新课改地区2021版高考数学一轮复习第三章导数及其应用利用导数研究函数的极值最值练习新人教B版
- 格式:doc
- 大小:775.50 KB
- 文档页数:11
专题 导数与函数的极值、最值一、题型全归纳题型一 利用导数解决函数的极值问题【题型要点】利用导数研究函数极值问题的一般流程命题角度一 由图象判断函数的极值【题型要点】由图象判断函数y =f (x )的极值,要抓住两点: (1) 由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性,两者结合可得极值点【例1】设函数()x f 在R 上可导,其导函数为()x f ',且函数()()x f x y '-=1的图象如图所示,则下列结论中一定成立的是( )A.函数f (x )有极大值f (2)和极小值f (1)B.函数f (x )有极大值f (-2)和极小值f (1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2)【解析】由题图可知,当x <-2时,()x f '>0;当-2<x <1时,()x f '<0;当1<x <2时,()x f '<0;当x >2时,()x f '>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 【例2】已知函数f (x )的导函数f ′(x )的图象如图,则下列叙述正确的是( )A .函数f (x )在(-∞,-4)上单调递减B .函数f (x )在x =2处取得极大值C .函数f (x )在x =-4处取得极值D .函数f (x )有两个极值点【解析】由导函数的图象可得,当x ≤2时,f ′(x )≥0,函数f (x )单调递增;当x >2时,f ′(x )<0,函数f (x )单调递减,所以函数f (x )的单调递减区间为(2,+∞),故A 错误.当x =2时函数取得极大值,故B 正确.当x =-4时函数无极值,故C 错误.只有当x =2时函数取得极大值,故D 错误.故选B.命题角度二 求已知函数的极值【题型要点】求函数极值的一般步骤(1)先求函数f (x )的定义域,再求函数f (x )的导函数. (2)求()x f '=0的根.(3)判断在()x f '=0的根的左、右两侧()x f '的符号,确定极值点. (4)求出具体极值.【例3】已知函数f (x )=(x -2)(e x -ax ),当a >0时,讨论f (x )的极值情况. 【解析】 ∵()x f '=(e x -ax )+(x -2)(e x -a )=(x -1)(e x -2a ),∵a >0, 由()x f '=0得x =1或x =ln 2a .∵当a =e2时,f ′(x )=(x -1)(e x -e )≥0,∵f (x )在R 上单调递增,故f (x )无极值.∵当0<a <e2时,ln 2a <1,当x 变化时,()x f ',f (x )的变化情况如下表:∵当a >e2时,ln 2a >1,当x 变化时,()x f ',f (x )的变化情况如下表:综上,当0<a <e2时,f (x )有极大值-a (ln 2a -2)2,极小值a -e ;当a =e2时,f (x )无极值;当a >e2时,f (x )有极大值a -e ,极小值-a (ln 2a -2)2.【例4】已知函数f (x )=ln x +a -1x ,求函数f (x )的极小值.【解析】 f ′(x )=1x -a -1x 2=x -(a -1)x 2(x >0),当a -1≤0,即a ≤1时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增,无极小值. 当a -1>0,即a >1时,由f ′(x )<0,得0<x <a -1,函数f (x )在(0,a -1)上单调递减; 由f ′(x )>0,得x >a -1,函数f (x )在(a -1,+∞)上单调递增.f (x )极小值=f (a -1)=1+ln(a -1). 综上所述,当a ≤1时,f (x )无极小值; 当a >1时,f (x )极小值=1+ln(a -1).命题角度三 已知函数的极值求参数值(范围)【题型要点】已知函数极值点或极值求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.(2)验证:因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.【易错提醒】若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.【例5】设函数f (x )=[ax 2-(3a +1)x +3a +2]e x .(1)若曲线y =f (x )在点(2,f (2))处的切线斜率为0,求实数a 的值; (2)若f (x )在x =1处取得极小值,求实数a 的取值范围.【解析】 (1)因为f (x )=[ax 2-(3a +1)x +3a +2]e x ,所以f ′(x )=[ax 2-(a +1)x +1]e x . f ′(2)=(2a -1)e 2.由题设知f ′(2)=0,即(2a -1)e 2=0,解得a =12.(2)由(1)得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x .若a >1,则当x ∵⎪⎭⎫⎝⎛1,1a 时,f ′(x )<0; 当x ∵(1,+∞)时,f ′(x )>0.所以f (x )在x =1处取得极小值.若a ≤1,则当x ∵(0,1)时,ax -1≤x -1<0,所以f ′(x )>0.所以1不是f (x )的极小值点. 综上可知,a 的取值范围是(1,+∞).题型二 函数的最值问题【题型要点】求函数f (x )在[a ,b ]上最值的方法(1)若函数在区间[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值.(2)若函数在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值,最小的是最小值,可列表完成.(3)函数f (x )在区间(a ,b )上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.【例1】(2019·全国卷Ⅲ)已知函数f (x )=2x 3-ax 2+b . (1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.【解析】(1)f ′(x )=6x 2-2ax =2x (3x -a ).令f ′(x )=0,得x =0或x =a 3.若a >0,则当x ∵(-∞,0)∵⎪⎭⎫⎝⎛+∞,3a 时,f ′(x )>0;当x ∵⎪⎭⎫⎝⎛3,0a 时,f ′(x )<0.故f (x )在 (-∞,0),⎪⎭⎫⎝⎛+∞,3a 单调递增,在⎪⎭⎫⎝⎛3,0a 单调递减. 若a =0,f (x )在(-∞,+∞)单调递增.若a <0,则当x ∵⎪⎭⎫ ⎝⎛∞-3,a ∵(0,+∞)时,f ′(x )>0;当x ∵⎪⎭⎫ ⎝⎛0,3a 时,f ′(x )<0.故f (x )在⎪⎭⎫ ⎝⎛∞-3,a ,(0,+∞)单调递增,在⎪⎭⎫⎝⎛0,3a 单调递减. (2)满足题设条件的a ,b 存在.(∵)当a ≤0时,由(1)知,f (x )在[0,1]单调递增,所以f (x )在区间[0,1]的最小值为f (0)=b ,最大值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当b =-1,2-a +b =1,即a =0,b =-1. (∵)当a ≥3时,由(1)知,f (x )在[0,1]单调递减,所以f (x )在区间[0,1]的最大值为f (0)=b ,最小值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当2-a +b =-1,b =1,即a =4,b =1. (∵)当0<a <3时,由(1)知,f (x )在[0,1]的最小值为⎪⎭⎫⎝⎛3a f =-a 327+b ,最大值为b 或2-a +b .若-a 327+b =-1,b =1,则a =332,与0<a <3矛盾.若-a 327+b =-1,2-a +b =1,则a =33或a =-33或a =0,与0<a <3矛盾.综上,当且仅当a =0,b =-1或a =4,b =1时,f (x )在[0,1]的最小值为-1,最大值为1.【例2】(2020·贵阳市检测)已知函数f (x )=x -1x -ln x .(1)求f (x )的单调区间;(2)求函数f (x )在⎥⎦⎤⎢⎣⎡e e,1上的最大值和最小值(其中e 是自然对数的底数).【解析】 (1)f (x )=x -1x -ln x =1-1x-ln x ,f (x )的定义域为(0,+∞). 因为f ′(x )=1x 2-1x =1-xx 2,所以f ′(x )>0∵0<x <1,f ′(x )<0∵x >1,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.(2)由(1)得f (x )在⎥⎦⎤⎢⎣⎡1,1e 上单调递增,在(1,e]上单调递减,所以f (x )在⎥⎦⎤⎢⎣⎡e e,1上的极大值为f (1)=1-11-ln 1=0.又⎪⎭⎫ ⎝⎛e f 1=1-e -ln 1e =2-e ,f (e)=1-1e -ln e =-1e,且⎪⎭⎫⎝⎛e f 1<f (e).所以f (x )在⎥⎦⎤⎢⎣⎡e e,1上的最大值为0,最小值为2-e.题型三 函数极值与最值的综合应用【题型要点】解决函数极值、最值问题的策略(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论. (3)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.【例1】设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .若f (x )在x =2处取得极小值,则a 的取值范围为_______. 【解析】 f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x ,若a >12,则当x ∵⎪⎭⎫⎝⎛2,1a 时,f ′(x )<0;当x ∵(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∵(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎪⎭⎫⎝⎛+∞,21. 【例2】已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2,x <1,a ln x ,x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值点;(2)求f (x )在区间[-1,e](e 为自然对数的底数)上的最大值.【解析】:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23,当x 变化时,f ′(x ),f (x )的变化情况如下表所以当x =0时,函数f (x )取得极小值f (0)=0,函数f (x )的极大值点为x =23.(2)∵由(1)知,当-1≤x <1时,函数f (x )在[-1,0)和⎪⎭⎫⎢⎣⎡1,32上单调递减,在⎪⎭⎫⎢⎣⎡32,0上单调递增.因为f (-1)=2,⎪⎭⎫ ⎝⎛32f =427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.∵当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增. 所以f (x )在[1,e]上的最大值为f (e)=a .所以当a ≥2时,f (x )在[-1,e]上的最大值为a ; 当a <2时,f (x )在[-1,e]上的最大值为2.题型四 利用导数研究生活中的优化问题【题型要点】利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x ).(2)求函数的导数()x f ',解方程()x f '=0.(3)比较函数在区间端点和()x f '=0的点的函数值的大小,最大(小)者为最大(小)值. (4)回归实际问题,结合实际问题作答.【例1】某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大. 【解析】(1)因为当x =5时,y =11,所以a2+10=11,解得a =2.(2)由(1)可知,该商品每日的销售量为y =2x -3+10(x -6)2. 所以商场每日销售该商品所获得的利润为f (x )=(x -3)⎣⎡⎦⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.则()x f '=10[(x -6)2+2(x -3)(x -6)]=30(x -4)(x -6). 于是,当x 变化时,()x f ',f (x )的变化情况如下表:所以,当x =4时,函数f (x )取得最大值且最大值等于42.即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.【例2】已知一企业生产某产品的年固定成本为10万元,每生产千件需另投入2.7万元,设该企业年内共生产此种产品x 千件,并且全部销售完,每千件的销售收入为f (x )万元,且f (x )=⎩⎨⎧10.8-130x 2,0<x ≤10,108x -1 0003x 2,x >10.(1)写出年利润W (万元)关于年产品x (千件)的函数解析式;(2)年产量为多少千件时,该企业生产此产品所获年利润最大?(注:年利润=年销售收入-年总成本) 【解析】(1)由题意得W =⎩⎨⎧⎝⎛⎭⎫10.8-130x 2x -2.7x -10,0<x ≤10,⎝⎛⎭⎫108x -1 0003x 2x -2.7x -10,x >10,即W =⎩⎨⎧8.1x -130x 3-10,0<x ≤10,98-⎝⎛⎭⎫1 0003x +2.7x ,x >10.(2)∵当0<x ≤10时,W =8.1x -130x 3-10,则W ′=8.1-110x 2=81-x 210=(9+x )(9-x )10,因为0<x ≤10,所以当0<x <9时,W ′>0,则W 递增;当9<x ≤10时,W ′<0,则W 递减.所以当x =9时,W 取最大值1935=38.6万元.∵当x >10时,W =98-⎪⎭⎫⎝⎛+x x 7.231000≤98-21 0003x×2.7x =38. 当且仅当1 0003x =2.7x ,即x =1009时等号成立.综上,当年产量为9千件时,该企业生产此产品所获年利润最大.二、高效训练突破 一、选择题1.函数f (x )=2x 3+9x 2-2在[-4,2]上的最大值和最小值分别是( ) A .25,-2 B .50,14 C .50,-2D .50,-14【解析】:因为f (x )=2x 3+9x 2-2,所以f ′(x )=6x 2+18x ,当x ∵[-4,-3)或x ∵(0,2]时,f ′(x )>0,f (x )为增函数,当x ∵(-3,0)时,f ′(x )<0,f (x )为减函数,由f (-4)=14,f (-3)=25,f (0)=-2,f (2)=50,故函数f (x )=2x 3+9x 2-2在[-4,2]上的最大值和最小值分别是50,-2. 2.已知函数y =f (x )的导函数f ′(x )的图象如图所示,给出下列判断:∵函数y =f (x )在区间⎪⎭⎫⎝⎛--21,3内单调递增;∵当x =-2时,函数y =f (x )取得极小值; ∵函数y =f (x )在区间(-2,2)内单调递增;∵当x =3时,函数y =f (x )有极小值. 则上述判断正确的是( ) A .∵∵ B .∵∵ C .∵∵∵D .∵∵【解析】:对于∵,函数y =f (x )在区间⎪⎭⎫⎝⎛--21,3内有增有减,故∵不正确; 对于∵,当x =-2时,函数y =f (x )取得极小值,故∵正确;对于∵,当x ∵(-2,2)时,恒有f ′(x )>0,则函数y =f (x )在区间(-2,2)上单调递增,故∵正确; 对于∵,当x =3时,f ′(x )≠0,故∵不正确.3.(2020·东莞模拟)若x =1是函数f (x )=ax +ln x 的极值点,则( ) A.f (x )有极大值-1 B.f (x )有极小值-1 C.f (x )有极大值0D.f (x )有极小值0【解析】∵f (x )=ax +ln x ,x >0,∵f ′(x )=a +1x ,由f ′(1)=0得a =-1,∵f ′(x )=-1+1x =1-xx .由f ′(x )>0得0<x <1,由f ′(x )<0得x >1, ∵f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.∵f (x )极大值=f (1)=-1,无极小值,故选A.4.函数f (x )=x 3+bx 2+cx +d 的大致图象如图所示,则x 21+x 22等于( )A.89B.109C.169D.289【解析】函数f (x )的图象过原点,所以d =0.又f (-1)=0且f (2)=0,即-1+b -c =0且8+4b +2c =0,解得b =-1,c =-2,所以函数f (x )=x 3-x 2-2x ,所以f ′(x )=3x 2-2x -2,由题意知x 1,x 2是函数的极值点,所以x 1,x 2是f ′(x )=0的两个根,所以x 1+x 2=23,x 1x 2=-23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=49+43=169. 5.已知函数f (x )=2f ′(1)ln x -x ,则f (x )的极大值为( ) A .2 B .2ln 2-2 C .eD .2-e【解析】:函数f (x )定义域(0,+∞),f ′(x )=2f ′(1)x -1,所以f ′(1)=1,f (x )=2ln x -x ,令f ′(x )=2x-1=0,解得x =2.当0<x <2时,f ′(x )>0,当x >2时,f ′(x )<0,所以当x =2时函数取得极大值,极大值为2ln 2-2. 6.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( ) A.[-3,+∞) B.(-3,+∞) C.(-∞,-3)D.(-∞,-3]【解析】由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:7.用边长为120 cm 的正方形铁皮做一个无盖水箱,先在四周分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱,则水箱的最大容积为( ) A .120 000 cm 3 B .128 000 cm 3 C .150 000 cm 3D .158 000 cm 3【解析】:设水箱底长为x cm ,则高为120-x2cm.由⎩⎪⎨⎪⎧120-x 2>0,x >0,得0<x <120.设容器的容积为y cm 3,则有y =-12x 3+60x 2.求导数,有y ′=-32x 2+120x .令y ′=0,解得x =80(x =0舍去).当x ∵(0,80)时,y ′>0;当x ∵(80,120)时,y ′<0. 因此,x =80是函数y =-12x 3+60x 2的极大值点,也是最大值点,此时y =128 000.故选B.8.(2020·郑州质检)若函数y =f (x )存在n -1(n ∵N *)个极值点,则称y =f (x )为n 折函数,例如f (x )=x 2为2折函数.已知函数f (x )=(x +1)e x -x (x +2)2,则f (x )为( ) A .2折函数 B .3折函数 C .4折函数D .5折函数【解析】:.f ′(x )=(x +2)e x -(x +2)(3x +2)=(x +2)·(e x -3x -2),令f ′(x )=0,得x =-2或e x =3x +2. 易知x =-2是f (x )的一个极值点,又e x =3x +2,结合函数图象,y =e x 与y =3x +2有两个交点.又e -2≠3×(-2)+2=-4. 所以函数y =f (x )有3个极值点,则f (x )为4折函数.9.(2020·昆明市诊断测试)已知函数f (x )=(x 2-m )e x ,若函数f (x )的图象在x =1处切线的斜率为3e ,则f (x )的极大值是( )A .4e -2 B .4e 2 C .e -2D .e 2【解析】:f ′(x )=(x 2+2x -m )e x .由题意知,f ′(1)=(3-m )e =3e ,所以m =0,f ′(x )=(x 2+2x )e x .当x >0或x <-2时,f ′(x )>0,f (x )是增函数;当-2<x <0时,f ′(x )<0,f (x )是减函数.所以当x =-2时,f (x )取得极大值,f (-2)=4e -2.故选A.10.函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( ) A.20 B.18 C.3D.0【解析】原命题等价于对于区间[-3,2]上的任意x ,都有f (x )max -f (x )min ≤t , ∵f ′(x )=3x 2-3,∵当x ∵[-3,-1]时,f ′(x )>0, 当x ∵[-1,1]时,f ′(x )<0,当x ∵[1,2]时,f ′(x )>0. ∵f (x )max =f (2)=f (-1)=1,f (x )min =f (-3)=-19. ∵f (x )max -f (x )min =20,∵t ≥20.即t 的最小值为20.故选A.二、填空题1.已知f (x )=x 3+3ax 2+bx +a 2在x =-1处有极值0,则a -b = .【解析】:由题意得f ′(x )=3x 2+6ax +b ,则⎩⎪⎨⎪⎧a 2+3a -b -1=0,b -6a +3=0,解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9, 经检验当a =1,b =3时,函数f (x )在x =-1处无法取得极值,而a =2,b =9满足题意,故a -b =-7. 2.已知函数f (x )=x 3+ax 2+(a +6)x +1.若函数f (x )的图象在点(1,f (1))处的切线斜率为6,则实数a = ;若函数在(-1,3)内既有极大值又有极小值,则实数a 的取值范围是 .【解析】:f ′(x )=3x 2+2ax +a +6,结合题意f ′(1)=3a +9=6,解得a =-1;若函数在(-1,3)内既有极大值又有极小值,则f ′(x )=0在(-1,3)内有2个不相等的实数根,则⎩⎪⎨⎪⎧Δ=4a 2-12(a +6)>0,f ′(-1)>0,f ′(3)>0,解得-337<a <-3.3.(2020·甘肃兰州一中期末改编)若x =-2是函数f (x )=(x 2+ax -1)e x 的极值点,则f ′(-2)= ,f (x )的极小值为 .【解析】:由函数f (x )=(x 2+ax -1)e x 可得f ′(x )=(2x +a )e x +(x 2+ax -1)e x ,因为x =-2是函数f (x )的极值点,所以f ′(-2)=(-4+a )e -2+(4-2a -1)e -2=0,即-4+a +3-2a =0,解得a =-1.所以f ′(x )=(x 2+x -2)e x .令f ′(x )=0可得x =-2或x =1.当x <-2或x >1时,f ′(x )>0,此时函数f (x )为增函数,当-2<x <1时,f ′(x )<0,此时函数f (x )为减函数,所以当x =1时函数f (x )取得极小值,极小值为f (1)=(12-1-1)×e 1=-e.4.(2019·武汉模拟)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是 .【解析】:因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.5.若函数f (x )=x 3-3ax 在区间(-1,2)上仅有一个极值点,则实数a 的取值范围为 .【解析】因为f ′(x )=3(x 2-a ),所以当a ≤0时,f ′(x )≥0在R 上恒成立,所以f (x )在R 上单调递增,f (x )没有极值点,不符合题意; 当a >0时,令f ′(x )=0得x =±a , 当x 变化时,f ′(x )与f (x )的变化情况如下表所示:因为函数f (x )在区间(-1,2)上仅有一个极值点,所以⎩⎨⎧a <2,-a ≤-1或⎩⎨⎧-a >-1,2≤a ,解得1≤a <4.三 解答题1.(2020·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 【解析】:(1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx,令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.所以f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. 所以f (x )max =f (1)=-1.所以当a =-1时,函数f (x )在(0,+∞)上的最大值为-1.(2)f ′(x )=a +1x ,x ∵(0,e],1x ∵⎪⎭⎫⎢⎣⎡+∞,1e .∵若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数,所以f (x )max =f (e)=a e +1≥0,不符合题意;∵若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∵(0,e],解得0<x <-1a,令f ′(x )<0得a +1x <0,结合x ∵(0,e],解得-1a <x ≤e.从而f (x )在⎪⎭⎫ ⎝⎛-a 1,0上为增函数,在⎥⎦⎤⎝⎛-e a ,1上为减函数,所以f (x )max =⎪⎭⎫ ⎝⎛-a f 1=-1+⎪⎭⎫ ⎝⎛-a 1ln .令-1+⎪⎭⎫ ⎝⎛-a 1ln =-3,得⎪⎭⎫⎝⎛-a 1ln =-2,即a =-e 2.因为-e 2<-1e ,所以a =-e 2为所求.故实数a 的值为-e 2.2.(2020·洛阳尖子生第二次联考)已知函数f (x )=mx -nx-ln x ,m ∵R .(1)若函数f (x )的图象在(2,f (2))处的切线与直线x -y =0平行,求实数n 的值; (2)试讨论函数f (x )在区间[1,+∞)上的最大值.【解析】:(1)由题意得f ′(x )=n -x x 2,所以f ′(2)=n -24.由于函数f (x )的图象在(2,f (2))处的切线与直线x -y =0平行,所以n -24=1,解得n =6.(2)f ′(x )=n -xx2,令f ′(x )<0,得x >n ;令f ′(x )>0,得x <n .∵当n ≤1时,函数f (x )在[1,+∞)上单调递减,所以f (x )max =f (1)=m -n ;∵当n >1时,函数f (x )在[1,n )上单调递增,在(n ,+∞)上单调递减,所以f (x )max =f (n )=m -1-ln 3.(2019·郑州模拟)已知函数f (x )=1-x x +k ln x ,k <1e ,求函数f (x )在⎥⎦⎤⎢⎣⎡e e ,1上的最大值和最小值.【解析】 f ′(x )=-x -(1-x )x 2+k x =kx -1x2.∵若k =0,则f ′(x )=-1x 2在⎥⎦⎤⎢⎣⎡e e ,1上恒有f ′(x )<0,所以f (x )在⎥⎦⎤⎢⎣⎡e e ,1上单调递减.∵若k ≠0,则f ′(x )=kx -1x 2=k ⎝⎛⎭⎫x -1k x 2.(∵)若k <0,则在⎥⎦⎤⎢⎣⎡e e,1上恒有k ⎝⎛⎭⎫x -1k x 2<0.所以f (x )在⎥⎦⎤⎢⎣⎡e e,1上单调递减,(∵)若k >0,由k <1e ,得1k >e ,则x -1k <0在⎥⎦⎤⎢⎣⎡e e ,1上恒成立,所以k ⎝⎛⎭⎫x -1k x 2<0, 所以f (x )在1e ,e 上单调递减.综上,当k <1e 时,f (x )在⎥⎦⎤⎢⎣⎡e e ,1上单调递减,所以f (x )min =f (e )=1e +k -1,f (x )max =⎪⎭⎫⎝⎛e f 1=e -k -1.4.已知函数f (x )=a ln x +1x (a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e ]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.【解析】由题意,知函数的定义域为{x |x >0},f ′(x )=a x -1x 2(a >0).(1)由f ′(x )>0解得x >1a ,所以函数f (x )的单调递增区间是⎪⎭⎫⎝⎛+∞,1a ;由f ′(x )<0解得x <1a ,所以函数f (x )的单调递减区间是⎪⎭⎫⎝⎛a 1,0.所以当x =1a 时,函数f (x )有极小值⎪⎭⎫⎝⎛a f 1=a ln 1a +a =a -a ln a ,无极大值. (2)不存在.理由如下:由(1)可知,当x ∵⎪⎭⎫ ⎝⎛a 1,0时,函数f (x )单调递减;当x ∵⎪⎭⎫⎝⎛+∞,1a 时,函数f (x )单调递增.∵若0<1a≤1,即a ≥1时,函数f (x )在[1,e ]上为增函数,故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件.∵若1<1a ≤e ,即1e ≤a <1时,函数f (x )在⎪⎭⎫⎢⎣⎡a 1,1上为减函数,在⎥⎦⎤⎢⎣⎡e a ,1上为增函数,故函数f (x )的最小值为f (x )的极小值⎪⎭⎫⎝⎛a f 1=a ln 1a +a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,而1e≤a <1,故不满足条件.∵若1a >e ,即0<a <1e时,函数f (x )在[1,e ]上为减函数,故函数f (x )的最小值为f (e )=a +1e =0,解得a =-1e ,而0<a <1e ,故不满足条件.综上所述,这样的a 不存在.。
第3课时导数的应用(二)—极值与最值1.函数y =x 3-3x 2-9x(-2<x<2)有()A .极大值为5,极小值为-27B .极大值为5,极小值为-11C .极大值为5,无极小值D .极大值为-27,无极小值答案 C解析 y ′=3x 2-6x -9=3(x 2-2x -3)=3(x -3)(x +1),∴y ′=0时,x =3或x =-1.∵-2<x<2,∴x =-1时,y =5;x =-1为极大值点,极大值为5,无极小值.2.当函数y =x·2x 取极小值时,x =()A.1ln2B .-1ln2 C .-ln2 D .ln2答案 B解析 由y =x·2x ,得y ′=2x +x·2x ·ln2,令y ′=0,得2x (1+x·ln2)=0.∵2x >0,∴x =-1ln2. 3.设函数f(x)=2x+lnx ,则() A .x =12为f(x)的极大值点B .x =12为f(x)的极小值点 C .x =2为f(x)的极大值点D .x =2为f(x)的极小值点答案 D解析 因为f(x)=2x +lnx ,所以f ′(x)=-2x2+1x =x -2x2,且x>0.当x>2时, f ′(x)>0,这时f(x)为增函数;当0<x<2时,f ′(x)<0,这时f(x)为减函数.所以x =2为f(x)的极小值点.故选D.4.(2018·山西太原期中)设函数f(x)=13x 3-x +m 的极大值为1,则函数f(x)的极小值为() A .-13B .-1 C.13D .1 答案 A解析 f ′(x)=x 2-1,由f ′(x)=0,得x 1=1,x 2=-1.所以f(x)在区间(-∞,-1)上单调递增,在区间(-1,1)上单调递减,在区间(1,+∞)上单调递增,所以函数f(x)在x =-1处取得极大值,且f(-1)=1,即m =13,函数f(x)在x =1处取得极小值,且f(1)=13×13-1+13=-13.故选A. 5.(2018·苏锡常镇一调)f(x)=e x -x(e 为自然对数的底数)在区间[-1,1]上的最大值是()A .1+1eB .1C .e +1D .e -1答案 D解析 f ′(x)=e x-1,令f ′(x)=0,得x =0.令f ′(x)>0,得x>0,令f ′(x)<0,得x<0,则函数f(x)在(-1,0)上单调递减,在(0,1)上单调递增,f(-1)=e -1+1,f(1)=e -1,f(-1)-f(1)=1e +2-e<12+2-e<0, 所以f(1)>f(-1).故选D.6.若函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则() A .a -2b =0 B .2a -b =0C .2a +b =0D .a +2b =0答案 D解析 y′=3ax 2+2bx ,据题意,0,13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b =0. 7.已知f(x)=2x 3-6x 2+m(m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是()A .-37B .-29C .-5D .以上都不对答案 A解析 f ′(x)=6x 2-12x =6x(x -2),∴f(x)在(-2,0)上单调递增,在(0,2)上单调递减.∴x =0为极大值点,也为最大值点.∴f(0)=m =3,∴m =3.∴f(-2)=-37,f(2)=-5,∴最小值是-37,选A.8.若函数f(x)=x 3-3bx +3b 在(0,1)内有极小值,则()A .0<b <1B .b <1C .b >0D .b <12答案 A解析 f(x)在(0,1)内有极小值,则f ′(x)=3x 2-3b 在(0,1)上先负后正,∴f ′(0)=-3b <0.∴b >0.f ′(1)=3-3b >0,∴b <1.综上,b 的取值范围为0<b <1.9.设函数f(x)在R 上可导,其导函数为f ′(x),且函数f(x)在x =-2处取得极小值,则函数y =xf ′(x)的图像可能是()答案 C解析 由f(x)在x =-2处取得极小值可知,当x<-2时,f ′(x)<0,则xf ′(x)>0;当-2<x<0时,f ′(x)>0,则xf ′(x)<0;当x>0时,xf ′(x)>0.10.已知f(x)=x 3+px 2+qx 的图像与x 轴相切于非原点的一点,且f(x)极小值=-4,那么p ,q 值分别为()A .6,9B .9,6C .4,2D .8,6答案 A解析 设图像与x 轴的切点为(t ,0)(t≠0),设⎩⎪⎨⎪⎧f (t )=t3+pt2+qt =0,f′(t )=3t2+2pt +q =0,注意t≠0, 可得出p =-2t ,q =t 2.∴p 2=4q ,只有A 满足这个等式(亦可直接计算出t =-3).11.若函数f(x)=ax 3-3x +1对于x∈[-1,1]总有f(x)≥0成立,则实数a 的取值范围为()A .[2,+∞)B .[4,+∞)C .{4}D .[2,4]答案 C解析 f ′(x)=3ax 2-3,当a≤0时,f(x)min =f(1)=a -2≥0,a ≥2,不合题意;当0<a≤1时,f ′(x)=3ax 2-3=3a(x +1a )(x -1a),f(x)在[-1,1]上为减函数, f(x)min =f(1)=a -2≥0,a ≥2,不合题意;当a>1时,f(-1)=-a +4≥0,且f(1a )=-2a +1≥0,解得a =4.综上所述,a =4. 12.若f(x)=x(x -c)2在x =2处有极大值,则常数c 的值为________.答案 6解析 f ′(x)=3x 2-4cx +c 2,∵f(x)在x =2处有极大值,∴⎩⎪⎨⎪⎧f′(2)=0,f′(x )<0 (x>2),f′(x )>0 (x<2).解得c =6.13.(2018·河南信阳调研)已知函数f(x)=x 3+ax 2+bx +a 2在x =1处取得极值10,则f(2)的值为________. 答案 18解析 f ′(x)=3x 2+2ax +b ,由题意得⎩⎪⎨⎪⎧f (1)=10,f′(1)=0,即⎩⎪⎨⎪⎧a2+a +b +1=10,2a +b +3=0,解得⎩⎪⎨⎪⎧a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3. 当a =-3,b =3时,f ′(x)=3(x -1)2≥0,f(x)无极值.当a =4,b =-11时,令f ′(x)=0,得x 1=1,x 2=-113. 当x 变化时,f ′(x),f(x)的变化情况如下表:。
题组层级快练3.3.1导数的应用--极值与最值一、单项选择题1.(2021·辽宁沈阳一模)设函数f(x)=xe x+1,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点2.(2021·河北邯郸一中月考)若函数f(x)=ae x-sinx在x=0处有极值,则a的值为() A.-1B.0C.1D.e3.函数f(x)=12x-sinx在0,π2上的最小值和最大值分别是()A.π6-32,0 B.π4-1,0 C.π6-32,π4-1D.-12,124.(2021·杭州学军中学模拟)函数f(x)=xe-x,x∈[0,4]的最小值为()A.0 B.1e C.4e4D.2e25.若函数f(x)=x3-3x+a有3个不同的零点,则实数a的取值范围是()A.(-2,2)B.[-2,2]C.(-∞,-1)D.(1,+∞)6.若函数y=ax3+bx2取得极大值和极小值时的x的值分别为0和13,则()A.a-2b=0B.2a-b=0C.2a+b=0D.a+2b=07.设二次函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是()二、多项选择题8.已知函数f(x)=x3-ax-1,以下结论正确的是()A.当a=0时,函数f(x)的图象的对称中心为(0,-1)B.当a≥3时,函数f(x)在(-1,1)上为单调递减函数C.若函数f(x)在(-1,1)上不单调,则0<a<3D.当a=12时,f(x)在[-4,5]上的最大值为159.(2021·山东临沂期末)已知函数f(x)=x+sinx-xcosx的定义域为[-2π,2π),则()A.f(x)为奇函数B.f(x)在[0,π)上单调递增C.f(x)恰有4个极大值点D.f(x)有且仅有4个极值点三、填空题与解答题10.已知函数f(x)=x3+ax2+bx+a2在x=1处取得极值10,则f(2)的值为________.11.(2021·内蒙古兴安盟模拟)已知f(x)=2x3-6x2+m(m为常数),在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为________.12.(2018·江苏)若函数f(x)=2x3-ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[-1,1]上的最大值与最小值的和为________.13.(2021·广东省高二期末)已知函数f(x)=13x3-4x+3.(1)求函数f(x)的单调区间;(2)求函数f(x)在区间[-3,5]上的最大值与最小值.14.已知函数f(x)=(x2-2x)e x(x∈R,e为自然对数的底数).(1)求函数f(x)的单调区间;(2)求函数f(x)在区间[0,m]上的最大值和最小值.15.(2021·天水一中诊断)若函数f(x)=ax22-(1+2a)·x+2lnx(a>0)a的取值范围是()B.(1,+∞)C.(1,2)D.(2,+∞)16.(2016·北京)设函数f(x)3-3x,x≤a,2x,x>a.(1)若a=0,则f(x)的最大值为________;(2)若f(x)无最大值,则实数a的取值范围是________.17.(2020·衡水中学调研卷)已知函数f(x)=xlnx.(1)求函数f(x)的极值点;(2)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数).3.3.1导数的应用--极值与最值参考答案1.答案D解析由f(x)=xe x +1,可得f ′(x)=(x +1)e x ,令f ′(x)>0可得x>-1,即函数f(x)在(-1,+∞)上单调递增;令f ′(x)<0可得x<-1,即函数f(x)在(-∞,-1)上单调递减,所以x =-1为f(x)的极小值点.故选D.2.答案C解析f ′(x)=ae x -cosx ,若函数f(x)=ae x -sinx 在x =0处有极值,则f ′(0)=a -1=0,解得a =1,经检验a =1符合题意.故选C.3.答案A解析函数f(x)=12x -sinx ,f ′(x)=12-cosx ,令f ′(x)>0,解得π3<x ≤π2,令f ′(x)<0,解得0≤x<π3,所以f(x)在0,π2上单调递增,所以f(x)min ==π6-32,而f(0)=0,=π4-1<0,故f(x)在区间0,π2上的最小值和最大值分别是π6-32,0.故选A.4.答案A解析f ′(x)=1-xe x,当x ∈[0,1)时,f ′(x)>0,f(x)单调递增,当x ∈(1,4]时,f ′(x)<0,f(x)单调递减,因为f(0)=0,f(4)=4e 4>0,所以当x =0时,f(x)有最小值,且最小值为0.故选A.5.答案A解析f ′(x)=3x 2-3,令f ′(x)=0,得x =±1.三次方程f(x)=0有3个根⇔f(x)极大值>0且f(x)极小值<0.∵x =-1为极大值点,x =1为极小值点,(-1)=2+a>0,(1)=a -2<0,∴-2<a<2.故选A.6.答案D解析y ′=3ax 2+2bx ,据题意,0,13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b =0.故选D.7.答案C解析由f(x)在x =-2处取得极小值可知,当x<-2时,f ′(x)<0,则xf ′(x)>0;当-2<x<0时,f ′(x)>0,则xf ′(x)<0;当x >0时,f ′(x)>0,则xf ′(x)>0.故选C.8.答案ABC解析本题考查利用导数研究函数的单调性、极值、最值.y =x 3为R 上的奇函数,其图象的对称中心为原点,当a =0时,根据平移知识,函数f(x)的图象的对称中心为(0,-1),A 正确;由题意知f ′(x)=3x 2-a ,因为当-1<x<1时,3x 2<3,又a ≥3,所以f ′(x)<0在(-1,1)上恒成立,所以函数f(x)在(-1,1)上为单调递减函数,B 正确;f ′(x)=3x 2-a ,当a ≤0时,f ′(x)≥0,f ′(x)不恒等于0,此时f(x)在(-∞,+∞)上单调递增,不符合题意,故a>0.令f ′(x)=0,解得x =±3a3.因为f(x)在(-1,1)上不单调,所以f ′(x)=0在(-1,1)上有解,所以0<3a3<1,解得0<a<3,C 正确;令f ′(x)=3x 2-12=0,得x =±2.根据函数的单调性,f(x)在[-4,5]上的最大值只可能为f(-2)或f(5).因为f(-2)=15,f(5)=64,所以最大值为64,D 错误.故选ABC.9.答案ABD解析A 显然正确;∵f(x)=x +sinx -xcosx ,∴f ′(x)=1+cosx -(cosx -xsinx)=1+xsinx.当x ∈[0,π)时,f ′(x)>0,则f(x)在[0,π)上单调递增.显然f ′(0)≠0,令f ′(x)=0,得sinx =-1x ,分别作出函数y=sinx ,y =-1x的图象如图.由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f(x)在区间[-2π,2π)上有4个极值点,且只有2个极大值点.10.答案18解析f ′(x)=3x 2+2ax +b 1)=10,1)=0,2+a +b +1=10,+b +3=0,=4,=-11=-3,=3.当a =-3,b =3时,f ′(x)=3(x -1)2≥0,f(x)无极值,故舍去.当a =4,b =-11时,令f ′(x)=0,得x 1=1,x 2=-113.当x 变化时,f ′(x),f(x)的变化情况如下表:∴f(x)=x 3+4x 2-11x +16,f(2)=18.11.答案-37解析由已知可得,f ′(x)=6x 2-12x ,由6x 2-12x ≥0得x ≥2或x ≤0,因此当x ∈[2,+∞),(-∞,0]时f(x)单调递增,当x ∈[0,2]时f(x)单调递减,又因为x ∈[-2,2],所以当x ∈[-2,0]时f(x)单调递增,当x ∈[0,2]时f(x)单调递减,所以f(x)max =f(0)=m =3,故有f(x)=2x 3-6x 2+3,所以f(-2)=-37,f(2)=-5.因为f(-2)=-37<f(2)=-5,所以函数f(x)的最小值为f(-2)=-37.12.答案-3解析令f(x)=2x 3-ax 2+1=0⇒a =2x +1x2.令g(x)=2x +1x 2(x>0),g ′(x)=2-2x 3>0⇒x>1⇒g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∵有唯一零点,∴a =g(1)=2+1=3⇒f(x)=2x 3-3x 2+1.求导可知在[-1,1]上,f(x)min =f(-1)=-4,f(x)max =f(0)=1,∴f(x)min +f(x)max =-3.13.答案(1)函数f(x)的单调递增区间为(-∞,-2),(2,+∞),单调递减区间为(-2,2)(2)函数f(x)在区间[-3,5]上的最大值为743,最小值为-73思路(1)求导后,利用导数的符号可得函数的单调区间;(2)由(1)知,函数f(x)在[-3,-2)上单调递增,在[-2,2]上单调递减,在(2,5]上单调递增,根据单调性可得最大最小值.解析(1)f ′(x)=x 2-4,由f ′(x)>0,得x>2或x<-2;由f ′(x)<0,得-2<x<2,所以函数f(x)的单调递增区间为(-∞,-2),(2,+∞),单调递减区间为(-2,2).(2)由(1)知,函数f(x)在[-3,-2)上单调递增,在(-2,2)上单调递减,在(2,5]上单调递增,因为f(-3)=13×(-3)3-4×(-3)+3=6,f(2)=13×23-4×2+3=-73,f(-2)=13×(-2)3-4×(-2)+3=253,f(5)=13×53-4×5+3=743,所以函数f(x)在区间[-3,5]上的最大值为743,最小值为-73.14.答案略解析(1)f(x)=(x 2-2x)e x ,求导得f ′(x)=e x (x 2-2).因为e x >0,令f ′(x)=e x (x 2-2)>0,即x 2-2>0,解得x<-2或x> 2.令f ′(x)=e x (x 2-2)<0,即x 2-2<0,解得-2<x< 2.所以函数f(x)在(-∞,-2)和(2,+∞)上单调递增,在(-2,2)上单调递减.即函数f(x)的单调递增区间为(-∞,-2),(2,+∞),单调递减区间为(-2,2).(2)①当0<m ≤2时,因为f(x)在(-2,2)上单调递减,所以f(x)在区间[0,m]上的最大值为f(0)=0,f(x)在区间[0,m]上的最小值为f(m)=(m 2-2m)e m .②当2<m ≤2时,因为f(x)在(-2,2)上单调递减,f(x)在(2,+∞)上单调递增,且f(0)=f(2)=0,所以f(x)在[0,m]上的最大值为f(0)=0,f(x)在区间[0,m]上的最小值为f(2)=(2-22)e 2.③当m>2时,因为f(x)在(-2,2)上单调递减,f(x)在(2,+∞)上单调递增,且f(m)>0=f(0),所以f(x)在[0,m]上的最大值为f(m)=(m 2-2m)·e m ,f(x)在区间[0,m]上的最小值为f(2)=(2-22)e 2.15.思路把函数f(x)题,然后再通过分离参数的方法求出参数a 的取值范围.答案C 解析由f(x)=ax 22-(1+2a)x +2lnx(a>0,x >0),得导数f ′(x)=ax -(1+2a)+2x(x >0),∵函数f(x)=ax 22-(1+2a)x +2lnx(a>0)∴方程ax -(1+2a)+2x=0∴a =1x 在区间故a =1x∈(1,2),则a 的取值范围是(1,2).故选C.评说涉及函数的极值问题,往往要使用导数这个解题的工具,在解题时要注意运用等价转化的解题思想.16.答案(1)2(2)(-∞,-1)解析(1)若a =0,则f(x)3-3x ,x ≤0,2x ,x>0,当x>0时,-2x<0;当x ≤0时,f ′(x)=3x 2-3=3(x +1)·(x-1),令f ′(x)>0,得x<-1,令f ′(x)<0,得-1<x ≤0,所以函数f(x)在(-∞,-1)上单调递增,在(-1,0]上单调递减,所以函数f(x)在(-∞,0]上的最大值为f(-1)=2.综上可得,函数f(x)的最大值为2.(2)函数y =x 3-3x 与y =-2x 的大致图象如图所示,由图可知当f(x)无最大值时,a ∈(-∞,-1).17.答案(1)极小值点为x =1e,无极大值点(2)当a ≤1时,g(x)min =0,当1<a<2时,g(x)min =a -e a -1,当a ≥2时,g(x)min =a +e -ae 解析(1)f ′(x)=lnx +1,x>0,由f ′(x)=0,得x =1e .所以f(x)所以x =1e 是函数f(x)的极小值点,极大值点不存在.(2)g(x)=xlnx -a(x -1),则g ′(x)=lnx +1-a ,由g ′(x)=0,得x =e a -1.所以在区间(0,e a -1)上,g(x)单调递减,在区间(e a -1,+∞)上,g(x)单调递增.当e a -1≤1,即a ≤1时,在区间[1,e]上,g(x)单调递增,所以g(x)的最小值为g(1)=0.当1<e a-1<e,即1<a<2时,g(x)的最小值为g(e a-1)=a-e a-1.当e a-1≥e,即a≥2时,在区间[1,e]上,g(x)单调递减,所以g(x)的最小值为g(e)=a+e-ae.综上,当a≤1时,g(x)的最小值为0;当1<a<2时,g(x)的最小值为a-e a-1;当a≥2时,g(x)的最小值为a+e-ae.。
强化训练 导数在函数中的应用1.函数f (x )=e x-e x ,x ∈R 的单调递增区间是( ) A.(0,+∞) B.(-∞,0) C.(-∞,1) D.(1,+∞)答案 D解析 由题意知,f ′(x )=e x-e ,令f ′(x )>0,解得x >1,故选D. 2.函数f (x )=1+x -sin x 在(0,2π)上是( ) A.增函数 B.减函数C.在(0,π)上增,在(π,2π)上减D.在(0,π)上减,在(π,2π)上增 答案 A解析 ∵f ′(x )=1-cos x >0,∴f (x )在(0,2π)上是增函数.3.f (x )为定义在R 上的可导函数,且f ′(x )>f (x ),对任意正实数a ,则下列式子成立的是( )A.f (a )<e af (0) B.f (a )>e af (0) C.f (a )<f 0eaD.f (a )>f 0ea答案 B 解析 令g (x )=f xex,∴g ′(x )=f ′x e x -f x e x ex2=f ′x -f xex>0.∴g (x )在R 上为增函数,又∵a >0, ∴g (a )>g (0),即f aea>f 0e,即f (a )>e af (0).4.函数y =xe x 在[0,2]上的最大值是( )A.1eB.2e 2C.0D.12e 答案 A解析 易知y ′=1-xex ,x ∈[0,2],令y ′>0,得0≤x <1,令y ′<0,得1<x ≤2,所以函数y=x e x 在[0,1)上单调递增,在(1,2]上单调递减,所以y =x e x 在[0,2]上的最大值是1e,故选A. 5.直线y =a 与函数y =x 3-3x 的图象有三个相异的交点,则实数a 的取值范围为( ) A.(-2,2) B.[-2,2] C.[2,+∞) D.(-∞,-2]答案 A解析 考虑数形结合,y =x 3-3x 的导数y ′=3x 2-3=3(x -1)·(x +1),令y ′>0可解得x <-1或x >1,故y =x 3-3x 在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减,函数的极大值为f (-1)=2,极小值为f (1)=-2,大致图象如图所示.而y =a 为一条水平直线,通过图象可得,y =a 介于极大值与极小值之间,则有三个相异交点.可得a ∈(-2,2).6.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,则不等式f (x )-12e x<0的解集为( ) A.⎝⎛⎭⎪⎫-∞,12B.(0,+∞)C.⎝ ⎛⎭⎪⎫12,+∞D.(-∞,0)答案 B解析 构造函数g (x )=f xex, 则g ′(x )=f ′x -f xex,因为f ′(x )<f (x ),所以g ′(x )<0, 故函数g (x )在R 上为减函数,又f (0)=12,所以g (0)=f 0e 0=12, 则不等式f (x )-12e x <0可化为f x e x<12, 即g (x )<12=g (0),所以x >0,即所求不等式的解集为(0,+∞).7.若函数f (x )=x 33-a 2x 2+x +1在区间⎝ ⎛⎭⎪⎫12,3上单调递减,则实数a 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫103,+∞解析 f ′(x )=x 2-ax +1,因为函数f (x )在区间⎝ ⎛⎭⎪⎫12,3上单调递减,所以f ′(x )≤0在区间⎝ ⎛⎭⎪⎫12,3上恒成立,所以⎩⎪⎨⎪⎧f ′⎝ ⎛⎭⎪⎫12≤0,f ′3≤0,即⎩⎪⎨⎪⎧14-a 2+1≤0,9-3a +1≤0,解得a ≥103,所以实数a 的取值范围为⎣⎢⎡⎭⎪⎫103,+∞.8.若函数f (x )=x ln x -a2x 2-x +1(a >0)有两个极值点,则实数a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫0,1e 解析 因为f (x )=x ln x -a2x 2-x +1(x >0),所以f ′(x )=ln x -ax ,令h (x )=f ′(x ),则h ′(x )=1x-a =0,得f ′(x )有极大值点x =1a,由于x →0时f ′(x )→-∞;当x →+∞时,f ′(x )→-∞, 因此f (x )要有两个极值点, 只要f ′⎝ ⎛⎭⎪⎫1a =ln 1a -1>0,解得0<a <1e . 9.若函数 f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是________. 答案 [-3,0)解析 由题意,得f ′(x )=x 2+2x =x (x +2), 故f (x )在(-∞,-2),(0,+∞)上是增函数, 在(-2,0)上是减函数,作出其图象如图所示,令13x 3+x 2-23=-23,得x =0或x =-3,则结合图象可知,⎩⎪⎨⎪⎧-3≤a <0,a +5>0,解得a ∈[-3,0).10.已知函数f (x )=e x-2x +a 有零点,则实数a 的取值范围是________________. 答案 (-∞,2ln2-2]解析 由原函数有零点,可将问题转化为方程e x-2x +a =0有解问题,即方程a =2x -e x有解.令函数g (x )=2x -e x,则g ′(x )=2-e x, 令g ′(x )=0,得x =ln2,所以g (x )在(-∞,ln2)上是增函数,在(ln2,+∞)上是减函数, 所以g (x )的最大值为g (ln2)=2ln2-2, 因此,a 的取值范围就是函数g (x )的值域, 所以a ∈(-∞,2ln2-2].11.已知函数f (x )=ln x +a (1-x )在(2,+∞)上为单调函数,求实数a 的取值范围. 解 方法一 f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0,所以f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,所以当a ≤0时,f (x )在(0,+∞)上单调递增,符合要求;当a >0时,f (x )在⎝ ⎛⎭⎪⎫1a,+∞上单调递减,则2≥1a ,即a ≥12.所以实数a 的取值范围是(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞. 方法二 f (x )的定义域为(0,+∞),f ′(x )=1x-a .由题意得,当x ∈(2,+∞)时,f ′(x )≥0恒成立或f ′(x )≤0恒成立,即a ≤1x 恒成立或a ≥1x恒成立.∵x ∈(2,+∞),∴0<1x <12,∴a ≤0或a ≥12,∴实数a 的取值范围是(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞.12.(2020·东北四校联考)已知f (x )=1x +e xe -3,F (x )=ln x +exe -3x +2.(1)判断f (x )在(0,+∞)上的单调性; (2)判断函数F (x )在(0,+∞)上零点的个数.解 (1)f ′(x )=-1x 2+e x e =x 2e x-ee x2, 令g (x )=x 2e x-e ,x >0, 则g ′(x )=e x(x 2+2x )>0, 即g (x )在(0,+∞)上单调递增,又g (1)=0,所以当0<x <1时,g (x )<g (1)=0,则f ′(x )<0,当x >1时,g (x )>0,则f ′(x )>0, 所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增. (2)F ′(x )=f (x )=1x +exe -3,且f (1)=-1<0,由(1)得∃x 1,x 2,满足0<x 1<1<x 2,使得f (x )在(0,x 1)上大于0,在(x 1,x 2)上小于0,在(x 2,+∞)上大于0, 即F (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增, 而F (1)=0,x →0时,F (x )→-∞,x →+∞时,F (x )→+∞,画出函数F (x )图象的草图,如图所示.故F (x )在(0,+∞)上的零点有3个.13.已知函数f (x )=sin x -13x ,x ∈[0,π],cos x 0=13,x 0∈[0,π].①f (x )的最大值为f (x 0); ②f (x )的最小值为f (x 0); ③f (x )在[0,x 0]上是减函数; ④f (x )在[x 0,π]上是减函数.那么上面命题中真命题的序号是________. 答案 ①④解析 f ′(x )=cos x -13,由f ′(x )=0,得cos x =13,即x =x 0,因为x 0∈[0,π],当0<x <x 0时,f ′(x )>0;当x 0<x <π时,f ′(x )<0,所以f (x )的最大值为f (x 0),f (x )在[x 0,π]上是减函数.14.(2019·泰安模拟)已知函数f (x )=12e 2x +(a -e)e x-a e x +b (其中e 为自然对数的底数)在x =1处取得极大值,则实数a 的取值范围是________. 答案 (-∞,-e)解析 由题意可知f ′(x )=e 2x+(a -e)e x -a e =(e x +a )·(e x-e),当a ≥0时,若x >1,则f ′(x )>0,若x <1,则f ′(x )<0,所以f (x )在x =1处取得极小值,不符合题意.当a <0时,令f ′(x )=0,得x =1或x =ln(-a ),为使f (x )在x =1处取极大值,则ln(-a )>1,即a <-e.15.(2019·贵阳、安顺模拟)不等式kx ≥sin x2+cos x (x >0)恒成立,则k 的最小值为( )A.13B.23C.14D.1 答案 A解析 令h (x )=kx -sin x2+cos x (x >0),则h ′(x )=k -1+2cos x2+cos x2,令t =cos x ,则t ∈[-1,1], 令g (t )=1+2t 2+t 2,则g ′(t )=-2t -12+t3≥0,∴g (t )在[-1,1]上单调递增, ∴g (t )的值域为⎣⎢⎡⎦⎥⎤-1,13,∴①当k ≥13时,h ′(x )≥0,此时h (x )单调递增,∴h (x )>h (0)=0,符合条件;②当k ≤0时,因为h ⎝ ⎛⎭⎪⎫π2=k ·π2-12<0,不符合条件; ③当0<k <13时,对于0<x <π2,h (x )<kx -sin x3,令F (x )=kx -sin x 3,则F ′(x )=k -cos x3,存在x 0∈⎝⎛⎭⎪⎫0,π2,使得x ∈(0,x 0)时,F ′(x )<0, ∴F (x )在(0,x 0)上单调递减, ∴F (x 0)<F (0)=0,即当x ∈(0,x 0)时,h (x )<0,不符合条件,综上,k 的取值范围为⎣⎢⎡⎭⎪⎫13,+∞, ∴k 的最小值为13.16.(2019·辽宁沈阳三校联考)已知函数f (x )=ax -ln xx,a ∈R .(1)若f (x )≥0,求a 的取值范围;(2)若y =f (x )的图象与直线y =a 相切,求a 的值. 解 (1)由题意知,函数f (x )的定义域为(0,+∞). 由f (x )≥0,得ax -ln xx≥0,所以ax ≥ln x x ,又x >0,所以a ≥ln x x2.令g (x )=ln x x 2,则g ′(x )=1-2ln x x3. 令g ′(x )>0,得0<x <e ,令g ′(x )<0,得x > e. 所以当0<x <e 时,g (x )单调递增,当x >e 时,g (x )单调递减.所以当x =e 时,g (x )取得最大值g (e)=12e ,所以a ≥12e ,即a 的取值范围是⎣⎢⎡⎭⎪⎫12e ,+∞. (2)设y =f (x )的图象与直线y =a 相切于点(t ,a ),依题意可得⎩⎪⎨⎪⎧f t=a ,f ′t =0.因为f ′(x )=a -1-ln xx2,所以⎩⎪⎨⎪⎧at -ln tt=a ,a -1-ln t t 2=0,消去a 可得t -1-(2t -1)ln t =0.(*)令h (t )=t -1-(2t -1)ln t ,则h ′(t )=1t-2ln t -1,易知h ′(t )在(0,+∞)上单调递减,且h ′(1)=0, 所以当0<t <1时,h ′(t )>0,h (t )单调递增, 当t >1时,h ′(t )<0,h (t )单调递减,所以当且仅当t =1时,h (t )=0,即(*)式成立,所以a =1-ln 112=1.。
3.3 利用导数研究函数的极值、最值核心考点·精准研析考点一用导数解决函数的极值问题命题精解读考什么:(1)考查求值、解方程、解不等式等问题.(2)考查数学运算、直观想象、逻辑推理的核心素养及数形结合、分类与整合等数学思想.怎么考:与函数图象、方程、不等式、函数单调性等知识结合考查求函数极值、知函数极值求参数等问题.新趋势:函数极值、导数的几何意义及函数图象等知识交汇考查为主学霸好方法1.求函数f(x)极值的一般解题步骤(1)确定函数的定义域;(2)求导数f ′(x);(3)解方程f ′(x)=0,求出函数定义域内的所有根;(4)列表检验f ′(x)在f ′(x)=0的根x0左右两侧值的符号.2.已知函数极值点或极值求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.(2)验证:因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.由图象判断函数的极值【典例】(2020·咸阳模拟)已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=________.【解析】f′(x)=3ax2+2bx+c;根据图象知,x=-1,2是f(x)的两个极值点;所以x=-1,2是方程3ax2+2bx+c=0的两实数根;根据根与系数的关系得,所以2b=-3a,c=-6a,所以===1.答案:1由函数f(x)的图象确定极值点的主要依据是什么?提示:局部最高(低)点的横坐标是极大(小)值点.求已知函数的极值【典例】已知函数f(x)=x-1+(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1, f(1))处的切线平行于x轴,求a的值.(2)求函数f(x)的极值.【解析】(1)由f(x)=x-1+,得f ′(x)=1-.又曲线y=f(x)在点(1, f(1))处的切线平行于x轴,所以f ′(1)=0,即1-=0,解得a=e.(2)f ′(x)=1-,当a≤0时,f ′(x)>0,f(x)为(-∞,+∞)上的增函数,所以函数f(x)无极值. 当a>0时,令f ′(x)=0,得e x=a,即x=ln a,当x∈(-∞,ln a)时, f ′(x)<0;当x∈(ln a,+∞)时, f ′(x)>0,所以f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增,故f(x)在x=ln a处取得极小值且极小值为f(ln a)=ln a,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,f(x)在ln a处得极小值ln a,无极大值.若函数f(x)在区间[a,b]内有极值,则极值点有可能是a或b吗?f(x)在(a,b)内可以是单调函数吗?提示:若函数y=f(x)在区间[a,b]内有极值,那么y=f(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值,且极值点一定不是a和b.已知函数极值情况求参数值(范围)【典例】设a∈R,若函数y=x+aln x在区间上有极值点,则a的取值范围为( ) A.B.C.∪(e,+∞)D.(-∞,-e)∪【解析】选B.因为函数y=f(x)=x+aln x在区间上有极值点,所以y′在区间上有零点.f′(x)=1+=(x>0).所以f′·f′(e)<0,所以(ea+1)<0,解得-e<a<-,所以a的取值范围为.已知函数极值求参数,常转化为什么问题?提示:常转化为方程的根和函数零点的问题.1.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)【解析】选D.由题图可知,当x<-2时,1-x>3,此时f′(x)>0;当-2<x<1时,0<1 -x<3,此时f′(x)<0;当1<x<2时,-1<1-x<0,此时f′(x)<0;当x>2时,1-x<-1,此时f′(x)>0,由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.2.设函数f(x)=ln x+ax2-x,若x=1是函数f(x)的极大值点,则函数f(x)的极小值为________.【解析】函数f(x)=ln x+ax2-x,函数定义域为(0,+∞),f′(x)=+2ax-.若x=1是函数f(x)的极大值点,则f′(1)=0,解得a=;所以f(x)=ln x+x2-x,f′(x)=+x-==;当f′(x)>0时,0<x<1或x>2;函数在(0,1)和(2,+∞)上单调递增;当f′(x)<0时,1<x<2,函数在(1,2)上单调递减;所以函数在x=1时有极大值;函数在x=2时有极小值为f(2)=ln 2-2.答案:ln 2-23.(2019·荆门模拟)已知函数f(x)=x2+2x-2xe x.求函数f(x)的极值.【解析】因为函数f(x)=x2+2x-2xe x(x∈R),所以f′(x)=2x+2-2e x-2xe x=(2x+2)(1-e x),由f′(x)=0,得x=-1或x=0,列表讨论,得:x (-∞,-1) -1 (-1,0) 0 (0,+∞) f′(x) - 0 + 0 -f(x) ↘极小值↗极大值↘所以当x=-1时,f(x)极小值=f(-1)=1-2+2×=-1,当x=0时,f(x)极大值=f(0)=0.设函数f(x)=e x(sin x-cos x)(0≤x≤2 016π),则函数f(x)的各极大值之和为( ) A. B.C. D.【解析】选D.因为函数f(x)=e x(sin x-cos x),所以f′(x)=[e x(sin x-cos x)]′=e x(sin x-cos x)+e x(cos x+sin x)=2e x sin x;令f′(x)=0,解得x=kπ(k∈Z);所以当2kπ<x<2kπ+π时,f′(x)>0,原函数单调递增,当2kπ+π<x<2kπ+2π时,f′(x)<0,原函数单调递减;所以当x=2kπ+π时,函数f(x)取得极大值,此时f(2kπ+π)=e2kπ+π[sin (2kπ+π)-cos(2kπ+π)]=e2kπ+π;又因为0≤x≤2 016π,所以0和2 016π都不是极值点,所以函数f(x)的各极大值之和为:eπ+e3π+e5π+…+e2 015π=.考点二用导数解决函数的最值问题【典例】(2019·黄冈模拟)已知函数f(x)=-ax,曲线y=f(x)在x=1处的切线经过点(2,-1).(1)求实数a的值;(2)设b>1,求f(x)在区间上的最大值和最小值.【解题导思】序号题目拆解(1) 利用导数的几何意义求参数利用求导的方法求出函数在切点处的切线斜率,再利用切点坐标与切线的斜率之间的关系求出a 的值(2) 研究函数f(x)的单调性利用对x分类讨论的方法,结合b的取值范围,用求导的方法判断函数的单调性求函数f(x)的最值从而求出函数的极值,进而求出函数的最值【解析】(1)f(x)的导函数为f′(x)=⇒f′(1)==1-a, 依题意,有=1-a,即=1-a,解得a=1.(2)由(1)得f′(x)=,当0<x<1时,1-x2>0,-ln x>0,所以f′(x)>0,故f(x)在(0,1)上单调递增;当x>1时,1-x2<0,-ln x<0,所以f′(x)<0,故f(x)在(1,+∞)上单调递减,所以f(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减. 因为0<<1<b,所以f(x)的最大值为f(1)=-1.设h(b)=f(b)-f=ln b-b+,其中b>1则h′=ln b>0,故h(b)在区间(1,+∞)上单调递增.当b→1时,h(b)→0⇒h(b)>0⇒f(b)>f.故f(x)的最小值为f=-bln b-.求函数f(x)在闭区间[a,b]内的最大值和最小值的思路(1)若所给的闭区间[a,b]不含参数,则只需对函数f(x)求导,并求f ′(x)=0在区间[a,b]内的根,再计算使导数等于零的根的函数值,把该函数值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.(2)若所给的闭区间[a,b]含参数,则需对函数f(x)求导,通过对参数分类讨论,判断函数的单调性,从而得到函数f(x)的最值.(2019·南昌模拟)设函数f(x)=ln x-2mx2-n(m,n∈R).(1)讨论f(x)的单调性.(2)若f(x)有最大值-ln 2,求m+n的最小值.【解析】(1)函数f(x)的定义域为(0,+∞),f′(x)=-4mx=,当m≤0时,f′(x)>0,所以f(x)在(0,+∞)上单调递增;当m>0时,令f′(x)>0,得0<x<,令f′(x)<0得x>,所以f(x)在上单调递增,在上单调递减.(2)由(1)知,当m>0时,f(x)在上单调递增,在上单调递减.所以f(x)max=f=ln-2m·-n=-ln 2-ln m--n=-ln 2,所以n=-ln m-,所以m+n=m-ln m-,令h(x)=x-ln x-(x>0),则h′(x)=1-=,所以h(x)在上单调递减,在上单调递增,所以h(x)min=h=ln 2,所以m+n的最小值为ln 2.考点三用导数解决生活中的优化问题【典例】某食品厂进行蘑菇的深加工,每千克蘑菇的成本为20元,并且每千克蘑菇的加工费为t元(t为常数,且2≤t≤5).设该食品厂每千克蘑菇的出厂价为x元(25≤x≤40),根据市场调查,日销售量q千克与e x成反比,当每千克蘑菇的出厂价为30元时,日销售量为100千克.(1)求该工厂的每日利润y元与每千克蘑菇的出厂价x元的函数关系式.(2)若t=5,当每千克蘑菇的出厂价x为多少时,该工厂的每日利润y最大?并求最大值.【解题导思】序号联想解题待定系数法求函(1)根据已知条件得出日销量函数表达式q=(k≠0),将x=30,q=100代入日销量函数数关系表达式中求出k的值,进而得到利润y与出厂价x之间的函数关系式.通过求函数最值,(2)将t=5代入函数中,根据导数求得函数的单调区间,进而得函数的最值.解答实际问题【解析】(1)设日销量q=(k≠0),则=100,所以k=100e30,所以日销量q=,所以y=(25≤x≤40).(2)当t=5时,y=,y′=.由y′≥0得x≤26,由y′≤0,得x≥26,所以y在区间[25,26]上单调递增,在区间[26,40]上单调递减,所以当x=26时,y max=100e4, 即当每千克蘑菇的出厂价为26元时,该工厂的每日利润最大,最大值为100e4元.利用导数解决生活中的优化问题的四个步骤(1)分析实际问题中各量之间的关系,建立实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x).(2)求函数的导数f′(x),解方程f′(x)=0.(3)比较函数在区间端点和f′(x)=0处的点的函数值的大小,最大(小)者为最大(小)值.(4)回归实际问题作答.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x-5)2,其中2<x<5,a为常数.已知销售价格为4元/千克时,每日可售出该商品10.5千克.(1)求a的值;(2)若该商品的成本为2元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.【解析】(1)因为x=4时,y=10.5,所以+10=10.5,所以a=1.(2)由(1)可知,该商品每日的销售量y=+10(x-5)2,所以商场每日销售该商品所获得的利润f(x)=(x-2)=1+10(x-2)(x-5)2,2<x<5.从而,f′(x)=10[(x-5)2+2(x-2)(x-5)]=30(x-3)(x-5).于是,当x变化时,f′(x),f(x)的变化情况如表:x (2,3) 3 (3,5) f′(x) + 0 -f(x) 单调递增极大值41 单调递减由表可得,x=3是函数f(x)在区间(2,5)内的极大值点,也是最大值点.所以当x=3时,函数f(x)取得最大值,且最大值等于41.答:当销售价格为3元/千克时,商场每日销售该商品所获得的利润最大.。