k+1$时不等式也成立。
最后,根据递推法的原理,我们可以得出不等式对于所有自然数$n$成立。
3.反证法:反证法是证明基本不等式的另一种有效方法。
我们首先假设不等式不成立,即假设存在一些数使得不等式不成立。
接着,我们通过一系列的推导和推理,得出矛盾的结论。
这表明我们的假设是错误的,即不等式是成立的。
4.变量替换法:变量替换法是证明基本不等式的一种常用方法。
我们首先对不等式进行变量替换,将其转化为一个使用其他变量的等价不等式。
然后,通过对这个等价不等式进行一系列的变换和推导,我们可以得出所需的结论。
5.辅助不等式法:辅助不等式法是证明基本不等式的一种有效方法。
我们首先找到一个与原不等式相关的不等式,这个不等式往往更容易证明。
然后,我们通过对这个辅助不等式的推导和推理,结合原不等式的特点,得出所需的结论。
无论采用哪种方法,证明基本不等式的关键在于用恰当的方法将其转化为另一个更简单或更容易证明的不等式。
此外,在证明过程中需要注意推导的合理性和严密性,关注每一步的符号变化和不等式的严格性,避免出现错误的结论。
在证明过程中,也可以适当地运用数学知识和技巧,如代数运算、函数性质和数列性质等,使证明更加简洁和高效。
不等式证明基本方法一、数学归纳法数学归纳法是证明自然数性质的一种基本方法,对于与整数有关的不等式,我们也可以利用数学归纳法进行证明。
其基本思路是先证明当n=1时不等式成立,再假设当n=k时不等式成立,然后通过数学推理证明当n=k+1时不等式也成立。
二、反证法当我们尝试利用数学归纳法证明不等式时,有时可能会遇到困难,这时我们可以尝试使用反证法。
反证法的证明过程是:先假设不等式不成立,然后推导出与已知条件或已证明的定理矛盾的结论,从而证明原不等式的正确性。
三、插值法插值法也是一种常见的不等式证明方法。
其基本思路是在待证不等式的两边加入适当的不等式,并利用不等式的传递性和可加减性进行推导,最终得到待证不等式的真假结论。
四、绝对值法对于涉及绝对值的不等式,我们可以利用绝对值的性质进行证明。
例如,对于,a-b,>c这样的绝对值不等式,我们可以根据绝对值的定义将其拆分为两个不等式,再分别进行证明。
另外,利用绝对值不等式的性质,我们还可以进行变量替换等操作,将原不等式化简为更简单的形式进行证明。
五、特殊化方法特殊化方法是指将不等式中的一些变量或参数取特殊值,从而达到简化不等式的目的。
例如,对于含有幂函数的不等式,我们可以通过取特殊值使得幂函数变为常数或者线性函数,从而将原不等式化简为更简单的形式。
综上所述,不等式证明的基本方法包括数学归纳法、反证法、插值法、绝对值法和特殊化方法等。
在具体的证明过程中,我们需要根据待证不等式的特点选择合适的方法,并灵活运用各种数学工具和技巧,从而得到准确的证明结论。
在学习中,我们经常会遇到不等式证明题.证明不等式的方法有很多种,如比较法、综合法、分析法、反证法、换元法等,本文重点谈一谈证明不等式的三种常用措施.一、利用分析法分析法是指从需要证明的不等式出发,寻找使该不等式成立的条件,从而证明不等式成立,即由“果”寻“因”.运用分析法证明不等式的基本步骤为:①研究待证不等式,将其进行适当的变形、化简;②灵活运用相关的定理、公式、定义进行推理、论证,逐步与已知条件或某些结论靠拢,寻找使其成立需要的条件;③得出结论.例1.已知a,b∈R+,证明:+≥a+b.分析:题目中的已知条件较为简单,解答本题,需由“果”寻“因”,运用分析法来求证.从待证不等式出发,通过开方、移项、运用完全平方式,将其化为完全平方式,从而证明不等式成立.证明:要证明+1+a≥a+b,只需证明1+a2-ab+b2≥()1+a2()1+b2,则需证明()1+a2-1+b22+()a-b2≥0,而()1+a2-1+b22≥0,()a-b2≥0,所以()1+a2-1+b22+()a-b2≥0,所以命题得证.二、运用反证法运用反证法证明不等式,需先假设待证不等式不成立,若原不等式为A≥B,则可假设A<B成立.再将假设的不等式作为条件,据此进行推理、分析,得出与已知条件或某些定义、定理、公式相矛盾的结论,从而说明假设不成立,进而证明不等式成立.例2.已知a,b,c∈(0,+∞),则a+4b,b+9c,c+16a三个数中至少有一个不小于6.证明:假设a+4b,b+9c,c+16a都小于6,则a+4b+b+9c+c+16a<18,由基本不等式可得a+4b+b+9c+c+16a≥+=18,这与假设的结论相矛盾,故假设不成立,所以a+4b,b+9c,c+16a三个数中至少有一个不小于6.本题从正面入手较为困难,需采用反证法来求证.首先假设结论不成立,即a+4b、b+9c、c+16a都小于6,然后利用基本不等式,得出与已知相矛盾的结论,从而证明原结论成立.三、换元运用换元法证明不等式,需用新变量替换不等式或者其中的某一个代数式,通过换元,使其结构、形式得以改变,如将无理式转变为有理式,将分式转化为整式等.再结合已知条件化简、整理换元后的式子,从而证明原不等式成立.例3.若x i∈()0,+∞,i=1,2,3,⋯,n,证明:x21x21+x2x3+x22x22+x2x3+⋯+x2n-1x2n-1+x n x1+x2nx2n+x1x2≤n-1.证明:由题意可知,x2ix2i+x i+1x i+2=1-x i+1x i+2x2i+x i+1x i+2=1-11+x2i xi+1xi+2,()1≤i≤n,设yi=x2ixi+1xi+2,y i>0,可得0<y i y j≤1()i≠j,则11+yi+11+yj=2+y i+y j()1+yi()1+yj=1+y i+y j+11+y i+y j+y i y j≥1,则x21x21+x2x3+x22x22+x2x3+⋯+x2n-1x2n-1+x n x1+x2nx2n+x1x2=n-æèçöø÷11+y1+11+y2+⋯+11+yn≤n-1,所以x21x21+x2x3+x22x22+x2x3+⋯+x2n-1x2n-1+x n x1+x2nx2n+x1x2≤n-1.令yi=x2ixi+1xi+2,通过换元,将不等式转化为结构简单的式子,再根据已知条件进行推理、分析,便可快速证明结论.一般来说,分析法主要适用于证明含有根式、分式、绝对值的不等式;反证法适用于证明从正面入手较为困难的不等式问题;换元法适用于证明不等式结构复杂的问题.有时,可同时使用两个或两个以上的方法来证明不等式,这样能有效地提升解题的效率.(作者单位:江苏省扬州市高邮市临泽中学)杨乐42。
基本不等式的20种证明方法
基本不等式“基本”在哪里?你认为怎样得引入最能体现他的本质?
(1)做差证明
(2)分析法证明
(3)综合法证明
(4)排序不等式
根据排序不等式所说的逆序和小于等于顺序和,便能得到
化简得
(5)函数证明
我们对原函数求导,并令导数等于零。
求的最小值
得出
(5)指数证明
首先这里要用到两个梯形的面积公式。
一个是大家小学都学过的
易得
进而有
进一步有
指取对有
(6)琴生不等式证明
取 y=lnx
由琴生不等式得到
进而有
(7)无字证明(Charles D. Gallant)
(8)无字证明(Doris Schattschneider)
(9)无字证明(Roland H. Eddy)
(10)无字证明(Ayoub B. Ayoub)
(11)无字证明(Sidney H. Kung)
(12)无字证明(Michael K. Brozinsky)
(13)无字证明(Edwin Beckenbach & RichardBellman)
(14)无字证明
(15)无字证明(RBN)
(16)无字证明
进而有
(17)无字证明
进而有
(18)无字证明
有
(19)构造函数证明
由
得
(20)构造期望方差证明
由
得
另外还有向量法,复数法,积分法等,均值定理在数学内外有广泛得运用,不仅可以推广,还可以联系多个领域,一个简单结论证明的背后往往可展示引人人胜的各种思路!。
绝对值的三角不等式;不等式证明的基本方法一、教学目的1、掌握绝对值的三角不等式;2、掌握不等式证明的基本方法二、知识分析定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立;几何说明:1当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和;2如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释;|a-b|表示a-b与原点的距离,也表示a到b之间的距离;定理2 设a,b,c为实数,则,等号成立,即b落在a,c之间;推论1推论2不等式证明的基本方法1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的;比较法有差值、比值两种形式,但比值法必须考虑正负;比较法证不等式有作差商、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证;2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用;所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述;综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用;3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法;4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法;典型例题例1、已知函数,设a、b∈R,且a≠b,求证:思路:本题证法较多,下面用分析法和放缩法给出两个证明:证明:证法一:①当ab≤-1时,式①显然成立;当ab>-1时,式①②∵a≠b,∴式②成立;故原不等式成立;证法二:当a=-b时,原不等式显然成立;当a≠-b时,∴原不等式成立;点评:此题还可以用三角代换法,复数代换法、数形结合等证明,留给读者去思考;例2、设m等于|a|、|b|和1中最大的一个,当|x|>m时,求证:;思路:本题的关键是对题设条件的理解和运用,|a|、|b|和1这三个数中哪一个最大如果两两比较大小,将十分复杂,但我们可以得到一个重要的信息:m≥|a|、m≥|b|、m≥1;证明:故原不等式成立;点评:将题设条件中的文字语言“m等于|a|、|b|、1中最大的一个”转化为符号的语言“m≥|a|、m≥|b|、m≥1”是证明本题的关键;例3、函数的定义域为0,1且;当∈0,1,时都有,求证:;证明:不妨设,以下分两种情形讨论;若则,若则综上所述点评:对于绝对值符号内的式子,采用加减某个式子后,重新组合,运用绝对值不等式的性质变形,是证明绝对值不等式的典型方法;例4、已知a>0,b>0,求证:;思路:如果用差值比较法,下一步将是变形,显然需要通分,是统一通分,还是局部通分从题目结构特点看,应采取局部通分的方法;证明:①②∴原不等式成立;点评:在上面得到①式后,其分子的符号可由题设条件作出判断,但它没有②明显,所以,变形越彻底,越有利于最后的判断,本题还可以用比值比较法证明,留给读者去完成;例5、设x>0,y>0,且x≠y,求证:思路:注意到x、y的对称性,可能会想到重要不等式,但后续思路不好展开,故我们可采用分析法,从消去分数指数幂入手;证明:∵x>0,y>0,且x≠y,点评:在不便运用比较法或综合法时,应考虑用分析法;应注意分析法表述方法,其中寻求充分条件的语句常用符号“”表述;本题应用了分析法,既找到了解题思路,又使问题完满地得到了解决,可谓一举两得;例6、已知a、b、c∈R+,求证:;思路:因不等式的左边的两个因式都可以进行因式分解;结合a、b、c∈R+的条件,运用重要不等式,采用综合法进行证明;解析:即点评:用重要不等式证明不等式,一要注意重要不等式适用的条件,二要为运用重要不等式创造条件;另外,同向不等式相加或相乘,在综合法中常用到;例7、证明:对于任意实数x、y,有思路:采取分析法和比较法二者并用的方法来处理;证明:用分析法不等式②显然成立,下面证明不等式①同号,即点评:上述证明中,前半部分用的是分析法,后半部分用的是比较法,两种方法结合使用,使问题较容易解决,这一点应加以注意;例8、1用反证法证明以下不等式:已知,求证p+q≤2;2试证:n≥2;思路:运用放缩法进行证明;证明:1设p+q>2,则p>2-q,这与=2矛盾,2,又;将上述各式两边分别相加得点评:用放缩法证明不等式过程中,往往采用添项或减项的“添舍”放缩,拆项对比的分项放缩,函数的单调性放缩,重要不等式放缩等;放缩时要注意适度,否则不能同向传递;模拟试题1、设a、b是满足ab<0的实数,那么A、B、C、D、2、设ab>0,下面四个不等式①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|中,正确的是A、①和②B、①和③C、①和④D、②和④3、下面四个式子①;②;③;④中,成立的有A、1个B、2个C、3个D、4个4、若a、b、c∈R,且,则下列不等式成立的是A、B、C、D、5、设a、b、c∈R,且a、b、c不全相等,则不等式成立的一个充要条件是A、a、b、c全为正数B、a、b、c全为非负实数C、D、6、已知a<0,-1<b<0则A、B、C、D、7、设实数x、y满足,若对满足条件的x、y,x+y+c≥0恒成立,c 的取值范围是A、B、C、D、8、对于任意的实数x,不等式恒成立,则实数a的取值范围是_________;9、若a>c>b>0,则的值的符号为__________;10、设a、b、c∈R+,若,则__________;11、已知x,y∈R,且,则z的取值范围是__________;12、设,求证:;13、已知a、b是不等正数,且,求证:;14、已知,求证:中至少有一个不小于;15、设a、b为正数,求证:不等式①成立的充要条件是:对于任意实数x>1,有②试题答案1、B2、C3、C4、B5、C6、D7、A8、-∞,39、负10、911、12、证明:13、证明:a、b是不等正数,且而一定成立,故成立;14、证明:用反证法;假设都小于,则,而,相互矛盾,中至少有一个不小于;15、证明:设,那么不等式②对恒成立的充要条件是函数的最小值大于b;当且仅当,时,上式等号成立;故的最小值是;因此,不等式②对x>1恒成立的充要条件是>b;。
不等式的证明的方法介绍不等式的性质及常用的证明方法主要有:比较法、分析法、综合法、数学归纳法等. 要明确分析法、反证法、换元法、判别式法、放缩法证明不等式的步骤及应用范围. 若能够较灵活的运用常规方法(即通性通法)、运用数形结合、函数等基本数学思想,就能够证明不等式的有关问题.一、不等式的证明方法(1)比较法:作差比较:B A B A ≤⇔≤-0. 作差比较的步骤:①作差:对要比较大小的两个数(或式)作差.②变形:对差进行因式分解或配方成几个数(或式)的完全平方和.③判断差的符号:结合变形的结果及题设条件判断差的符号.注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小.(2)综合法:由因导果.(3)分析法:执果索因.基本步骤:要证……只需证……,只需证……①“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件.②“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达.(4)反证法:正难则反.(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的.放缩法的方法有: ①添加或舍去一些项,如:a a >+12;n n n >+)1(;②将分子或分母放大(或缩小); ③利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅; 2)1()1(++<+n n n n ; ④利用常用结论:k k k k k 21111<++=-+;k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k(程度大) )1111(21)1)(1(111122+--=+-=-<k k k k k k ; (程度小) (6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元.如:已知222a y x =+,可设θθs i n ,c o s a y a x ==;已知122≤+y x ,可设θθs i n ,c o s r y r x ==(10≤≤r );已知12222=+by a x ,可设θθsin ,cos b y a x ==; 已知12222=-by a x ,可设θθtan ,sec b y a x ==; (7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.⑻数学归纳法法:数学归纳法法证明不等式在数学归纳法中专门研究.证明不等式不但用到不等式的性质,不等式证明的技能、技巧,还要注意到横向结合内容的方方面面.如与数列的结合,与“二次曲线”的结合,与“三角函数”的结合,与“一元二次方程,一元二次不等式、二次函数”这“三个二次”间的互相联系、互相渗透和互相制约,这些也是近年命题的重点.在不等式证明中还要注意数学方法,如比较法(包括比差和比商)、分析法、综合法、反证法、数学归纳法等,还要注意一些数学技巧,如数形结合、放缩、分类讨论等.比较法是证明不等式最常用最基本的方法.分析法是数学解题的两个重要策略原则的具体运用,两个重要策略原则是:正难则反原则,即若从正面考虑问题比较难入手时,则可考虑从相反方向去探索解决问题的方法,即我们常说的逆向思维,由结论向条件追溯;简单化原则,即寻求解题思路与途径,常把较复杂的问题转化为较简单的问题,在证明较复杂的不等式时,可以考虑将这个不等式不断地进行变换转化,得到一个较易证明的不等式.凡是“至少”、“唯一”或含有否定词的命题适宜用反证法.换元法(主要指三角代换法)多用于条件不等式的证明,此法若运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化成简单的三角问题.含有两上字母的不等式,若可化成一边为零,而另一边是关于某字母的二次式时,这时可考虑判别式法,并注意根的取值范围和题目的限制条件.有些不等式若恰当地运用放缩法可以很快得证,放缩时要看准目标,做到有的放矢,注意放缩适度. 不等式证明知识概要不等式的证明问题,由于题型多变、方法多样、技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。
证明不等式的基本方法现实世界中的量,相等是局部的、相对的,而不等则是普遍的、绝对的,不等式的本质是研究“数量关系”中的“不等关系”.对于两个量,我们常常要比较它们之间的大小,或者证明一个量大于另一个量,这就是不等式的证明.不等式的证明因题而异,灵活多变,常常要用到一些基本的不等式,如平均不等式,柯西不等式等,其中还需用到一些技巧性高的代数变形.本节将介绍证明不等式的一些最基本的方法.比较法比较法一般有两种形式;(1)差值比较欲证A ≥B .只需证A —B ≥0; (2)商值比较若B>0,欲证A ≥B ,只需证BA≥1. 在用比较法时,常常需要对式子进行适当变形,如因式分解、拆项、合并项等. 例l 实数x 、y 、z 满足1-=++zx yz xy ,求证:485222≥++z y x .例2 设+∈R c b a ,,,试证:对任意实数x 、y 、z ,有:)())()((2222zx bac yz a c b xy c b a a c c b b a abc z y x ++++++++≥++,并指出等号成立的充要条件.例3 设+∈R c b a ,,,试证: b a a c c b cb ac b a c b a +++≥222.例4 设+∈R c b a ,,,1222=++c b a ,求abc c b a cb a S )(2111333222++-++=的最小值.说明先猜后证是处理许多极值问题的有效手段.猜,一猜答案,二猜等号成立的条件;证明的时候要注意等号是否能取到.有时我们直接证明不等式A ≤B 比较困难,可以试着去找一个中间量C ,如果有A ≤C 及C ≤B 同时成立,自然就有A ≤B 成立.所谓“放缩”即将A 放大到C ,再把C 放大到B 或者反过来把B 缩小到C 再缩小到A .不等式证明的技巧,常体现在对放缩尺度的把握上.例5 证明:对任意+∈R c b a ,,,均有abc abca c abc cb abc b a 1111333333≤++++++++.例6 设),,2,1(1n i a i =≥,求证:)1(12)1()1)(1(2121n nn a a a n a a a +++++≥+++ .所谓分析法就是先假定要证的不等式成立,然后由它出发推出一系列与之等价的不等式(即要求推理过程的每一步都可逆),直到得到一个较容易证明的不等式或者一个明显成立的不等式.分析法是一种执果索因的证明方法,在寻求证明思路时尤为有效.例7 若0,,≥∈y R y x ,且2)1()1(+≤+x y y .求证;2)1(x y y ≤-.例8 设+∈R c b a ,,,求证:ab b a abc c b a 233-+≥-++.引入参数法引入适当的参数,根据题中式子的特点,将参数确定,从而使不等式获得证明. 例12 设+∈R q p ,,且233=+q p ,求证:2≤+q p .例13 设+∈R c b a ,,,且12222=++c b a ,求证:24333≥++c b a .例14 设z y x ,,是3个不全为零的实数,求2222z y x yzxy +++的最大值.标准化(归一化)当不等式为齐次式的时候,常可设变量之和为k (某个常数),这样不仅简化了式子,而且增加了条件,有助于我们解决问题.例15 设c b a ,,是正实数,求证:8)(2)2()(2)2()(2)2(222222222≤++++++++++++++b a c b a c a c b a c b c b a c b a .例16 已知0,02=++>++c bx ax c b a 有实根,求证:{}{}c b a c b a c b a ,,max 49,,min 4≤++≤.习题1.设R z y x ∈,,,求证:[][]2222222222222)()()()()()(zx yz xy z y x z y x zx yz xy z y x z y x ++-++++≥++-++++.2.设+∈R c b a ,,,求证:333888111c b a c b a c b a ++≤++.3.设实数10021,,,a a a 满足: (1)010021≥≥≥≥a a a ; (2)10021≤+a a ;(3)10010043≤+++a a a . 求21002221a a a +++ 的最大值.4.如果+∈R c b a ,,,求证:2222222)())()((ca bc ab a ca c c bc b b ab a ++≥++++++.5.设0,,≥z y x ,求证:xyz z y x z y x z y x z y x 3)()()(222≥-++-++-+.并确定等号成立的条件.6.设+∈R c b a ,,,求证:49)(1)(1)(1)(222≥⎥⎦⎤⎢⎣⎡+++++++x z z y y x zx yz xy .7.求证:161cos sin 1010≥+αα.变量代换法变量代换是数学中常用的解题方法之一.将一个较复杂的式子视为一个整体,用一个字母去代换它,从而使复杂问题简单化.有时候.有些式子可以用三角换元,从而使问题简化.当问题的条件或结论中出现“222r y x =+”,“222r y x ≤+”,“22x r -”或“1≤x ”等形式时,可以考虑用“sin α”与“cos α”代换;问题的条件或结论中出现“22x r +”.“22r x -”形式时,可作“αtan r x =”或“αsec r x =”代换等.在作代换时,要特别注意α的取值范围是由原变量x 的取值范围决定.例l 已知00≤α≤900,求证:49sin sin 452≤+-≤αα.例2 已知实数y x ,满足096422=+--+y x y x ,求证:996121922≤+++≤y x y x .例3 设c b a ,,是三角形的三边长,求证:0)()()(222≥-+-+-a c a c c b c b b a b a .已知。
,‘门E矿.求击十石主石十石等于6的最小值.若椭圆弓+壬=1(m,n>o)经过点户(d,^)(e6;io,,d,乒,b,),求航十”的最小值.在厶ABC中.求证;疗亏气+片言与+呻亏骂≤o.设I,9,tE旷,求证:“户·凉《(中·牛·宁)十若;,》正旷,证明:(牛·学)’≥/;·(牛)’.设实数。
、b满足。
b>。
.求证:√Z亘丐王工正≤上i里告旦i旦,并确定等号成立的条件.一般地,对任意实数。
、b,求证:守迂亘丐王工正≤3·设O,6,‘正R十,abc=1,求证:,面1刁十万1石+万1石≤『1飞+『1二6+『1工·已知o、6、f、d、f为正数且obcde=1,求证:i;a+abc面十万b-t-bcd盂+i;cd-cde石十万dd-dea丽+i;ed-eab盂≥誓.设。
、6、c是正实数,求证:·D’+b’+‘’≥c(a2z_b2)·+b(d+az)·+a(b2+cz).设工,》/,z仨R/,且满足xyz+工十z=夕,求户=/2内一/2而十/3刁的最大值.求证:在开区间(0,1)内一定能找到四对两两不同的正数(d,6)(o乒6),满足:。
,7(1--aZ)(1--bz)—>荔+主—d6—瓦1古设‘是所有满足下列条件的三角形集合:5(》1巨十五1壬+亡1臣)—盂而『3sS飞可—手,其中r为厶ABC内,切圆半径,户、Q、及分别是内切圆切边AB、BC、CA的切点.证明:5中所有三角形都是等腰三角形并且均相似.设d,凸,‘仨R/,且满足abc=1,证明:(o—l+言)(6一l+÷)(‘一1+÷)≤1.设“,凸,‘正R’,证明不等式:石寺盂’万b衰盂’万C云≥:.反证法反证法是我们论证数学命题时常用的有力工具.有些问题从正面很难下手,就应试着用反证法来考虑,因为当我们从正面去看问题而发现条件不多时,反证假设就相当于又加了一个条件,这样自然更易人手.反证法有着广泛的应用,这一章我们就来看一下它在不等式证明中的应用.例1求证:对任何实数I,y\z,下述三个不等式不可能同时成立:iJ,<,y—cI,1y<,c—II,1z,<,J一91.证明用反证法,假设三个不等式都成立,那么r/<(y—z)’,。
//<(z一;)!’[z2<(;一y)’./(1一y+:)(,+J—c)<0,则有{(》一:十;)(y+z一;)<O,1(z—f+y)(z+;一y)<O.上面三个不等式相乘即得:(工十y—z)z(》+c—J)9(z-}-x—y)’<O.矛盾!例2若d、^、‘、d为非负整数,且(o十b)2+3d+2^二(f+")‘+3《+2d.求证:d二(,^二d.证明先证明d+^二‘+d.用反证法.若a+b;(‘+d,不妨设d+b2>c+d,则a-]-b≥‘+d+1.故(a+6)’+3d+2乙=(d+6)’+2(o+凸)+o≥(‘+d十1)’+2(f+d十1)+觋=(‘+d)’+4(f+d)+3+d>(‘+d)‘+3‘+2d.矛盾!所以a+6=‘+d,代人原式即得d=f,进而有凸=d.说明对于整数工、》/,若工>了,则工≥》/+1.这一性质在处理与整数’有关的不等式时很有用.例3已知12个实数d1,a:,…,a12满足:/02(d1一02+as)<0,/d,(d:一d,+d+)<o,[二三三二二二;二二工·三乙.求证:从这些数中至少可找到3个正数和3个负数.证明用反证法,不妨设d1,a:,…,a::中至多有两个负数,则存在1≤是≤9使dA、ak+l、ak-FZ、O朴:都是非负实数.由题设仁二ak+l--ak+z-}-a二足乙又。
杵1≥0,O以≥0,则O朴l>0,O抖:>0,且/dA一觋计1+aA/2<0,·1ak+l—ak+2+ak--3<0.两式相加得dA+a抖,<0,此式与oA≥0,ak+3≥0矛盾!所以d1,dz’…’a12中至少有3个正数和3个负数.例4已知正整数o、凸、‘、d、72满足:,2’<o<凸<‘<d<(n+1)’’求证:ed尹凸‘.证明用反证法.若÷=兰,令÷=兰=言,其中户、g是两个互素的正整数,因为号>1,有声≥g+1,则;言≥l+亍①又由6=等得出gI呼,故glo,同理有g,c.于是,gI‘一o,所以‘一o≥g,‘≥o+g,因此言—扣三<帮·②.由①、②可知弓专宁>l+言,np2n>g+亍矛盾!故od尹6‘.例5已知o、凸、‘是正实数,满足a+6+‘≥衄6c.求证:下列三个式子中至少有两个成立:÷+芸+÷≥2,鲁+÷十号≥2,÷+÷十号≥2.证明用反证法.‘i,如果÷+号十÷<2,号+÷+÷<2,÷+÷十号<2,则¨(÷+专+÷)<6,与(÷+÷+÷)‘≥3(三+去十三)≥3矛盾.(6)不妨设三式中仅有2个小于2,即设[号+÷+÷<2,①/÷+÷+号<2,②[旦+寻+旦≥2.③由①X1+②X7一③X1可得:竺+誓+誓<14.但上式左端>17(÷十专+÷)≥17点>14,矛盾!因此结论成立.例6证明:对任意正数工、》/、z,都有:证明用反证法.若存在正实数co、yo、zo,使√co牛振二石<3~XoyoZo—,那么我们就有[7570<32伍瓦云,/YTyo<32/;蠃云,124倚<3~XoyoZo—,/工;6<xoYoZo,即/》/;‘<(XoyoZo)’,1z;6<(XoYoZo)u.上面三式相乘即得J;‘·》/;‘·zl‘<(XoYoZo)“,矛盾!故原不等式成立.例7设对于任意实数工都有cos(asinx)>sin(bcosx),求证:衄’+6’<于证明用反证法.设d’+b2≥吾,将asinx+bcosx表为而呵Vsin(z+y)的形式.其中,COSy—万a旨’siny—万b而·由于抓尹干矿≥号,故存在实数J。