人教版八年级数学上册易错易混专题:等腰三角形中易漏解或多解的问题
- 格式:ppt
- 大小:1.22 MB
- 文档页数:9
最新初二上数学期末专题复习试题及答案全套一.类比归纳专题:三角形中内、外角的有关计算——全方位求角度◆类型一已知角的关系,直接利用内角和或结合方程思想1.在△ABC中,∠A-∠B=35°,∠C=55°,则∠B等于()A.50°B.55°C.45°D.40°2.在△ABC中,已知∠A=2∠B=3∠C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.形状无法确定3.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.4.如图,△ABC中,∠B=26°,∠C=70°,AD平分∠BAC,AE⊥BC于E,EF⊥AD 于F,求∠DEF的度数.◆类型二综合内外角的性质5.如图,BD、CD分别平分∠ABC和∠ACE,∠A=60°,则∠D的度数是()A.20°B.30°C.40°D.60°第5题图第6题图6.如图,∠B=20°,∠A=∠C=40°,则∠CDE的度数为________.7.如图,AD平分∠BAC,∠EAD=∠EDA.(1)求证:∠EAC=∠B;(2)若∠B=50°,∠CAD∶∠E=1∶3,求∠E的度数.◆类型三在三角板或直尺中求角度8.将一副三角板按如图所示摆放,图中∠α的度数是()A.120°B.105°C.90°D.75°9.将两个含30°和45°的直角三角板如图放置,则∠α的度数是()A.10°B.15°C.20°D.25°10.一副三角板如图所示叠放在一起,则图中∠α的度数是________.11.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为________.◆类型四与平行线结合12.如图,已知B、C、E在同一直线上,且CD∥AB,若∠A=75°,∠B=40°,则∠ACE 的度数为()A.35°B.40°C.115°D.145°13.如图,AB∥CD,直线PQ分别交AB、CD于点F、E,EG是∠DEF的平分线,交AB于点G.若∠PF A=40°,那么∠EGB等于()A.80°B.100°C.110°D.120°14.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°,则∠BDE=________.15.如图,在△ABC中,点D在BC上,点E在AC上,AD交BE于F.已知EG∥AD 交BC于G,EH⊥BE交BC于H,∠HEG=55°.(1)求∠BFD的度数;(2)若∠BAD=∠EBC,∠C=44°,求∠BAC的度数.◆类型五与截取或折叠相关16.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.∠A=∠1-∠2B.2∠A=∠1-∠2C.3∠A=2∠1-∠2D.3∠A=2(∠1-∠2)17.如图,Rt△ABC中,∠ACB=90°,∠A=52°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=________.第17题图第18题图18.在△ABC中,∠B=70°,若沿图中虚线剪去∠B,则∠1+∠2等于________.19.如图.(1)将△ABC纸片沿DE折叠成图①,此时点A落在四边形BCDE内部,则∠A与∠1、∠2之间有一种数量关系保持不变,请找出这种数量关系并说明理由.(2)若折成图②或图③,即点A落在BE或CD上时,分别写出∠A与∠2、∠A与∠1之间的关系式(不必证明);(3)若折成图④,写出∠A与∠1、∠2之间的关系式(不必证明).参考答案与解析1.C 2.C3.解:设∠A =x ,则∠C =∠ABC =2x .根据三角形内角和为180°知∠C +∠ABC +∠A =180°,即2x +2x +x =180°,∴x =36°,∴∠C =2x =72°.在Rt △BDC 中,∠DBC =90°-∠C =90°-72°=18°.方法点拨:三角形中给出的条件含比例且不易直接求出时,一般需要设未知数,根据三角形的内角和列方程求解.4.解:∵△ABC 中,∠B =26°,∠C =70°,∴∠BAC =180°-∠B -∠C =180°-26°-70°=84°.∵AD 平分∠BAC ,∴∠DAC =12∠BAC =12×84°=42°.在△ACE 中,∠CAE =90°-∠C =90°-70°=20°,∴∠DAE =∠DAC -∠CAE =42°-20°=22°.∵∠DEF +∠AEF =∠AEF +∠DAE =90°,∴∠DEF =∠DAE =22°.5.B 6.80°7.(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠CAD .又∵∠EAD =∠EDA ,∴∠EAC =∠EAD -∠CAD =∠EDA -∠BAD =∠B ;(2)解:设∠CAD =x °,则∠E =3x °.由(1)知∠EAC =∠B =50°,∴∠EAD =∠EDA =(x +50)°.在△EAD 中,∵∠E +∠EAD +∠EDA =180°,∴3x °+2(x +50)°=180°,解得x =16.∴∠E =48°.8.B 9.B 10.75° 11.35° 12.C 13.C 14.15° 15.解:(1)∵EH ⊥BE ,∴∠BEH =90°.∵∠HEG =55°,∴∠BEG =∠BEH -∠HEG =35°.又∵EG ∥AD ,∴∠BFD =∠BEG =35°;(2)∵∠BFD =∠BAD +∠ABE ,∠BAD =∠EBC ,∴∠BFD =∠EBC +∠ABE =∠ABC .由(1)可知∠BFD =35°,∴∠ABC =35°.∵∠C =44°,∴∠BAC =180°-∠ABC -∠C =180°-35°-44°=101°.16.B 17.14° 18.250°19.解:(1)延长BE 、CD ,交于点P ,则△BCP 即为折叠前的三角形.由折叠的性质知∠DAE =∠DPE .连接AP .由三角形的外角性质知∠1=∠EAP +∠EP A ,∠2=∠DAP +∠DP A ,则∠1+∠2=∠DAE +∠DPE =2∠DAE ,即∠1+∠2=2∠A ;(2)图②中,∠2=2∠A ;图③中,∠1=2∠A ; (3)图④中,∠2-∠1=2∠A .二.类比归纳专题:与三角形的高、角平分线有关的计算模型模型1:求同一顶点的角平分线与高线的夹角的度数1.如图,AD ,AE 分别是△ABC 的高和角平分线. (1)已知∠B =40°,∠C =60°,求∠DAE 的度数;(2)设∠B =α,∠C =β(α<β),请用含α,β的代数式表示∠DAE ,并证明.模型2:求两内角平分线的夹角的度数 2.如图,△ABC 中,∠ABC 和∠ACB 的平分线交于点O .若∠BOC =120°,则∠A =_____.3.如图,△ABC 中,点P 是∠ABC ,∠ACB 的平分线的交点. (1)若∠A =80°,求∠BPC 的度数.(2)有位同学在解答(1)后得出∠BPC =90°+12∠A 的规律,你认为正确吗?请给出理由.模型3:求一内角平分线与一外角平分线的夹角的度数4.如图,在△ABC 中,BA 1平分∠ABC ,CA 1平分∠ACD ,BA 1,CA 1相交于点A 1. (1)求证:∠A 1=12∠A ;(2)如图,继续作∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;作∠A 2BC 和∠A 2CD 的平分线交于点A 3,得∠A 3……依此得到∠A 2017,若∠A =α,则∠A 2017=_____________.模型4:求两外角平分线的夹角的度数【方法5】5.(1)如图,BO 平分△ABC 的外角∠CBD ,CO 平分△ABC 的外角∠BCE ,则∠BOC 与∠A 的关系为____________;(2)请就(1)中的结论进行证明.参考答案与解析1.解:(1)∵∠B =40°,∠C =60°,∴∠BAC =180°-∠B -∠C =180°-40°-60°=80°.∵AE 是角平分线,∴∠BAE =12∠BAC =12×80°=40°.∵AD 是高,∴∠BAD =90°-∠B=90°-40°=50°,∴∠DAE =∠BAD -∠BAE =50°-40°=10°.(2)∠DAE =12(β-α),证明如下:∵∠B =α,∠C =β(α<β),∴∠BAC =180°-(α+β).∵AE是角平分线,∴∠BAE =12∠BAC =90°-12(α+β).∵AD 是高,∴∠BAD =90°-∠B =90°-α,∴∠DAE =∠BAD -∠BAE =90°-α-⎣⎡⎦⎤90°-12(α+β)=12(β-α). 2.60°3.解:(1)∵BP ,CP 为角平分线,∴∠PBC +∠PCB =12(∠ABC +∠ACB )=12(180°-∠A )=12×(180°-80°)=50°,∴∠BPC =180°-(∠PBC +∠PCB )=180°-50°=130°. (2)正确,理由如下:∵BP ,CP 为角平分线,∴∠PBC +∠PCB =12(∠ABC +∠ACB )=12(180°-∠A )=90°-12∠A ,∴∠BPC =180°-(∠PBC +∠PCB )=180°-⎝⎛⎭⎫90°-12∠A =90°+12∠A . 4.(1)证明:∵CA 1平分∠ACD ,∴∠A 1CD =12∠ACD =12(∠A +∠ABC ).又∵∠A 1CD=∠A 1+∠A 1BC ,∴∠A 1+∠A 1BC =12(∠A +∠ABC ).∵BA 1平分∠ABC ,∴∠A 1BC =12∠ABC ,∴12∠ABC +∠A 1=12(∠A +∠ABC ),∴∠A 1=12∠A .(2)α22017 5.(1)∠BOC =90°-12∠A(2)证明:如图,∵BO ,CO 分别是△ABC 的外角∠DBC ,∠ECB 的平分线,∴∠DBC =2∠1=∠ACB +∠A ,∠ECB =2∠2=∠ABC +∠A ,∴2∠1+2∠2=2∠A +∠ABC +∠ACB =∠A +180°,∴∠1+∠2=12∠A +90°.又∵∠1+∠2+∠BOC =180°,∴∠BOC =180°-(∠1+∠2)=90°-12∠A .三. 解题技巧专题:利用全等解决问题的模型与技巧——明模型,先观察,再猜想,后证◆类型一 全等三角形的基本模型1.如图,AC =AD ,BC =BD ,∠A =50°,∠B =90°,则∠C =________.第1题图 第2题图2.如图,锐角△ABC 的高AD ,BE 相交于F ,若BF =AC ,BC =7,CD =2,则AF 的长为_________.3.如图,点A ,D ,C ,E 在同一条直线上,AB ∥EF ,AB =EF ,∠B =∠F ,AE =10,AC =6,则CD 的长为 ( )A .2B .4C .4.5D .34.如图,在△ABC ,△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一直线上,连接BD 交AC 于点F .(1)求证:△BAD ≌△CAE ;(2)猜想BD ,CE 有何特殊位置关系,并说明理由.◆类型二证明线段间的等量关系一、等线段代换5.如图,Rt△ABC中,AB=AC,∠BAC=90°,直线l为经过点A的任一直线,BD⊥l 于D,CE⊥l于E,若BD>CE,试问:(1)AD与CE的大小关系如何?请说明理由;(2)线段BD,DE,CE之间的数量关系如何?请说明理由.二、截长补短法6.如图,在四边形ABDE中,C是BD边的中点,若AC平分∠BAE,∠ACE=90°,猜想线段AE、AB、DE的长度满足的数量关系,并证明.三、倍长中线法7.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()A.6<AD<8B.2<AD<14C.1<AD<7D.无法确定参考答案与解析1.110° 2.3 3.A4.(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD =∠CAE.在△BAD和△CAE中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS).(2)解:BD⊥CE.理由如下:由(1)可知△BAD≌△CAE,∴∠ABD=∠ACE.∵∠BAC=90°,∴∠ABD+∠AFB=90°.又∵∠AFB=∠DFC,∴∠ACE+∠DFC=90°,∴∠BDC=90°,即BD⊥CE.5.解:(1)AD=CE.理由如下:∵BD⊥l于D,CE⊥l于E,∴∠BDA=∠AEC=90°,∴∠CAE+∠ACE=90°.∵∠BAC=∠90°,∴∠BAD+∠CAE=90°,∴∠BAD=∠ACE.又∵AB=AC,∴△ABD≌△CAE(AAS),∴AD=CE.(2)BD=DE+CE.理由如下:由(1)可知△ABD≌△CAE,∴BD=AE,AD=CE.又∵AE =DE+AD,∴BD=DE+CE.6.解:AE=AB+DE.证明如下:如图,在AE上截取AF=AB,并连接CF.∵AC平分∠BAE,∴∠BAC=∠CAF.又∵AC=AC,∴△BAC≌△F AC(SAS),∴BC=FC,∠ACB=∠ACF.∵∠ACE=90°,∴∠ACF+∠FCE=90°,∠ACB+∠DCE=90°,∴∠FCE=∠DCE.又∵C为BD的中点,∴BC=DC,∴DC=FC.又∵CE=CE,∴△FCE≌△DCE(SAS),∴DE =FE,∴AE=AF+FE=AB+DE.7.C四.难点探究专题:动态变化中的三角形全等——以“静”制“动”,不离其宗类型一动点变化1.如图,Rt△ABC中,∠C=90°,AC=6,BC=3,PQ=AB,点P与点Q分别在AC 和AC的垂线AD上移动,则当AP=_________时,△ABC和△APQ全等.2.如图,△ABC中,AB=AC=12cm,∠B=∠C,BC=8cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v cm/s,则当△BPD与△CQP全等时,v的值为____________【提示:三角形中有两个角相等,则这两个角所对的边相等】.3.(2016·达州中考)△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.【方法11】(1)观察猜想:如图①,当点D在线段BC上时,①BC与CF的位置关系为_______;②线段BC,CD,CF之间的数量关系为___________ (将结论直接写在横线上).(2)数学思考:如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.◆类型二图形变换4.如图甲,已知A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,且AB=CD,连接BD.(1)试问OE=OF吗?请说明理由;(2)若△DEC沿AC方向平移到如图乙的位置,其余条件不变,上述结论是否仍成立?请说明理由.5.如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.参考答案与解析1.3或6解析:∵△ABC和△APQ全等,AB=PQ,∴有△ABC≌△QP A或△ABC≌△PQA.当△ABC≌△QP A时,则有AP=BC=3;当△ABC≌△PQA时,则有AP =AC=6,∴当AP=3或6时,△ABC和△APQ全等,故答案为3或6.2.2或3解析:当BD=PC时,△BPD与△CQP全等.∵点D为AB的中点,∴BD=12AB =6cm ,∴PC =6cm ,∴BP =8-6=2(cm).∵点P 在线段BC 上以2cm/s 的速度由B 点向C 点运动,∴运动时间为1s.∵△DBP ≌△PCQ ,∴CQ =BP =2cm ,∴v =2÷1=2(cm/s); 当BD =CQ 时,△BDP ≌△QCP .∴PB =PQ ,∠B =∠CQP .又∵∠B =∠C ,∴∠C =∠CQP ,∴PQ =PC ,∴PB =PC .∵BD =6cm ,BC =8cm ,PB =PC ,∴QC =6cm ,∴BP =4cm ,∴运动时间为4÷2=2(s),∴v =6÷2=3(cm/s),故答案为2或3.3.解:(1)①垂直 ②BC =CD +CF(2)CF ⊥BC 成立;BC =CD +CF 不成立,正确结论:CD =CF +BC .证明如下: ∵正方形ADEF 中,AD =AF ,∠DAF =∠BAC =90°,∴∠BAD =∠CAF . 在△DAB 与△F AC 中,⎩⎪⎨⎪⎧AD =AF ,∠BAD =∠CAF ,AB =AC ,∴△DAB ≌△F AC (SAS),∴∠ABD =∠ACF ,DB=CF .∵∠ACB =∠ABC =45°,∴∠ABD =180°-45°=135°,∴∠BCF =∠ACF -∠ACB =∠ABD -∠ACB =90°,∴CF ⊥BC .∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .4.解:(1)OE =OF .理由如下:∵DE ⊥AC ,BF ⊥AC ,∴∠DEC =∠BF A =90°.∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE .在Rt △ABF 和Rt △CDE 中,⎩⎪⎨⎪⎧AB =CD ,AF =CE ,∴Rt △ABF ≌Rt △CDE (HL),∴BF =DE .在△BFO 和△DEO 中,⎩⎪⎨⎪⎧∠BFO =∠DEO ,∠BOF =∠DOE ,BF =DE ,∴△BFO ≌△DEO (AAS),∴OE =OF .(2)结论依然成立.理由如下:∵AE =CF ,∴AE -EF =CF -EF ,∴AF =CE .同(1)可得△BFO ≌△DEO ,∴FO =EO ,即结论依然成立.5.(1)证明:∵将线段CD 绕点C 按顺时针方向旋转90°后得CE ,∴CD =CE ,∠DCE =90°.∵∠ACB =90°,∴∠BCD =90°-∠ACD =∠FCE .在△BCD 和△FCE 中,⎩⎪⎨⎪⎧CB =CF ,∠BCD =∠FCE ,CD =CE ,∴△BCD ≌△FCE (SAS).(2)解:由(1)可知∠DCE =90°,△BCD ≌△FCE ,∴∠BDC =∠E .∵EF ∥CD ,∴∠E =180°-∠DCE =90°,∴∠BDC =90°.5.易错易混专题:等腰三角形中易漏解或多解的问题——易错归纳,各个击破◆类型一求长度时忽略三边关系1.(2016·贺州中考)一个等腰三角形的两边长分别是4,8,则它的周长为()A.12 B.16C.20 D.16或202.学习了三角形的有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和交流后,小明同学举手说:“另两条边长为3、6或4.5、4.5.”你认为小明的回答是否正确:_____,理由是_____________________.3.已知等腰三角形中,一腰上的中线将三角形的周长分成6cm和10cm两部分,求这个三角形的腰长和底边的长.◆类型二当腰或底不明求角度时没有分类讨论4.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.100°B.40°C.40°或100°D.60°5.等腰三角形的一个外角等于100°,则与这个外角不相邻的两个内角的度数分别为()A.40°,40°B.80°,20°C.80°,80°D.50°,50°或80°,20°6.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为_____.◆类型三三角形的形状不明时没有分类讨论7.等腰三角形的一个角是50°,则它一腰上的高与底边的夹角是()A.25°B.40°C.25°或40°D.不能确定8.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到的锐角为50°,则∠B等于_____.9.如果两个等腰三角形的腰长相等、面积也相等,那么我们把这两个等腰三角形称为一对合同三角形.已知一对合同三角形的底角分别为x°和y°,则_________(用含x的代数式表示).10.已知等腰三角形一腰上的高与另一腰的夹角的度数为20°,求顶角的度数.◆类型四 一边确定,另两边不确定,求等腰三角形个数时漏解11.(2016·武汉中考)平面直角坐标系中,已知A (2,2)、B (4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( ) A .5 B .6 C .7 D .812.如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A ,B ,请在此点阵图中找一个阵点C ,使得以点A ,B ,C 为顶点的三角形是等腰三角形,则符合条件的C 点有_____个.参考答案与解析1.C2.不正确 没考虑三角形三边关系3.解:设腰长为x cm ,①腰长与腰长的一半是6cm 时,x +12x =6,解得x =4,∴底边长=10-12×4=8(cm).∵4+4=8,∴4cm 、4cm 、8cm 不能组成三角形;②腰长与腰长的一半是10cm 时,x +12x =10,解得x =203,∴底边长=6-12×203=83(cm),∴三角形的三边长为203cm 、203cm 、83cm ,能组成三角形.综上所述,三角形的腰长为203cm ,底边长为83cm.4.C 5.D 6.120°或20° 7.C 8.70°或20° 9.x 或90-x 解析:∵两个等腰三角形的腰长相等、面积也相等,∴腰上的高相等.①当这两个三角形都是锐角或钝角三角形时,y =x ,②当两个三角形一个是锐角三角形,一个是钝角三角形时,y =90-x .故答案为x 或90-x .10.解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在其外部.如图①所示,得顶角∠ACB =∠D +∠DAC =90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,如图②所示,故顶角∠A =90°-∠ABD =90°-20°=70°.综上所述,顶角的度数为110°或70°.11.A 12.56.解题技巧专题:等腰三角形中辅助线的作法——形成精准思维模式,快速解题◆类型一 利用“三线合一”作辅助线 一、已知等腰作垂线(或中线、角平分线)1.如图,在△ABC 中,AB =AC ,AE ⊥BE 于点E ,且BE =12BC ,若∠EAB =20°,则∠BAC =__________.2.如图,在△ABC 中,AB =AC ,D 为BC 边的中点,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .(1)求证:DE =DF ; (2)若∠A =90°,图中与DE 相等的有哪些线段(不说明理由)?3.如图,△ABC 中,AC =2AB ,AD 平分∠BAC 交BC 于D ,E 是AD 上一点,且EA =EC ,求证:EB ⊥AB .二、构造等腰三角形4.如图,△ABC的面积为1cm2,AP垂直∠ABC的平分线BP于P,则△PBC的面积为( )A.0.4cm2B.0.5cm2C.0.6cm2D.0.7cm25.如图,已知△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD.求证:BD=2CE.◆类型二巧用等腰直角三角形构造全等6.(2016·铜仁中考)如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.◆类型三等腰(边)三角形中截长补短或作平行线构造全等7.如图,已知AB=AC,∠A=108°,BD平分∠ABC交AC于D,求证:BC=AB+CD.8.如图,过等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,且P A=CQ,连PQ交AC边于D.(1)求证:PD=DQ;(2)若△ABC的边长为1,求DE的长.参考答案与解析1.40°2.(1)证明:如图,连接AD.∵AB=AC,D是BC的中点,∴∠EAD=∠F AD.又∵DE⊥AB,DF⊥AC,∴DE=DF.(2)解:若∠BAC =90°,图中与DE 相等的有线段DF ,AE ,AF ,BE ,CF .3.证明:如图,作EF ⊥AC 于F .∵EA =EC ,∴AF =FC =12AC .∵AC =2AB ,∴AF =AB .∵AD 平分∠BAC ,∴∠BAD =∠CAD .又∵AE =AE ,∴△ABE ≌△AFE (SAS),∴∠ABE =∠AFE =90°.∴EB ⊥AB .4.B5.证明:如图,延长BA 和CE 交于点M .∵CE ⊥BD ,∴∠BEC =∠BEM =90°.∵BD 平分∠ABC ,∴∠MBE =∠CBE .又∵BE =BE ,∴△BME ≌△BCE (ASA),∴EM =EC =12MC .∵△ABC 是等腰直角三角形,∴∠BAC =∠MAC =90°,BA =AC ,∴∠ABD +∠BDA =90°.∵∠BEC =90°,∴∠ACM +∠CDE =90°.∵∠BDA =∠EDC ,∴∠ABE =∠ACM .又∵AB =AC ,∴△ABD ≌△ACM (ASA),∴DB =MC ,∴BD =2CE .6.证明:如图,连接CD .∵AC =BC ,D 是AB 的中点,∴CD 平分∠ACB ,CD ⊥AB ,∴∠CDB =90°.∵∠ACB =90°,∴∠BCD =∠ACD =45°,∴∠B =180°-∠CDB -∠BCD =45°,∴∠ACD =∠B =∠BCD ,∴CD =BD .∵ED ⊥DF ,∴∠EDF =∠EDC +∠CDF =90°.又∵∠CDF +∠BDF =90°,∴∠EDC =∠BDF ,∴△ECD ≌△FBD (ASA),∴DE =DF .7.证明:如图,在线段BC 上截取BE =BA ,连接DE .∵BD 平分∠ABC ,∴∠ABD =∠EBD .又∵BD =BD ,∴△ABD ≌△EBD (SAS),∴∠BED =∠A =108°,∴∠DEC =180°-∠DEB =72°.又∵AB =AC ,∠A =108°,∴∠ACB =∠ABC =12×(180°-108°)=36°,∴∠CDE=∠DEB -∠ACB =180°-36°=72°,∴∠CDE =∠DEC ,∴CD =CE ,∴BC =BE +EC =AB +CD .8.(1)证明:如图,过P 作PF ∥BC 交AC 于点F ,∴∠AFP =∠ACB ,∠FPD =∠Q ,∠PFD =∠QCD .∵△ABC 为等边三角形,∴∠A =∠ACB =60°,∠AFP =60°,∴△APF 是等边三角形,∴AP =PF .∵AP =CQ ,∴PF =CQ ,∴△PFD ≌△QCD (ASA),∴PD =DQ .(2)解:∵△APF 是等边三角形,PE ⊥AC ,∴AE =EF .∵△PFD ≌△QCD ,∴CD =DF ,∴DE =EF +DF =12AC .又∵AC =1,∴DE =12.7.类比归纳专题:证明线段相等的基本思路——理条件、定思路,几何证明也容易◆类型一 已知“边的关系”或“边角关系”用全等1.如图,已知AB =AE ,BC =ED ,∠B =∠E ,AF ⊥CD ,F 为垂足,求证:(1)AC =AD ; (2)CF =DF .2.如图,∠C =90°,BC =AC ,D 、E 分别在BC 和AC 上,且BD =CE ,M 是AB 的中点.求证:△MDE 是等腰三角形.◆类型二 已知角度关系或线与线之间的位置关系用“等角对等边”3.如图,在△ABC 中,CE 、CF 分别平分∠ACB 和△ACB 的外角∠ACG ,EF ∥BC 交AC 于点D ,求证:DE =DF .4.(2015-2016·孝南区期末)如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于D,过C作CN⊥AD交AD 于H,交AB于N.(1)求证:AN=AC;(2)试判断BN与CD的数量关系,并说明理由.◆类型三已知角平分线、垂直或垂直平分用相应的性质5.如图,△ABC中,∠CAB的平分线与BC的垂直平分线DG相交于D,过点D 作DE⊥AB,DF⊥AC,求证:BE=CF .6.如图,在△ABC中,∠C=90°,AD 是∠BAC的平分线,DE⊥AB于E,F在AC 上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB .参考答案与解析1.证明:(1)在△ABC 和△AED 中,AB =AE ,∠B =∠E ,BC =ED ,∴△ABC ≌△AED ,∴AC =AD ;(2)在Rt △ACF 和Rt △ADF 中,AC =AD ,AF =AF ,∴△ACF ≌△ADF ,∴CF =DF . 2.证明:连接CM ,则BM =CM ,且CM ⊥MB ,∴∠B =∠MCE =45°,∴BM =AM =CM .在△MBD 和△MCE 中,BM =CM ,∠B =∠MCE ,BD =CE ,∴△MBD ≌△MCE ,∴DM =EM ,∴△MDE 是等腰三角形.3.证明:∵CE 是△ABC 的角平分线,∴∠ACE =∠BCE .∵CF 为△ABC 外角∠ACG 的平分线,∴∠ACF =∠GCF .∵EF ∥BC ,∴∠GCF =∠F ,∠BCE =∠CEF .∴∠ACE =∠CEF ,∠F =∠DCF ,∴CD =ED ,CD =DF ,∴DE =DF .4.(1)证明:∵CN ⊥AD ,∴∠AHN =∠AHC =90°.又∵AD 平分∠BAC ,∴∠NAH =∠CAH .又∵在△ANH 和△ACH 中,∠AHN +∠NAH +∠ANH =180°,∠AHC +∠CAH +∠ACH =180°∴∠ANH =∠ACH ,∴AN =AC ;(2)解:BN =CD .理由如下:连接ND .在△AND 和△ACD 中,⎩⎪⎨⎪⎧AN =AC ,∠NAD =CAD ,AD =AD ,∴△AND ≌△ACD (SAS),∴DN =DC ,∠AND =∠ACD .又∵∠ACB =2∠B ,∴∠AND =2∠B .又∵△BND 中,∠AND =∠B +∠NDB ,∴∠B =∠NDB ,∴NB =ND ,∴BN =CD .5.证明:连接BD 、CD .∵AD 是∠F AE 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF .∵DG 是BC 的垂直平分线,∴BD =CD .∴Rt △CDF ≌Rt △BDE .∴BE =CF .6.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .又∵BD =DF ,∴Rt △CFD ≌Rt △EBD (HL).∴CF =EB ;(2)在Rt △ADC 和Rt △ADE 中,AD =AD ,DC =DE ,∴Rt △ADC ≌Rt △ADE ,∴AC =AE ,∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .8.解题技巧专题:乘法公式的灵活运用——计算技巧多,先观察,再计算,事半功倍◆类型一 利用乘法公式进行简便运算1.计算102×98的结果是( ) A .9995 B .9896 C .9996 D .99972.计算20152-2014×2016的结果是( )A .-2B .-1C .0D .1 3.计算:(1)512=____________; (2)298×302=____________. 4.运用公式简便计算:(1)4013×3923; (2)100022522-2482.5.阅读下列材料:某同学在计算3(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:3(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.请借鉴该同学的经验,计算下面式子的值:⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122⎝⎛⎭⎫1+124⎝⎛⎭⎫1+128+1215.◆类型二 利用乘法公式的变式求值 6.若a -b =12,且a 2-b 2=14,则a +b的值为( )A .-12 B.12C .1D .27.若a -b =1,ab =2,则(a +b )2的值为( )A .-9B .9C .±9D .38.已知x +1x =5,那么x 2+1x 2的值为( )A .10B .23C .25D .279.若m +n =1,则代数式m 2-n 2+2n 的值为1.10.(2016·巴中中考)若a +b =3,ab =2,则(a -b )2=__________.11.阅读:已知a +b =-4,ab =3,求a 2+b 2的值.解:∵a +b =-4,ab =3,∴a 2+b 2=(a +b )2-2ab =(-4)2-2×3=10.请你根据上述解题思路解答下面问题: (1)已知a -b =-3,ab =-2,求(a +b )(a 2-b 2)的值;(2)已知a -c -b =-10,(a -b )c =-12,求(a -b )2+c 2的值.参考答案与解析1.C 2.D3.(1)2601 (2)899964.解:(1)原式=⎝⎛⎭⎫40+13⎝⎛⎭⎫40-13=402-⎝⎛⎭⎫132=159989; (2)原式=10002(250+2)2-(250-2)2=100022502+2×250×2+22-(2502-2×250×2+22)=100022000=500. 5.解:⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122⎝⎛⎭⎫1+124⎝⎛⎭⎫1+128+1215=2×⎝⎛⎭⎫1-12⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122⎝⎛⎭⎫1+124⎝⎛⎭⎫1+128+1215=2×⎝⎛⎭⎫1-1216+1215=2-1215+1215=2. 6.B 7.B 8.B 9.1 10.111.解:(1)∵a -b =-3,ab =-2,∴(a +b )(a 2-b 2)=(a +b )2(a -b )=[(a -b )2+4ab ](a -b )=[(-3)2+4×(-2)]×(-3)=-3.(2)∵a -c -b =-10,(a -b )c =-12,∴(a -b )2+c 2=[(a -b )-c ]2+2(a -b )c =(-10)2+2×(-12)=76.9.解题技巧专题:选择合适的方法因式分解——学会选择最优方法◆类型一 一步(提公因式或套公式)分解因式 1.(2016·宁德中考)下列分解因式正确的是( ) A .-ma -m =-m (a -1)B .a 2-1=(a -1)2C .a 2-6a +9=(a -3)2D .a 2+3a +9=(a +3)2 2.分解因式:(1)3x 3y 3-x 2y 3+2x 4y ;(2)2(x +y )2-(y +x )3.◆类型二 两步(先提后套或二次分解)分解因式2.3.(2016·梅州中考)分解因式a 2b -b 3,结果正确的是( )A.b(a+b)(a-b) B.b(a-b)2C.b(a2-b2) D.b(a+b)24.分解因式:(1)-2a3+12a2-18a;(2)(x2+1)2-4x2.*◆类型三特殊的因式分解法(分组分解法、十字相乘法、配方法)5.阅读下列材料并解答问题:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n).(1)试完成下面填空:x2-y2-2y-1=x2-(y2+2y+1)=______________________=______________________;(2)试用上述方法分解因式:a2-2ab-ac+bc+b2.6.阅读与思考:将式子x2-x-6分解因式.这个式子的常数项-6=2×(-3),一次项系数-1=2+(-3),这个过程可用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数,如图所示,这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察,分析理解后,解答下列问题:(1)分解因式:x2+7x-18;【方法22】(2)填空:若x2+px-8可分解为两个一次因式的积,则整数p的所有可能值是__________________7.阅读:分解因式x2+2x-3.解:原式=x2+2x+1-1-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1).上述因式分解的方法可以称之为配方法.请体会配方法的特点,然后用配方法分解因式:(1)x2-4x+3; (2)4x2+12x-7.参考答案与解析1.C2.解:(1)原式=x2y(3xy2-y2+2x2);(2)原式=(x+y)2·[2-(x+y)]=(x+y)2·(2-x-y).3.A4.解:(1)原式=-2a(a2-6a+9)=-2a(a-3)2;(2)原式=(x2+1+2x)(x2+1-2x)=(x+1)2(x-1)2.5.解:(1)x2-(y+1)2(x+y+1)(x-y-1)(2)原式=(a2-2ab+b2)-(ac-bc)=(a-b)2-c(a-b)=(a-b)(a-b-c).6.解:(1)原式=(x+9)(x-2).(2)7,-7,2,-2解析:若x2+px-8可分解为两个一次因式的积,则整数p的所有可能值分别是-8+1=-7;-1+8=7;-2+4=2;-4+2=-2.7.解:(1)原式=x2-4x+4-4+3=(x2-4x+4)-1=(x-2)2-1=(x-2+1)(x-2-1)=(x-1)(x-3);(2)原式=4x2+12x+9-9-7=(4x2+12x+9)-16=(2x+3)2-16=(2x+3+4)(2x+3-4)=(2x+7)(2x-1).10.易错专题:分式中常见的陷阱——易错全方位归纳,各个击破◆类型一 分式值为0时求值,忽略分母不为01.分式x 2-4x -2的值等于0时,x 的值为( )A .±2B .2C .-2 D. 22.要使m 2-9m 2-6m +9的值为0,则m 的值为( )A .3B .-3C .±3D .不存在3.若分式3-|x |x +3的值为零,则x 的值为_________.◆类型二 自主取值再求值时,忽略分母或除式不能为04.(2016·安顺中考)先化简,再求值:⎝⎛⎭⎫1-1x +1÷x -2x +1,从-1,2,3中选择一个适当的数作为x 值代入.5.(2016·巴中中考)先化简:x 2+xx 2-2x +1÷⎝⎛⎭⎫2x -1-1x ,然后再从-2<x ≤2的范围内选取一个合适的x 的整数值代入求值.◆类型三 无解时忽略分式方程化为一次方程后未知数系数为0的情况6.★若关于x 的分式方程2m +x x -3-1=2x 无解,则m 的值为( )A .-32 B .1C .-32或2D .-12或-327.已知关于x 的分式方程ax +1-2a -x -1x 2+x=0无解,求a 的值.◆类型四 已知方程根的情况求参数的取值范围,应舍去公分母为0时参数的值8.(2016·齐齐哈尔中考)若关于x 的分式方程x x -2=2-m 2-x的解为正数,则满足条件的正整数m 的值为( ) A .1,2,3 B .1,2 C .1,3 D .2,39.已知关于x 的分式方程a -xx +1=1的解为负数,求a 的取值范围.参考答案与解析1.C 2.B 3.34.解:原式=x x +1·x +1x -2=x x -2,当x =3时,原式=33-2=3(x 不能取-1和2).5.解:原式=x (x +1)(x -1)2÷2x -(x -1)x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x 2x -1.其中⎩⎪⎨⎪⎧x 2-2x +1≠0,(x -1)x ≠0,x +1≠0,即x ≠-1,0,1.又∵-2<x ≤2且x 为整数,∴x =2.∴原式=222-1=4.6.D 解析:方程两边同乘x (x -3),得x (2m +x )-x (x -3)=2(x -3),化简得(2m +1)x=-6,解得x =-62m +1.由分式方程无解,得x =0或x =3或2m +1=0.当x =0时,-62m +1=0,解得m =-12;当x =3时,-62m +1=3,解得m =-32;当2m +1=0时,m =-12.故m 的值为-12或-32.故选D.7.解:去分母得ax -2a +x +1=0,分两种情况讨论:①分式方程有增根,由x (x +1)=0,得x =-1或0,当x =-1时,-a -2a -1+1=0,解得a =0;当x =0时,-2a +1=0,解得a =12;②方程ax -2a +x +1=0无解,即(a +1)x =2a -1无解,∴a +1=0,a =-1.综上可知a =0或12或-1.8.C 解析:方程两边都乘以x -2,得x =2(x -2)+m ,解得x =4-m .由题意得⎩⎪⎨⎪⎧x >0,x -2≠0,即⎩⎪⎨⎪⎧4-m >0,4-m -2≠0,解得m <4且m ≠2,∴满足条件的正整数m 的值为1和3.故选C.9.解:由a -x x +1=1,解得x =a -12.由题意得⎩⎨⎧a -12<0,a -12+1≠0,∴a <1且a ≠-1.11.解题技巧专题:分式运算中的技巧——观特点,定顺序,灵活计算◆类型一 按常规步骤运算1.计算1x -1x -y 的结果是( )A .-yx (x -y ) B .2x +y x (x -y )C .2x -y x (x -y )D .y x (x -y ) 2.化简m m +3+6m 2-9÷2m -3的结果是________.3.(2015-2016·祁阳县校级期中)先化简,再求值:2a +1a 2-1·a 2-2a +1a 2-a -1a +1,其中a =-12.◆类型二 先约分再化简4.化简:a 2-1a 2+2a +1÷a 2-aa +1=________.5.化简求值:(a -3)·9-a 2a 2-6a +9=________,当a =-3时,该代数式的值为________.6.先化简,再求值:x 2-2x +1x 2-1÷⎝⎛⎭⎫1-3x +1,其中x =0.◆类型三 混合运算中灵活运用分配律7.计算⎝ ⎛⎭⎪⎫2x x 2-1+x -1x +1÷1x 2-1的结果是( )A .1x 2+1B .1x 2-1C .x 2+1D .x 2-18.化简:⎝⎛⎭⎫2a -1-1a +1·(a 2-1)=________. 9.先化简,再求值:12x -1x +y ·⎝⎛⎭⎫x 2-y 2+x +y 2x ,其中x =2,y =3.◆类型四 分式化简求值注意整体代入 10.若xy -x +y =0且xy ≠0,则分式1x -1y 的值为( )A .1xyB .xyC .1D .-1 11.已知:a 2-3a +1=0,则a +1a -2的值为( )A .5+1B .1C .-1D .-512.先化简,再求值:⎝⎛⎭⎪⎫x -1x -x -2x +1÷2x 2-xx 2+2x +1,其中x 满足x 2-x -1=0.参考答案与解析1.A 2.13.解:原式=2a +1(a +1)(a -1)·(a -1)2a (a -1)-1a +1=2a +1a (a +1)-1a +1=a +1a (a +1)=1a. 当a =-12时,原式=-2.4.1a5.-a -3 0 6.解:原式=x -1x +1÷x -2x +1=x -1x -2.当x =0时,原式=12.7.C 8.a +39.解:原式=12x -x 2-y 2x +y -12x =-x +y .当x =2,y =3时,原式=1.10.D 11.B12.解:原式=x2-1-x2+2xx(x+1)·(x+1)2x(2x-1)=x+1x2.∵x2-x-1=0,∴x2=x+1,∴原式=1.。
初中数学易错易忘易混的知识点和题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中数学易错易忘易混的知识点和题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中数学易错易忘易混的知识点和题的全部内容。
初中数学易错、易忘、易混的知识点一、数与式1、随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0。
000 000 7 (平方毫米),这个数用科学记数法表示为( ). A .7×10-6B .0。
7×10-6C .7×10-7D .70×10-82、我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人。
将665 575 306用科学记数法表示(保留三个有效数字)约为( )A 。
B. C 。
D 。
易错:科学记数法和有效数字概念.3= 。
的平方根是 。
易错:平方根、算术平方根的概念.4、下列实数中,无理数是( )A 。
B 。
C.易错:无理数的概念;、的辨别.5、计算:(1)易错:负指数和三角函数值(2);;;; 易错:错用运算法则或是运算顺序不清.(3); 易混:完全平方公式和平方差公式混淆。
(4) 易错:去括号法则不清导致错误.(5)易混:分式运算中的通分与分式方程计算中的去分母混淆。
766.610⨯8.66610⨯86.6610⨯76.6610⨯0.2020-2π7222π72203045sin 4)21()13(8--+---)37(21+÷22512+a a ab 1⨯÷2)23(+()()()2444--+-x x x )2(3)35(b a b a ---y x yx y x -+-336、化简:.易错:忽视隐含条件,本题隐含着,所以a <0这个条件.7、若x ,y 是实数,且,求的值。
专题10易错易混淆集训:等腰三角形中易漏解或多解的问题易错点一求长度时忽略三边关系易错点二当腰和底不明求角度时没有分类讨论易错点三三角形的形状不明时与高线及其他线结合没有分类讨论易错点一求长度时忽略三边关系例题:(2022·河北·石家庄石门实验学校八年级期末)已知等腰三角形的两边长分别为4和8,则它的周长等于____________.【答案】20【分析】根据等腰三角形的性质,本题要分情况讨论.当腰长为4或是腰长为8两种情况.【详解】解:等腰三角形的两边长分别为4和8,当腰长是4时,则三角形的三边是4,4,8,4+4=8不满足三角形的三边关系;当腰长是8时,三角形的三边是8,8,4,三角形的周长是20.故答案为∶20.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.【变式训练】1.(2022·新疆·和硕县第二中学八年级期末)等腰三角形的两边长分别是3和7,则它的周长是多少()A.13B.17C.13或17D.13或10【答案】B【分析】分①腰长为3和②腰长为7两种情况,再结合三角形的三边关系,利用三角形的周长公式即可得.【详解】解:由题意,分以下两种情况:①当腰长为3时,则这个等腰三角形的三边长分别为3,3,7,此时337+<,不满足三角形的三边关系,舍去;②当腰长为7时,则这个等腰三角形的三边长分别为3,7,7,此时377+>,满足三角形的三边关系,所以它的周长为37717++=;综上,这个等腰三角形的周长为17,故选:B .【点睛】本题考查了三角形的三边关系、等腰三角形的定义,正确分两种情况讨论是解题关键.2.(2022·山东菏泽·八年级期末)已知等腰三角形底边和腰的长分别为6和5,则这个等腰三角形的周长为( )A .15B .16C .17D .18【答案】B【分析】根据等腰三角形的定义可知三边长为6,5,5,即可.【详解】根据题意可知等腰三角形的三边长为6,5,5,所以这个三角形的周长为6+5+5=16.故选:B .【点睛】本题主要考查了等腰三角形的定义,掌握等腰三角形的两腰相等是解题的关键.3.已知实数x ,y 满足2|5|(10)0-+-=x y ,则以x ,y 的值为两边长的等腰三角形的周长是()A .20B .25C .20或25D .以上答案均不对【答案】B【解析】【分析】先根据非负数的性质列式求出x 、y 的值,再分5是腰长与底边两种情况讨论求解即可.【详解】解:2|5|(10)0x y -+-=Q ,|5|0x -³,2(100)y -³\x −5=0,y −10=0,解得x =5,y =10,当5是腰长时,三角形的三边分别为5、5、10,∵5+5=10,∴不能组成三角形;当5是底边时,三角形的三边分别为5、10、10,能组成三角形,周长=5+10+10=25,所以,三角形的周长为25,故选:B.【点睛】本题考查了三角形的三边关系,等腰三角形的性质,绝对值非负数,平方非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0,求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.当腰长是5cm 时,则三角形的三边是5cm ,5cm ,2cm ,5cm +2cm >5cm ,满足三角形的三边关系,三角形的周长是5+5+2=12(cm );当腰长是2cm 时,三角形的三边是2cm ,2cm ,5cm ,2cm +2cm <5cm ,不满足三角形的三边关系.故答案为:12cm .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.(1)等腰三角形一腰上的中线把周长分为15和12两部分,求该三角形各边的长.(2)已知一个等腰三角形的三边长分别为21,1,32x x x -+-,求这个等腰三角形的周长.【答案】(1)8,8,11或者10,10,7;(2)周长为7或者10【解析】【分析】(1)根据等腰三角形的性质,列出方程求解,注意分类讨论.(2)分三种情况,进行讨论,结合三角形三边关系得出答案.【详解】()1设腰长为2x ,底为y ,根据题意得:①21512x x x y +=ìí+=î解得:5,7x y ==\ 三边为10,10,7②21215x x x y +=ìí+=î解得:4,11x y ==\ 三边为8,8,11故本题答案为:8,8,11或者10,10,7()2①当211x x -=+时,解2x =,此时3,3,4,能构成三角形.此时周长为10②当2132x x -=-时,解1x =,此时1,2,1不能构成三角形.③当132x x +=-,解得32x =,此时552,,22,能构成三角形,周长为=7综上,三角形的周长为7或者10.【点睛】本题考查等腰三角形性质,以及三角形三边关系,属于基础提高题.易错点二当腰和底不明求角度时没有分类讨论例题:(2022·山东烟台·七年级期末)若等腰三角形中有一个角等于35°,则这个等腰三角形的顶角的度数为________.【答案】35°或110°【分析】根据等腰三角形两底角相等,分别讨论当35°为顶角,和当35°为底角两种情况即可得出答案.【详解】解:当35°为顶角时,这个等腰三角形顶角的度数为35°;当35°为底角时,顶角度数为:180352110°-°´=°;故答案为:35°或110°.【点睛】本题考查等腰三角形的性质,熟练掌握等腰三角形两底角相等是本题解题关键.【变式训练】1.已知等腰三角形的一个内角是72°,那么这个等腰三角形的顶角是______度.【答案】72或36【解析】【分析】本题应分底角为72°、顶角为72°这两种情况,分别计算每种情况下等腰三角形是否存在.【详解】解∶①当72°角是顶角时,顶角为72°,②当72°角是底角时,顶角=180°-72°×2=36°,综上顶角为72°或36°.故答案为:72或36.【点睛】本题考查等腰三角形的性质,,树立分类讨论思想,培养学生全面思考问题的数学素养,在计算等腰三角形有关边、角的问题时,要注意利用分类讨论的思想进行全面讨论是解题的关键.2.(2022·山东烟台·七年级期末)若等腰三角形中有一个角等于35°,则这个等腰三角形的顶角的度数为________.【答案】35°或110°【分析】根据等腰三角形两底角相等,分别讨论当35°为顶角,和当35°为底角两种情况即可得出答案.【详解】解:当35°为顶角时,这个等腰三角形顶角的度数为35°;当35°为底角时,顶角度数为:180352110°-°´=°;故答案为:35°或110°.【点睛】本题考查等腰三角形的性质,熟练掌握等腰三角形两底角相等是本题解题关键.3.有一张三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则∠C的度数可以是__________.【答案】25°或40°或10°【解析】【详解】【分析】分AB=AD或AB=BD或AD=BD三种情况根据等腰三角形的性质求出∠ADB,再求出∠BDC,然后根据等腰三角形两底角相等列式计算即可得解.【详解】由题意知△ABD与△DBC均为等腰三角形,对于△ABD可能有①AB=BD,此时∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=180°-80°=100°,∠C=12(180°-100°)=40°,②AB=AD,此时∠ADB=12(180°-∠A)=12(180°-80°)=50°,∴∠BDC=180°-∠ADB=180°-50°=130°,∠C=12(180°-130°)=25°,③AD=BD,此时,∠ADB=180°-2×80°=20°,∴∠BDC=180°-∠ADB=180°-20°=160°,∠C=12(180°-160°)=10°,综上所述,∠C度数可以为25°或40°或10°故答案为25°或40°或10°【点睛】本题考查了等腰三角形的性质,难点在于分情况讨论.【点睛】本题主要考查了等腰三角形的存在性,解决问题的关键是熟练掌握等边对等角的性质,三角形的三个角都有可能是顶角,分类讨论.易错点三 三角形的形状不明时与高线及其他线结合没有分类讨论例题:若等腰三角形一腰上的高与另一腰的夹角为50°,则这个等腰三角形的底角的度数为( )A .20°B .50°或70°C .70°D .20°或70°【答案】D【解析】【分析】首先想到等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况,所以舍去不计,我们可以通过画图来讨论剩余两种情况.【详解】(1)当这个三角形是锐角三角形时,如图所示:∵高与另一腰的夹角为50°,即50ABD Ð=°,∴顶角905040A Ð=°-°=°,∵A ABC CB =Ð∠,()118040702ABC ACB \Ð=Ð=°-°=°;(2)当这个三角形是钝角三角形时,如图所示:∵∠ABD =50°,BD ⊥CD ,∴∠BAD =90°-50°=40°,∵ABC C Ð=Ð,40ABC C Ð+Ð=°,∴140202ABC C Ð=Ð=´°=°;综上所述,这个等腰三角形的底角的度数为70°或20°.故选:D .【点睛】本题考查了等腰三角形的性质及三角形内角和定理,三角形外角的性质,等腰三角形的高线,可能在三角形的内部,边上、外部几种不同情况,因此遇到与等腰三角形的高有关的计算时应分类讨论.【变式训练】∵∠ADE =50°,∠AED ∴∠A =40°,∴(11802B C =Ð=Ð∵∠ADE =50°,∠AED =90°,∴∠BAC =∠ADE +∠AED =140°,∴()1180140202B C =Ð=-°=а°4.若等腰三角形一腰上的高与另一腰的夹角为56°,则这个等腰三角形底角度数是_______.【答案】73°或17°【解析】【分析】在等腰ABC D 中,AB AC =,BD 为腰AC 上的高,56ABD Ð=°,讨论:当BD 在ABC D 内部时,如图1,先计算出34BAD Ð=°,再根据等腰三角形的性质和三角形内角和可计算出ACB Ð;当BD 在ABC D 外部时,如图2,先计算出34BAD Ð=°,再根据等腰三角形的性质和三角形外角性质可计算出ACB Ð.【详解】解:在等腰ABC D 中,AB AC =,BD 为腰AC 上的高,56ABD Ð=°,当BD 在ABC D 内部时,如图1,BD Q 为高,90ADB \Ð=°,905634BAD \Ð=°-°=°,AB AC =Q ,1(18034)732ABC ACB \Ð=Ð=°-°=°;当BD 在ABC D 外部时,如图2,BD Q 为高,90ADB \Ð=°,905634BAD \Ð=°-°=°,AB AC =Q ,ABC ACB \Ð=Ð,而BAD ABC ACB Ð=Ð+Ð,1172ACB BAD \Ð=Ð=°,综上所述,这个等腰三角形底角的度数为73°或17°.故答案为:73°或17°.【点睛】本题考查了等腰三角形的性质,熟悉相关性质是解题的关键.5.(2022·陕西·交大附中分校七年级期末)已知ABC V 中,20B Ð=°,在AB 边上有一点D ,若CD 将ABC V分为两个等腰三角形,则AÐ=________.【答案】100°,70°,40°或者10°【分析】分BD=CD、BC=CD、BD=BC三种情况讨论即可求解.【详解】第一种请况:BD=CD时,如图,∵BD=CD,∠B=20°,∴∠B=∠DCB=20°,∴∠ADC=∠B+∠DCB=40°,(1)当DA=DC时,∠A=∠ACD,∵∠A+∠ACD+∠ADC=180°,∠ADC=40°,∴∠A=∠ACD=70°;(2)当DA=AC时,即有∠ADC=∠ACD=40°,∴∠A=180°-∠ADC-∠ACD=100°;(3)当CD=CA时,∠A=∠ADC=40°;第二种请况:BC=CD时,如图,∵∠B=20°,BC=CD,∴∠B=∠BDC=20°,∴∠ADC=180°-∠BDC=160°,∵△ADC是等腰三角形,∴有∠A=∠ACD,∵∠A+∠ACD+∠ADC=180°,∴∠A=10°;第三种情况:BC=BD时,如图,∵BC=BD,∴∠BDC=∠BCD,∵∠B=20°,∠B+∠BCD+∠BDC=180°,∴∠BCD=∠BDC=80°,∴∠ADC=180°-∠BDC=100°,∵△ADC是等腰三角形,∴有∠A=∠ACD,∵∠A+∠ACD+∠ADC=180°,∴∠A=40°;综上所述:∠A的度数为:70°,100°,40°,10°,故答案为:70°,100°,40°,10°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理等知识,掌握三角形的性质是解答本题的关键.6.(2021·江西育华学校八年级期末)已知△ABC中,如果过顶点B的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的二分割线.如图1,Rt△ABC中,显然直线BD是△ABC的关于点B的二分割线.在图2的△ABC中,∠ABC=110°,若直线BD是△ABC的关于点B的二分割线,则∠CDB的度数是_____.【答案】40°或90°或140°【分析】分三种情况讨论,由等腰三角形的性质和直角三角形的性质可求解.【详解】解:①如图,当∠DBC=90°,AD=BD时,直线BD是△ABC的关于点B的二分割线,∵∠ABC=110°,∠DBC=90°,∴∠ABD=20°,∵AD=BD,∴∠A=∠ABD=20°,∴∠CDB=∠A+∠ABD=40°;②如图,当∠BDC=90°,AD=BD时,直线BD是△ABC的关于点B的二分割线,或当∠BDC=90°,CD=BD时,直线BD是△ABC的关于点B的二分割线,;③如图,当∠ABD=90°,CD=BD时,直线BD是△ABC的关于点B的二分割线,∵∠ABC=110°,∠ABD=90°,∴∠DBC=20°,∵CD=BD,∴∠C=∠DBC=20°,∴∠BDC=140°.综上所述:当∠BDC的度数是40°或90°或140°时,直线BD是△ABC的关于点B的二分割线.【点睛】本题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,理解二分割线是本题的关键.。
(一)先解决一个最值得关注的问题关于“粗心”的解决办法。
习惯于依赖做题经验,看到题马上就用以前的方法去写,忽略了问题问什么,题目条件是什么。
粗心的问题,基本是看到题目非常熟悉,条件反射地就按惯性去做,导致错误。
当然也有可能就是无脑的,莫名其妙的低级错误。
这就无解了,老师帮不了你。
4条建议:一、读题要慢,至少两遍,书写要快,思路定了,立马动手;二、草稿纸的使用要规划好,不可随意写,方便检查;三、检查,主要是检查没有把握的题目;四、深挖根源,对粗心的相关知识点要梳理,整理相应错题,集中突破。
(二)重头戏来了,命题陷阱!这里列举出了历年中考绝大多数易错点,请同学们有则改之(请脑补自己犯下的错,最好有自己的错题),无则跳过。
一、数与式(8条)易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆,以及绝对值的分类讨论。
(每年选择题必考)易错点2:实数的运算关键是把好符号关;在较复杂的运算中,不注意运算优先级或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。
(每年填空题必考)易错点4:求分式值为零时学生易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。
当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;初中阶段就学过三个非负数:绝对值、二次根式、完全平方式。
易错点7:0指数幂,底数不为0。
易错点8:代入求值要使式子有意义。
最常考的是分式的化简求值,要注意每个分式的分母不为0,还要注意除号“÷”后面的式子也不能为0。
一定要注意计算顺序,先观察从哪里开始计算。
二、方程(组)与不等式(组)(8条)易错点1:二元一次方程组有可能无解,无解的条件可以用对应的两条一次函数图像平行。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况。
思维导图核心考点聚焦1.求等腰三角形的周长时忽略构成三角形的三边关系产生易错2.当等腰三角形中腰和底不明求角度时没有分类讨论产生易错3.求有关等腰三角形中的多解题没有分类讨论产生易错4.三角形的形状不明时与高线及其他线结合没有分类讨论产生易错1.等腰三角形的性质(1(2角的三线合一图形:1.求等腰三角形的周长,要先考虑三角形的三边是否能构成三角形考点剖析【答案】2516或52或4,则216BP BC cm ==,,,图2③如图3,当图3故答案为:9或【解析】如图,∵AB AC BD =,是AC 边上的中线,即AD CD =,∴()()15123||||cm AB AD BC CD AB BC +-+=-=-=,2121527cm AB BC AC AB BC ++=+=+=,若AB BC >,则3cm AB BC -=,又∵227cm AB BC +=,联立方程组:3227AB BC AB BC -=⎧⎨+=⎩,解得:10cm 7cm AB BC ==,,10cm 10cm 7cm 、、三边能够组成三角形;若AB BC <,则3cm BC AB -=,又∵227cm AB BC +=,联立方程组3227BC AB AB BC -=⎧⎨+=⎩,解得:8cm 11cm AB BC ==,,8cm 8cm 11cm 、、三边能够组成三角形;∴三角形的各边长为10cm 10cm 7cm 、、或8cm 8cm 11cm 、、.【变式训练】1.等腰三角形一腰上的高与另一腰的夹角为45︒,那么这个三角形的顶角为()A .45︒B .90︒C .135︒D .135︒或45︒【答案】D【解析】如图1,三角形是锐角三角形时,∵45ACD ∠=︒,∵45ACD ∠=︒,∴顶角4590135BAC ∠=︒+︒=综上所述,顶角等于45︒或135如图,当CD 在ABC CD AB⊥ 90BAC ACD ∴∠=︒+∠AB AC= 30B C ∴∠=∠=︒故答案为60︒或30︒过关检测【答案】80︒,65︒或【解析】当C ∠是顶角时,∴180C A ∠=︒-∠-∠当C ∠是底角,A ∠是顶角时,∴180652A C ︒-∠∠==当C ∠、A ∠都是底角时,∴50C A ∠=∠=︒;综上,C ∠的度数可能是故答案为:80︒,65︒或7.在平面直角坐标系中,坐标是【答案】()3,0-或(2,0-【解析】根据题意,作图如下,∵()3,0A ,()0,4B ,∴3,4OA OB ==,在Rt AOB △中,22AB OA OB =+以AB 为腰作等腰三角形ABC ,①1BC BA =,则1ABC 是以AB 为腰作等腰三角形,∴()13,0C -;②2AB AC =,则2ABC △是以AB 为腰作等腰三角形,∴AC 2=5,且3OA =,∴2532OC =-=,则()22,0C -;③3AB AC =,则2ABC △是以AB 为腰作等腰三角形,∴35AC =,∴33358OC OA AC =+=+=,则C 综上所述,点C 坐标是()3,0-或(-故答案为:()3,0-或()2,0-或(8,0)8.在ABC △中,110ABC ∠=︒,点腰三角形,则CDB ∠的度数是【答案】40︒或90︒或140︒【解析】如图1中,当CDB ∠如图3中,当90DBC ∠=︒,DA 40CDB A DBA ∴∠=∠+∠=︒,故答案为:40︒或90︒或140︒.三、解答题9.如图,ABC △中,90C ∠=运动,且速度为每秒2cm ,设运动的时间为(1)当1t =时,求PBC △的面积.(2)当t 为何值时,CP 把ABC △(3)当t 为何值时,BCP △为等腰三角形?【解析】(1)解:当1t =时,PBC ∴△的面积为1BC CP ⨯=故答案为:26cm .(2)解:ABC 中,∴2AB AC BC =+∵1122AC BC ⨯=∴ 4.8CE =∴226 4.8PE =-∴27.2BP PE ==∴AP AB PB =-=∴82AC AP t +==②如果BC BP =③如果PB PC =∵PB PC =,∴12∠=∠,又∵12A ∠+∠=∠∴3A ∠=∠∴PC PA =,∴PA PB =,即P 在AB 的中点,此时()8513cm CA AP +=+=,132 6.5(t =÷=秒);综上可知,当3t =秒或5.4秒或6秒或6.5秒时,BCP 为等腰三角形.10.定义:如果1条线段将一个三角形分割成2个等腰三角形,我们把这条线段叫做这个三角形的“双等腰线”.如果2条线段将一个三角形分成3个等腰三角形,我们把这2条线段叫做这个三角形的“三等腰线”.如图(1),BE 是ABD △的“双等腰线”,AD 、BE 是ABC △的“三等腰线”.(1)请在图(2)中,作出ABC △的“双等腰线”,并标注相等角的度数①70B ∠=︒,35A ∠=︒②81B ∠=︒,27A ∠=︒.(2)直角三角形的______就是它的“双等腰线”(3)已知ABC △中,33C ∠=︒,AD 和DE 分别是ABC △的“三等腰线”,点D 在BC 边上,点E 在AB 边上,且AD DC =,BE DE =,请根据题意写出B ∠度数的所有可能的值______.【详解】(1)解:如图,取CD BC =,则70CDB B ∠=∠=︒,35A ∠=︒ ,703535ACD ∴∠=︒-︒=︒,ACD A ∴∠=∠,AD CD BC ∴==,ADC ∴ 和BCD △是等腰三角形;如图,作AB 的垂直平分线DE ,交AC 于D ,交AB 于E ,连接BD ,AD BD ∴=,27A ABD ∴∠=∠=︒,54CDB ∴∠=︒,81ABC ∠=︒ ,812754CBD BDC ∴∠=︒-︒=︒=∠,CD BC ∴=,ADB ∴ 和BCD △是等腰三角形;(2)直角三角形斜边中线把直角三角形分成两个等腰三角形,故答案为:斜边中线;(3)如图,设B x ∠=,∵33C ∠=︒,AD DC =,∴33C DAC ∠=∠=︒,180114EAD B C DAC x ∠=︒-∠-∠-∠=︒-,∴66ADB ∠=︒∵BE DE =,∴B BDE x ∠=∠=,∴2AED x ∠=,66ADE ADB BDE x ∠=∠-∠=︒-,∵AD 和DE 分别是ABC 的“三等腰线”,∴ADE V 是等腰三角形,当AD DE =时,EAD AED ∠=∠,则1142x x ︒-=,解得38B x ︒==∠;当AD AE =时,ADE AED ∠=∠,则662x x ︒-=,解得22B x ︒==∠;当AE DE =时,EAD ADE ∠=∠,则11466x x ︒-=︒-,无解;综上所述,B ∠度数的所有可能的值为38︒、22︒、66︒、57︒、48︒.故答案为:38︒、22︒.。
专题09易错易混淆集训:等腰三角形中易漏解或多解的问题
压轴题四种模型全攻略
【考点导航】
目录
【典型例题】 (1)
【易错点一求等腰三角形的周长时忽略构成三角形的三边关系产生易错】 (1)
【易错点二当等腰三角形中腰和底不明求角度时没有分类讨论产生易错】 (1)
【易错点三求有关等腰三角形中的多解题没有分类讨论产生易错】 (2)
【易错点四三角形的形状不明时与高线及其他线结合没有分类讨论产生易错】 (3)
【典型例题】
【易错点一求等腰三角形的周长时忽略构成三角形的三边关系产生易错】
【变式训练】
【易错点二当等腰三角形中腰和底不明求角度时没有分类讨论产生易错】
5.(2022春·黑龙江哈尔滨
在边BC上(不与B、C
6.(2022春·江西赣州·八年级统考期中)如图,在
【易错点三求有关等腰三角形中的多解题没有分类讨论产生易错】
【易错点四三角形的形状不明时与高线及其他线结合没有分类讨论产生易错】
例题:(2023秋·山东泰安·七年级东平县实验中学校考期末)等腰三角形一腰上的中线把三角形周长分为15和12两部分,则此三角形的底边长为()
A.7B.11C.7或11D.无法确定
【变式训练】。
易错易混专题:等腰三角形中易漏解或多解的问题——易错归纳,各个击破◆类型一求长度时忽略三边关系1.(2016·贺州中考)一个等腰三角形的两边长分别是4,8,则它的周长为()A.12 B.16C.20 D.16或202.学习了三角形的有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和交流后,小明同学举手说:“另两条边长为3、6或4.5、4.5.”你认为小明的回答是否正确:_____,理由是_____________________.3.已知等腰三角形中,一腰上的中线将三角形的周长分成6cm和10cm两部分,求这个三角形的腰长和底边的长.◆类型二当腰或底不明求角度时没有分类讨论4.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.100° B.40°C.40°或100° D.60°5.等腰三角形的一个外角等于100°,则与这个外角不相邻的两个内角的度数分别为()A.40°,40° B.80°,20°C.80°,80° D.50°,50°或80°,20°6.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为_____.◆类型三三角形的形状不明时没有分类讨论7.等腰三角形的一个角是50°,则它一腰上的高与底边的夹角是()A.25° B.40°C.25°或40° D.不能确定8.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到的锐角为50°,则∠B等于_____.9.如果两个等腰三角形的腰长相等、面积也相等,那么我们把这两个等腰三角形称为一对合同三角形.已知一对合同三角形的底角分别为x°和y°,则_________(用含x的代数式表示).10.已知等腰三角形一腰上的高与另一腰的夹角的度数为20°,求顶角的度数.◆类型四一边确定,另两边不确定,求等腰三角形个数时漏解11.(2016·武汉中考)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.812.如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A,B,请在此点阵图中找一个阵点C,使得以点A,B,C为顶点的三角形是等腰三角形,则符合条件的C点有_____个.参考答案与解析1.C2.不正确 没考虑三角形三边关系 3.解:设腰长为x cm ,①腰长与腰长的一半是6cm 时,x +12x =6,解得x =4,∴底边长=10-12×4=8(cm).∵4+4=8,∴4cm、4cm 、8cm 不能组成三角形;②腰长与腰长的一半是10cm 时,x +12x =10,解得x =203,∴底边长=6-12×203=83(cm),∴三角形的三边长为203cm 、203cm 、83cm ,能组成三角形.综上所述,三角形的腰长为203cm ,底边长为83cm.4.C 5.D 6.120°或20° 7.C 8.70°或20° 9.x 或90-x 解析:∵两个等腰三角形的腰长相等、面积也相等,∴腰上的高相等.①当这两个三角形都是锐角或钝角三角形时,y =x ,②当两个三角形一个是锐角三角形,一个是钝角三角形时,y =90-x .故答案为x 或90-x .10.解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在其外部.如图①所示,得顶角∠ACB =∠D +∠DAC =90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,如图②所示,故顶角∠A =90°-∠ABD =90°-20°=70°.综上所述,顶角的度数为110°或70°.11.A 12.5。
1、类比归纳专题:三角形中内、外角的有关计算——全方位求角度◆类型一已知角的关系,直接利用内角和或结合方程思想1.在△ABC中,∠A-∠B=35°,∠C =55°,则∠B等于()A.50°B.55°C.45°D.40°2.在△ABC中,已知∠A=2∠B=3∠C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.形状无法确定3.如图,在△ABC中,∠C=∠ABC =2∠A,BD是AC边上的高,求∠DBC的度数.4.如图,△ABC中,∠B=26°,∠C =70°,AD平分∠BAC,AE⊥BC于E,EF⊥AD于F,求∠DEF的度数.◆类型二综合内外角的性质5.如图,BD、CD分别平分∠ABC和∠ACE,∠A=60°,则∠D的度数是() A.20°B.30°C.40°D.60°第5题图第6题图6.如图,∠B=20°,∠A=∠C=40°,则∠CDE的度数为________.7.如图,AD平分∠BAC,∠EAD=∠EDA.(1)求证:∠EAC=∠B;(2)若∠B=50°,∠CAD∶∠E=1∶3,求∠E的度数.◆类型三在三角板或直尺中求角度8.(2015-2016·瑶海区期末)将一副三角板按如图所示摆放,图中∠α的度数是()A.120°B.105°C.90°D.75°9.将两个含30°和45°的直角三角板如图放置,则∠α的度数是()A.10°B.15°C.20°D.25°10.一副三角板如图所示叠放在一起,则图中∠α的度数是________.11.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为________.◆类型四与平行线结合12.(2015·南充中考)如图,已知B、C、E在同一直线上,且CD∥AB,若∠A=75°,∠B=40°,则∠ACE的度数为()A.35°B.40°C.115°D.145°13.如图,AB∥CD,直线PQ分别交AB、CD于点F、E,EG是∠DEF的平分线,交AB于点G.若∠PF A=40°,那么∠EGB 等于()A.80°B.100°C.110°D.120°14.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC =60°,则∠BDE=________.15.如图,在△ABC中,点D在BC上,点E在AC上,AD交BE于F.已知EG∥AD 交BC于G,EH⊥BE交BC于H,∠HEG =55°.(1)求∠BFD的度数;(2)若∠BAD=∠EBC,∠C=44°,求∠BAC的度数.◆类型五与截取或折叠相关16.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A 与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.∠A=∠1-∠2B.2∠A=∠1-∠2C.3∠A=2∠1-∠2D.3∠A=2(∠1-∠2)17.如图,Rt△ABC中,∠ACB=90°,∠A=52°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=________.第17题图第18题图18.在△ABC中,∠B=70°,若沿图中虚线剪去∠B,则∠1+∠2等于________.19.如图.(1)将△ABC纸片沿DE折叠成图①,此时点A落在四边形BCDE内部,则∠A与∠1、∠2之间有一种数量关系保持不变,请找出这种数量关系并说明理由.(2)若折成图②或图③,即点A落在BE 或CD上时,分别写出∠A与∠2、∠A与∠1之间的关系式(不必证明);(3)若折成图④,写出∠A与∠1、∠2之间的关系式(不必证明).2类比归纳专题:与三角形的高、角平分线有关的计算模型.如图,△ABC中,点的平分线的交点.=80°,求∠BPC有位同学在解答(1)后得出∠的规律,你认为正确吗?请给出模型3:求一内角平分线与一外角平分线的夹角的度数4.如图,在△ABC 中,BA 1平分∠ABC ,CA 1平分∠ACD ,BA 1,CA 1相交于点A 1.(1)求证:∠A 1=12∠A ;(2)如图,继续作∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;作∠A 2BC 和∠A 2CD 的平分线交于点A 3,得∠A 3……依此得到∠A 2017,若∠A =α,则∠A 2017=_____________.模型4:求两外角平分线的夹角的度数【方法5】5.(1)如图,BO 平分△ABC 的外角∠CBD ,CO 平分△ABC 的外角∠BCE ,则∠BOC 与∠A 的关系为____________;(2)请就(1)中的结论进行证明.3、解题技巧专题:利用全等解决问题的模型与技巧——明模型,先观察,再猜想,后证明◆类型一 全等三角形的基本模型1.如图,AC =AD ,BC =BD ,∠A =50°,∠B =90°,则∠C =________.第1题图 第2题图 2.如图,锐角△ABC 的高AD ,BE 相交于F ,若BF =AC ,BC =7,CD =2,则AF 的长为_________.3.如图,点A ,D ,C ,E 在同一条直线上,AB ∥EF ,AB =EF ,∠B =∠F ,AE =10,AC =6,则CD 的长为 ( ) A .2 B .4 C .4.5 D .34.如图,在△ABC ,△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一直线上,连接BD 交AC 于点F .(1)求证:△BAD ≌△CAE ;(2)猜想BD ,CE 有何特殊位置关系,并说明理由.◆类型二 证明线段间的等量关系 一、等线段代换 5.如图,Rt △ABC 中,AB =AC ,∠BAC =90°,直线l 为经过点A 的任一直线,BD ⊥l 于D ,CE ⊥l 于E ,若BD >CE ,试问:(1)AD 与CE 的大小关系如何?请说明理由;(2)线段BD ,DE ,CE 之间的数量关系如何?请说明理由.二、截长补短法6.如图,在四边形ABDE中,C是BD 边的中点,若AC平分∠BAE,∠ACE=90°,猜想线段AE、AB、DE的长度满足的数量关系,并证明.三、倍长中线法7.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()A.6<AD<8B.2<AD<14C.1<AD<7D.无法确定4、难点探究专题:动态变化中的三角形全等——以“静”制“动”,不离其宗◆类型一动点变化1.如图,Rt△ABC中,∠C=90°,AC =6,BC=3,PQ=AB,点P与点Q分别在AC和AC的垂线AD上移动,则当AP=_________时,△ABC和△APQ全等.2.如图,△ABC中,AB=AC=12cm,∠B=∠C,BC=8cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C 点向A点运动.若点Q的运动速度为v cm/s,则当△BPD与△CQP全等时,v的值为____________【提示:三角形中有两个角相等,则这两个角所对的边相等】.3.(2016·达州中考)△ABC中,∠BAC =90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.【方法11】(1)观察猜想:如图①,当点D在线段BC上时,①BC与CF的位置关系为_______;②线段BC,CD,CF之间的数量关系为___________ (将结论直接写在横线上).(2)数学思考:如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.◆类型二图形变换4.如图甲,已知A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,且AB=CD,连接BD.(1)试问OE=OF吗?请说明理由;(2)若△DEC沿AC方向平移到如图乙的位置,其余条件不变,上述结论是否仍成立?请说明理由.5.如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.5、易错易混专题:等腰三角形中易漏解或多解的问题——易错归纳,各个击破◆类型一求长度时忽略三边关系1.(2016·贺州中考)一个等腰三角形的两边长分别是4,8,则它的周长为()A.12 B.16C.20 D.16或202.学习了三角形的有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和交流后,小明同学举手说:“另两条边长为3、6或4.5、4.5.”你认为小明的回答是否正确:_____,理由是_____________________.3.已知等腰三角形中,一腰上的中线将三角形的周长分成6cm和10cm两部分,求这个三角形的腰长和底边的长.◆类型二当腰或底不明求角度时没有分类讨论4.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.100°B.40°C.40°或100°D.60°5.等腰三角形的一个外角等于100°,则与这个外角不相邻的两个内角的度数分别为()A.40°,40°B.80°,20°C.80°,80°D.50°,50°或80°,20°6.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为_____.◆类型三三角形的形状不明时没有分类讨论7.等腰三角形的一个角是50°,则它一腰上的高与底边的夹角是()A.25°B.40°C.25°或40°D.不能确定8.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到的锐角为50°,则∠B等于_____.9.如果两个等腰三角形的腰长相等、面积也相等,那么我们把这两个等腰三角形称为一对合同三角形.已知一对合同三角形的底角分别为x°和y°,则_________(用含x 的代数式表示).10.已知等腰三角形一腰上的高与另一腰的夹角的度数为20°,求顶角的度数.◆类型四一边确定,另两边不确定,求等腰三角形个数时漏解11.(2016·武汉中考)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.812.如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A,B,请在此点阵图中找一个阵点C,使得以点A,B,C为顶点的三角形是等腰三角形,则符合条件的C点有_____个.6、解题技巧专题:等腰三角形中辅助线的作法——形成精准思维模式,快速解题◆类型一 利用“三线合一”作辅助线 一、已知等腰作垂线(或中线、角平分线)1.如图,在△ABC 中,AB =AC ,AE ⊥BE 于点E ,且BE =12BC ,若∠EAB =20°,则∠BAC =__________.2.如图,在△ABC 中,AB =AC ,D 为BC 边的中点,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .(1)求证:DE =DF ; (2)若∠A =90°,图中与DE 相等的有哪些线段(不说明理由)?3.如图,△ABC 中,AC =2AB ,AD 平分∠BAC 交BC 于D ,E 是AD 上一点,且EA =EC ,求证:EB ⊥AB.二、构造等腰三角形4.如图,△ABC 的面积为1cm 2,AP 垂直∠ABC 的平分线BP 于P ,则△PBC 的面积为 ( )A .0.4cm 2B .0.5cm 2C .0.6cm 2D .0.7cm25.如图,已知△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD.求证:BD=2CE.◆类型二巧用等腰直角三角形构造全等6.(2016·铜仁中考)如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.◆类型三等腰(边)三角形中截长补短或作平行线构造全等7.如图,已知AB=AC,∠A=108°,BD平分∠ABC交AC于D,求证:BC=AB +CD.8.如图,过等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,且P A=CQ,连PQ交AC边于D.(1)求证:PD=DQ;(2)若△ABC的边长为1,求DE的长.7、模型构建专题:共顶点的等腰三角形——明模型,悉结论◆类型一共直角顶点的等腰直角三角形1.如图,已知△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由.◆类型二共顶点的等边三角形2.如图①,等边△ABC中,D是AB 边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)△DBC和△EAC会全等吗?请说明理由;(2)试说明AE∥BC的理由;(3)如图②,将(1)中动点D运动到边BA 的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.8、类比归纳专题:证明线段相等的基本思路——理条件、定思路,几何证明也容易◆类型一 已知“边的关系”或“边角关系”用全等1.如图,已知AB =AE ,BC =ED ,∠B =∠E ,AF ⊥CD ,F 为垂足,求证:(1)AC =AD ; (2)CF =DF.2.如图,∠C =90°,BC =AC ,D 、E 分别在BC 和AC 上,且BD =CE ,M 是AB 的中点.求证:△MDE 是等腰三角形.◆类型二 已知角度关系或线与线之间的位置关系用“等角对等边”3.如图,在△ABC 中,CE 、CF 分别平分∠ACB 和△ACB 的外角∠ACG ,EF ∥BC 交AC 于点D ,求证:DE =DF.4.(2015-2016·孝南区期末)如图,在△ABC 中,∠ACB =2∠B ,∠BAC 的平分线AD 交BC 于D ,过C 作CN ⊥AD 交AD 于H ,交AB 于N .(1)求证:AN =AC ;(2)试判断BN 与CD 的数量关系,并说明理由.◆类型三已知角平分线、垂直或垂直平分用相应的性质5.如图,△ABC中,∠CAB的平分线与BC的垂直平分线DG相交于D,过点D作DE⊥AB,DF⊥AC,求证:BE=CF.6.如图,在△ABC中,∠C=90°,AD 是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.9、解题技巧专题:乘法公式的灵活运用——计算技巧多,先观察,再计算,事半功倍◆类型一 利用乘法公式进行简便运算1.计算102×98的结果是( ) A .9995 B .9896 C .9996 D .99972.计算20152-2014×2016的结果是( )A .-2B .-1C .0D .1 3.计算:(1)512=____________; (2)298×302=____________. 4.运用公式简便计算:(1)4013×3923; (2)100022522-2482.5.阅读下列材料:某同学在计算3(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:3(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.请借鉴该同学的经验,计算下面式子的值:⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122⎝⎛⎭⎫1+124⎝⎛⎭⎫1+128+1215.◆类型二 利用乘法公式的变式求值 6.若a -b =12,且a 2-b 2=14,则a +b的值为( )A .-12 B.12C .1D .27.若a -b =1,ab =2,则(a +b )2的值为( )A .-9B .9C .±9D .38.已知x +1x =5,那么x 2+1x 2的值为( )A .10B .23C .25D .279.若m +n =1,则代数式m 2-n 2+2n 的值为1.10.(2016·巴中中考)若a +b =3,ab =2,则(a -b )2=__________.11.阅读:已知a +b =-4,ab =3,求a 2+b 2的值.解:∵a +b =-4,ab =3,∴a 2+b 2=(a +b )2-2ab =(-4)2-2×3=10.请你根据上述解题思路解答下面问题: (1)已知a -b =-3,ab =-2,求(a +b )(a 2-b 2)的值;(2)已知a -c -b =-10,(a -b )c =-12,求(a -b )2+c 2的值.10、解题技巧专题:选择合适的方法因式分解——学会选择最优方法◆类型一一步(提公因式或套公式)分解因式1.(2016·宁德中考)下列分解因式正确的是()A.-ma-m=-m(a-1)B.a2-1=(a-1)2C.a2-6a+9=(a-3)2D.a2+3a+9=(a+3)22.分解因式:(1)3x3y3-x2y3+2x4y;(2)2(x+y)2-(y+x)3.◆类型二两步(先提后套或二次分解)分解因式2.3.(2016·梅州中考)分解因式a2b-b3,结果正确的是()A.b(a+b)(a-b) B.b(a-b)2C.b(a2-b2) D.b(a+b)24.分解因式:(1)-2a3+12a2-18a;(2)(x2+1)2-4x2.*◆类型三特殊的因式分解法(分组分解法、十字相乘法、配方法)5.阅读下列材料并解答问题:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n).(1)试完成下面填空:x2-y2-2y-1=x2-(y2+2y+1)=______________________=______________________;(2)试用上述方法分解因式:a2-2ab-ac+bc+b2.6.阅读与思考:将式子x2-x-6分解因式.这个式子的常数项-6=2×(-3),一次项系数-1=2+(-3),这个过程可用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数,如图所示,这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察,分析理解后,解答下列问题:(1)分解因式:x2+7x-18;(2)填空:若x2+px-8可分解为两个一次因式的积,则整数p的所有可能值是__________________7.阅读:分解因式x2+2x-3.解:原式=x2+2x+1-1-3=(x2+2x +1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1).上述因式分解的方法可以称之为配方法.请体会配方法的特点,然后用配方法分解因式:(1)x2-4x+3; (2)4x2+12x-7.11、易错专题:分式中常见的陷阱——易错全方位归纳,各个击破◆类型一 分式值为0时求值,忽略分母不为01.分式x 2-4x -2的值等于0时,x 的值为( )A .±2B .2C .-2 D. 22.要使m 2-9m 2-6m +9的值为0,则m 的值为( )A .3B .-3C .±3D .不存在3.若分式3-|x |x +3的值为零,则x 的值为_________.◆类型二 自主取值再求值时,忽略分母或除式不能为04.(2016·安顺中考)先化简,再求值:⎝⎛⎭⎫1-1x +1÷x -2x +1,从-1,2,3中选择一个适当的数作为x 值代入.5.(2016·巴中中考)先化简:x 2+xx 2-2x +1÷⎝⎛⎭⎫2x -1-1x ,然后再从-2<x ≤2的范围内选取一个合适的x 的整数值代入求值.◆类型三 无解时忽略分式方程化为一次方程后未知数系数为0的情况6.★若关于x 的分式方程2m +x x -3-1=2x 无解,则m 的值为( )A .-32 B .1C .-32或2D .-12或-327.已知关于x 的分式方程a x +1-2a -x -1x 2+x=0无解,求a 的值.◆类型四 已知方程根的情况求参数的取值范围,应舍去公分母为0时参数的值8.(2016·齐齐哈尔中考)若关于x 的分式方程x x -2=2-m2-x的解为正数,则满足条件的正整数m 的值为( ) A .1,2,3 B .1,2 C .1,3 D .2,39.已知关于x 的分式方程a -xx +1=1的解为负数,求a 的取值范围.12、解题技巧专题:分式运算中的技巧——观特点,定顺序,灵活计算◆类型一 按常规步骤运算1.计算1x -1x -y 的结果是( )A .-yx (x -y ) B .2x +y x (x -y )C .2x -y x (x -y )D .y x (x -y ) 2.化简m m +3+6m 2-9÷2m -3的结果是________.3.(2015-2016·祁阳县校级期中)先化简,再求值:2a +1a 2-1·a 2-2a +1a 2-a -1a +1,其中a =-12.◆类型二 先约分再化简4.化简:a 2-1a 2+2a +1÷a 2-aa +1=________.5.化简求值:(a -3)·9-a 2a 2-6a +9=________,当a =-3时,该代数式的值为________.6.先化简,再求值:x 2-2x +1x 2-1÷⎝⎛⎭⎫1-3x +1,其中x =0.◆类型三 混合运算中灵活运用分配律7.计算⎝ ⎛⎭⎪⎫2x x 2-1+x -1x +1÷1x 2-1的结果是( )A .1x 2+1B .1x 2-1C .x 2+1D .x 2-18.化简:⎝⎛⎭⎫2a -1-1a +1·(a 2-1)=________.9.先化简,再求值:12x-1x +y ·⎝⎛⎭⎫x 2-y 2+x +y 2x ,其中x =2,y =3.◆类型四 分式化简求值注意整体代入10.若xy -x +y =0且xy ≠0,则分式1x -1y的值为( ) A .1xyB .xyC .1D .-1 11.已知:a 2-3a +1=0,则a +1a -2的值为( )A .5+1B .1C .-1D .-512.先化简,再求值:⎝⎛⎭⎪⎫x -1x -x -2x +1÷2x 2-xx 2+2x +1,其中x 满足x 2-x -1=0.。