重点难点(定积分)
- 格式:ppt
- 大小:18.69 MB
- 文档页数:62
定积分概念教案范文教案标题:定积分概念的引入和初步认识一、教学目标1.了解定积分概念的引入背景和发展历程;2.掌握定积分的基本定义;3.能够应用定积分求解简单的几何和物理问题。
二、教学重点1.定积分引入背景和基本概念;2.定积分的基本定义和求解方法。
三、教学难点2.定积分的应用举例。
四、教学准备1.教师准备:教案、黑板、粉笔、教材参考书。
2.学生准备:课前预习教材相关内容,笔记本、笔等。
五、教学过程第一步:导入(10分钟)1.引入背景:告诉学生数学是一门从古至今都有许多人致力于研究的学科,其中有很多重要的概念和定理。
本节课我们将要学习的是定积分概念,它是微积分学中的基本概念之一第二步:展示(15分钟)1.介绍定积分的提出背景和发展历程,如牛顿、莱布尼兹等人对定积分的贡献;2.引入定积分的基本概念:设函数f(x)在闭区间[a,b]上有界,将[a,b]分为n个小区间,每个小区间长度为Δx,用Δx表示。
在每个小区间内任取一点ξi(ξi属于[i-1,i])并计算f(ξi)Δx,然后将这n 个小区间上的和表示为Σf(ξi)Δx;3. 引入定积分的基本定义:当n趋向于无穷大,并且Δx趋向于0时,如果极限lim(Δx→0)Σf(ξi)Δx存在,且对任意x ∈ [a, b],极限lim(n→∞)lim(Δx→0)Σf(ξi)Δx存在,那么称该极限为函数f(x)在闭区间[a, b]上的定积分,记作∫[a, b]f(x)dx,即∫[a,b]f(x)dx=lim(n→∞)lim(Δx→0)Σf(ξi)Δx;4.解释定积分的几何意义:定积分表示曲线与x轴所围成的面积。
通过几何图形进行解释和演示。
第三步:练习(25分钟)1.基本练习:通过一些基本的题目来巩固定积分的基本定义和概念的理解;2.综合练习:通过一些实际问题来应用定积分,如求一段弓形所围成的面积、求物体在一定时间内的位移等。
第四步:讲解与总结(15分钟)1.请学生上台分别讲解几个基本练习题的解题思路和方法;2.强调定积分与不定积分的区别:不定积分结果是一个函数表达式,而定积分结果是一个数值;3.总结定积分的基本概念和定义,强调定积分解决实际问题的重要性。
定积分的概念教案一、教学目标:1.了解定积分的定义和计算方法;2.掌握定积分的性质和应用;3.培养学生的数学计算能力和逻辑思维能力。
二、教学内容:1.定积分的定义;2.定积分的计算方法;3.定积分的性质和应用。
三、教学重点:1.定积分的定义;2.定积分的计算方法。
四、教学难点:1.定积分的性质和应用;2.定积分与原函数的关系。
五、教学过程:Step 1 引入教师与学生展开对话,探讨学生对积分的了解:教师:同学们,你们对积分有什么了解?学生:积分就是求和。
教师:不错,积分的确是求和,但是定积分具体是什么呢?我们一起来探讨一下。
Step 2 定积分的定义教师向学生介绍定积分的定义:教师:定积分是微积分的一个重要概念,表示函数曲线与x轴之间的面积。
我们用符号∫来表示定积分,函数f(x)的定积分表示为∫f(x)dx,在积分号下面写上被积函数,dx表示自变量。
Step 3 定积分的计算方法教师通过示例向学生演示定积分的计算方法:教师:我们以函数f(x)=x^2为例,计算f(x)在区间[1,3]上的定积分。
教师在黑板上写下∫(1→3)x^2dx,并进行具体的计算步骤解释。
Step 4 定积分的性质和应用教师向学生介绍定积分的性质和应用,并通过例题进行讲解:教师:定积分具有线性性质、区间可加性和变量替换的性质,同时也可以用于计算面积、体积、质量等。
我们来看一个例题,计算函数f(x)=x在区间[-2,2]上的定积分,并解释其实际意义。
Step 5 定积分与原函数的关系教师引导学生思考定积分与原函数的关系:Step 6 总结与归纳教师与学生总结本节课的内容,并归纳出定积分的概念和性质:教师:同学们,通过本节课的学习,我们初步了解了定积分的定义、计算方法和性质。
下节课我们将进一步学习定积分的应用。
大家要做好预习哦!六、教学反思本节课通过引入、定义、示例演算等方式,使学生初步了解了定积分的概念和计算方法。
通过例题讲解,学生对定积分的应用有了基本的认识。
定积分定积分与不定积分是两个不同的概念,前者是数,后者是函数族,但两者之间有着密切的联系.§1 定积分的概念与性质【目的要求】1、了解定积分的定义;2、了解定积分的性质、定积分存在的必要条件和充分条件;3、会熟练应用第一中值定理和估值定理.【重点难点】定积分的概念与定积分的性质.【教学内容】一、定积分概念引例1. 曲边梯形的面积在初等数学中,已经解决了圆、三角形、矩形、梯形等平面图形的面积问题,而对由任意曲线所围成的一般平面图形的面积计算问题尚未解决,其原因是用初等数学方法解决这类问题相当困难. 下面将介绍一种求曲边梯形的面积的方法,有了这种方法就可以解决一般封闭图形的面积问题.例1所谓曲边梯形,是指由连续曲线()(()0)y f x f x=≥,x轴以及直线==所围成的图形(如图6-1所示). 现计算它的面积A.,x a x b图6-1分析从图中可以看出,当()a b上为常数时,图形变成矩形,其y f x=在[,]面积为:面积=底⨯高.而对于一般的曲面梯形,其高度是变化的,因而不能直接按矩形面积公式来求,然后,由于()y f x =在区间[,]a b 上的变化是连续,在很小的一段区间上它的变化量非常小. 因此,通过分割曲边梯形的底边[,]a b ,将整个曲边梯形分成若干个小曲边梯形,而每个小曲边梯形的底边长度非常小,并且其面积近似于一个小矩形的面积. 然后,将这些小矩形的面积相加,就是整个曲边梯形面积的近似值. 当然,随着分割的份数增多,近似程度越来越高.当无限分割[,]a b ,令每个小曲边梯形的底边长度趋于0,那么整个近似值的极限就是我们要求的曲边梯形的面积.先将详细过程叙述如下:(1) 分割:把区间[,]a b 任意分成n 份,设分点为012···n a x x x x b =<<<<=,于是每个小曲边梯形的长度为1i i i x x x -∆=-.过每个分点做x 轴的垂线,则可把曲边梯形分成n 个小曲边梯形,再设每个小曲边梯形面积为i A .(2) 取近似:对于第i 个小曲边梯形,在其底边1[,]i i x x -上任取一点i ξ,并以()i f ξ为高作矩形,并用该矩形的面积近似替代每个小曲边梯形的面积,即()i i i A f x ξ≈⋅∆,其中1,2,,i n =.(3) 求和:将所有小矩形的面积求和,即得到原曲边梯形的近似面积1()ni i i A f x ξ==⋅∆∑.(4) 取极限:无限分割区间[,]a b ,使所有小区间的长度趋于0. 为此,记{}12max ,,,n x x x λ=∆∆⋅⋅⋅∆.当λ趋向于0时,1()ni i i A f x ξ==⋅∆∑的极限就是曲边梯形的面积A ,即1lim ()ni i x i A f x ξ→==⋅∆∑.2. 成本问题例 2 某公司对其产品的变化情况满足如下关系式:()5003xf x =-.其中x 表示该产品的数量;()f x 表示当产品数量为x 时,在增加一个单位产品所增加的成本(即边际函数). 试求当产品从300件增加到900件时该公司所增加的成本C .分析 如同本教材前面章节对边际函数所描述的那样,在经济和商务中遇到的函数自变量往往取正整数,其函数值也是离散型的. 为数学处理方便,下面将其连续化,转化成具有连续倒数的函数来处理. 这是许多结果只能看成近似的,但不影响对实际问题的分析.(1) 分割: 该公司产品产量从300件增加到900件,将其连续化,把区间[300,900]任意分成n 份,设分点为012300900n x x x x =<<<<=.(2) 取近似:考虑产量从1i x -增加到i x 时所增加的成本,1()i f x -作为边际成本在1i x -的值表示当产量为1i x -时增加单位产量所增加的成本. 当产品数量增加i x ∆单位时,所增加的成本为1()i i f x x -⋅∆.(3) 求和:当产量从300增加到900时,所增加的总成本为11()ni i i f x x -=⋅∆∑.(4) 取极限:为了更精确估计,同样可设12max{,,,}n x x x λ=∆∆∆,当λ趋向于0时,所增加的总成本为101lim ()ni i i C f x x λ-→==∆⋅∆∑.二、定积分定义抛开这些问题的具体意义,抓住它们在数量关系上共同的本质与特性加以概括,我们就可以抽象出下述定积分的定义.定义 1.1 设函数()f x 在[,]a b 上有界,在[,]a b 中任意插入若干个分点012···n a x x x x b =<<<<=,把区间[,]a b 分成n 个小区间01121[,],[,],,[,]n n x x x x x x -⋅⋅⋅,各个小区间的长度依次为1102211,,,n n n x x x x x x x x x -∆=-∆=-⋅⋅⋅∆=-.在每个小区间1[,]i i x x -上任取一点i ξ1()i i i x x ε-≤≤,作函数值()i f ε与小区间长度i x ∆的乘积()i i f x ξ∆(1,2,,)i n =⋅⋅⋅,并作和1()ni i i S f x ξ==∆∑.记{}12max ,,,n x x x λ=∆∆⋅⋅⋅∆,如果不论对[,]a b 怎样划分,也不论在小区间1[,]i i x x -上点i ξ怎样选取,只要当0λ→时,和S 总趋于确定的极限I ,那么称函数()f x 在区间[,]a b 上可积,并称这个极限I 为函数()f x 在区间[,]a b 上的定积分(简称积分),记作()d ba f x x ⎰,即()d baf x x ⎰=I =01lim ()ni i i f x λξ→=⋅∆∑,其中()f x 称为被积函数,()d f x x 称为被积表达式,x 称为积分变量,a 称为积分下限,b 称为积分上限,[,]a b 称为积分区间.根据积分定义,例1中的曲边梯形的面积A 是函数()f x 在区间[,]a b 上的定积分,即()d ba A f x x =⎰;例2中当产量从300件增加到900件时,所增加的成本为900300()d C f x x =⎰.关于定积分,作以下几点说明:(1) 函数()f x 在区间[,]a b 上可积是指积分()d ba f x x ⎰存在,即无论区间如何分割以及i ξ如何选取,01lim ()ni i i f x λξ→=⋅∆∑始终存在.(2) 定积分表示一个数值,它只与被积函数及积分区间有关,而与积分变量用何字母表示无关,即有()d ()d ()d ()d bb b baaaaf x x f y y f t t f u u ===⎰⎰⎰⎰.(3) 在定义中,记号()d b af x x ⎰只有当a b <时才有意义,而当a b =或a b >是没有意义的.但为以后计算及应用方便起见,规定:()d 0aaf x x =⎰, ()d ()d ()b aabf x x f x x a b =->⎰⎰.(4) 几何意义:定积分()d b af x x ⎰的几何意义为由曲线()y f x =,x 轴及直线x a =,x b =所围成的封闭图形在x 轴上方与下方面积的代数和,其中x 轴上方面积为正,下方面积为负.对于定积分,有这样一个重要问题:函数()f x 在区间[,]a b 上满足怎样的条件,()f x 在[,]a b 上一定可积?这个问题我们不作深入讨论,而只给出以下两个充分条件.定理 1.1 设函数()f x 在[,]a b 上连续,则()f x 在[,]a b 上可积.定理 1.2 设函数()f x 在[,]a b 上有界,且只有有限个间断点,则()f x 在[,]a b 上可积.最后,举一个按定义计算定积分的例子. 例 3 利用定义计算定积分120d x x ⎰.解 因为被积函数2()f x x =在区间[0,1]上连续,而连续函数是可积的,所 以积分与区间[0,1]的分法及点i ξ的取法无关. 因此,为了便于计算,不妨把区间[0,1]分成n 等份,分点为i ix n=,1,2,1i n =-;这样,每个小区间1[,]i i x x -的长度1i x n∆=,1,2,i n =;取i i x ξ=,1,2,i n =.于是,得和式22111()n nniiii i i i i i f x x x x ξξ===⋅∆=∆=∆∑∑∑=2231111nn i i i i n n n ==⎛⎫⋅= ⎪⎝⎭∑∑=311(1)(21)6n n n n ⋅++① =111(1)(2)6n n ++.当0λ→即n →∞时,取上式右端的极限. 由定积分的定义,即得所要计算的积分为1220011111d lim lim (1)(2)63ni i n i x x x n n λξ→→∞==∆=++=∑⎰. 二、定积分基本性质由定积分的定义与极限运算法则和性质,可以推出下列定积分的基本性质和积分中值定理(下面所涉及的函数在没说明情况下均表示在讨论区间上可积).1.定积分的基本性质 性质 1[]()()d ()d ()d bbbaaaf xg x x f x x g x x±=±⎰⎰⎰. 对有限个函数1()f x ,2()f x ,,()n f x 亦成立,即[]12()()() d bn afx f x f x x ±±±⎰12()d ()d ()d b b bn aaa f x x f x x f x x =±±±⎰⎰⎰.性质 2 若k 为常数,则()d ()d bbaak f x x k f x x =⎰⎰.性质 3 (区间可加性)()d ()d ()d bc baacf x x f x x f x x =+⎰⎰⎰.若()f x 连续且c 介于a 与b 之间,即a b c <<时,该性质从几何意义看是显然的,当不介于a 与b 之间,该性质仍然成立. 因为当a b c <<时,()d ()d ()d cb c a a b f x x f x x f x x =+⎰⎰⎰, ()d ()d ()d bc c a a bf x x f x x f x x =-⎰⎰⎰.因为 ()d ()d cba cf x x f x x =-⎰⎰,所以()d ()d (()d bcbaacf x x f x x f x x=--⎰⎰⎰ ()d()d cb acf x x f x x =+⎰⎰. 当c a b <<时,可类似证明.性质 4 如果在区间[,]a b 上,有()()f x g x ≤,则()d ()d ()bbaaf x xg x x a b ≤<⎰⎰.性质 5 (估值定值)如果函数()f x 在区间[,]a b 上的最大值与最小值分别为M 与m ,则()()d ()()ba mb a f x x M b a a b -≤≤-<⎰,即 ()d baf x xm M b a≤≤-⎰.证 因为()m f x M ≤≤,由性质4得d ()d d bb baaam x f x x M x ≤≤⎰⎰⎰,再由性质2和d b ax b a =-⎰,即有 ()()()d b am b a f x xM b a-≤≤-⎰. 估计定值的几何意义是曲边梯形面积介于以区间[,]a b 为底,以最小纵坐标为高的矩形面积与以最大纵坐标为高的矩形面积之间. 性质5可用来估计积分值的大致范围.性质 6 (积分中值定理)设函数()y f x =在区间[,]a b 上连续,则在[,]a b 上至少存在一点()a b ξξ≤≤,使()d ()()baf x x f b a ξ=-⎰.证 因为()y f x =在[,]a b 上连续,由闭区间上连续函数的性质可知,()y f x =在[,]a b 上必存在最大值M 和最小值m .若a b =,显然.若a b <,利用性质5,并将不等式除以b a -,得1()d ba m f x x Mb a≤≤-⎰. 根据闭区间上连续函数的介值定理,在[,]a b 上至少存在一点,使得1()()d ba f f x xb aξ=-⎰. 即()d ()()baf x x f b a ξ=-⎰. 几何意义(见图6-2)是在曲边梯形底边上至少存在一点ξ,使得该曲边梯形面积等于同一底边、髙为()f ξ的矩形面积.图 6-2其中,1()()d baf f x x b a ξ=-⎰称为函数()y f x =在区间[,]a b 上的平均值.。
高中数学定积分的概念教案新人教版选修一、教学目标1. 理解定积分的概念,掌握定积分的基本性质和计算方法。
2. 能够运用定积分解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力,提高学生的数学素养。
二、教学内容1. 定积分的概念介绍定积分的定义、性质和计算方法,引导学生理解定积分的本质。
2. 定积分的计算讲解定积分的计算法则,包括牛顿-莱布尼茨公式、换元积分法、分部积分法等,让学生掌握定积分的计算技巧。
3. 定积分在实际问题中的应用通过实际问题,引导学生运用定积分解决面积、体积、弧长等问题,提高学生的数学应用能力。
三、教学重点与难点1. 定积分的概念与性质2. 定积分的计算方法3. 定积分在实际问题中的应用四、教学方法1. 采用讲授法,讲解定积分的概念、性质和计算方法。
2. 利用例题,引导学生掌握定积分的计算技巧。
3. 结合实际问题,培养学生运用定积分解决实际问题的能力。
4. 组织讨论,让学生在探讨中深化对定积分概念的理解。
五、教学过程1. 引入:通过复习初中数学中的积分概念,引导学生思考如何将积分概念推广到无限区间。
2. 讲解:讲解定积分的定义、性质和计算方法,让学生理解定积分的本质。
3. 练习:布置定积分的计算练习题,让学生巩固所学知识。
4. 应用:结合实际问题,讲解定积分在面积、体积、弧长等方面的应用,让学生体会定积分的实用价值。
6. 作业:布置课后作业,巩固所学知识。
六、定积分的性质与计算法则1. 性质:定积分具有线性性质,即$\int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx = \int_{a}^{b} (f(x) + g(x)) \, dx$。
定积分与积分区间有关,即$\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx$。
定积分与积分函数的单调性有关,即若$f(x)$ 在$[a, b]$ 上单调递增,则$\int_{a}^{b} f(x) \, dx$ 可以表示为$F(b) F(a)$,其中$F(x)$ 是$f(x)$ 的一个原函数。
1.5.2《定积分》教案教学目标(1)定积分的定义(2)利用定积分的定义求函数的积分,掌握步骤 (3)定积分的几何意义(4)会用定积分表示阴影部分的面积 教学重点难点定积分的定义是本节的重点,定积分的几何意义的应用是本节的难点。
教学过程一、创设情景复习:1. 回忆前面曲边图形面积,变速运动的路程,变力做功等问题的解决方法,解决步骤:分割→以直代曲→求和→取极限(逼近 2.对这四个步骤再以分析、理解、归纳,找出共同点. 情境导入:1.曲边梯形面积问题;2.变力作功问题;3.变速运动的距离问题.我们把这些问题从具体的问题中抽象出来,作为一个数学概念提出来就是今天要讲的定积分。
由此我们可以给定积分的定义。
二、数学建构1.定积分的概念一般地,设函数()f x 在区间[,]a b 上有定义,将区间[,]a b 等分为n 个小区间,每个小区间的长度为x ∆(b ax n-∆=),在每个小区间上取一点,依次为123,,,n x x x x 。
作和12()()()()n i n S f x x f x x f x x f x x =⋅∆+⋅∆++⋅∆++⋅∆,如果x ∆无限趋近于0(亦即n 趋向于)+∞时,n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分,记为()baS f x dx =⎰其中,()f x 为被积函数,[,]a b 称为积分函数,a 称为积分下限,b 称为积分上限。
说明:(1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()baf x dx ⎰,不是n S(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x ξ-∈; ③求和:1()ni i b af n ξ=-∑; ④取极限:()1()lim nbi an i b af x dx f nξ→∞=-=∑⎰(3)曲边图形面积:()baS f x dx =⎰;变速运动路程21()t t S v t dt =⎰;变力做功 ()baW F r dr =⎰【举例说明】1、由曲线y=x2+1与直线x=1,x=3及x 轴所围成的曲边梯形的面积,用定积分表示为____________.(321(1)x dx +⎰)2、22sin 3tdt -⎰中,积分上限是___,,积分下限是___,积分区间是______。
(完整版)定积分知识点汇总定积分是高中数学教学的重点难点之一,也是高数的基础知识。
我们通过汇总定积分的相关知识点,帮助同学们更好地掌握定积分的相关知识,以便在考试中取得好的成绩。
一、定积分的定义定积分是对函数在一定区间上的积分,也就是函数在此区间上的面积。
1. 定积分与区间的选取无关,即如果函数在 $[a,b]$ 上是可积的,则定积分$\int_a^b f(x) \mathrm{d}x$ 的值是唯一的。
2. 定积分具有可加性,即对于任意的 $c \in [a,b]$,有 $\int_a^b f(x)\mathrm{d}x = \int_a^c f(x) \mathrm{d}x + \int_c^b f(x) \mathrm{d}x$。
三、定积分的求解方法1. 函数曲线与坐标轴相交的情况:对于函数曲线与 $x$ 轴相交的区间,可以根据定义式直接求出该区间内的面积。
对于函数曲线与 $y$ 轴相交的区间,则要将积分区间平移后,再根据定义式计算面积。
2. 利用基本积分法和牛顿-莱布尼茨公式:可以利用基本积分法求出一个函数的原函数,然后利用牛顿-莱布尼茨公式,即$\int_a^b f(x) \mathrm{d}x = F(b) - F(a)$,其中 $F(x)$ 是 $f(x)$ 的一个原函数。
3. 利用换元积分法:换元积分法是利用一些特殊的代换,将积分式转化为某些基本形式的积分。
常见的代换包括:$u=g(x), x=h(u)$ 和 $\mathrm{d}u = f(x) \mathrm{d}x$。
分部积分法是将原积分式做一个变形,转化成两个积分乘积的形式,从而更容易求解。
5. 利用定积分的对称性:如积分区间对于 $0$ 对称,或者函数具有四象限对称性等,可以根据对称性减少计算量。
1. 几何应用:用定积分可以求解函数曲线与坐标轴围成的图形的面积、体积和质心等几何特征。
利用定积分可以求解质点运动的速度、加速度、位移和质量等物理量。
定积分的概念教案课题:定积分的概念研究目标及重、难点:一、教学目标:1.通过求曲边梯形的面积和汽车行驶的路程,了解定积分的背景。
2.借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分定义求简单的定积分。
3.理解掌握定积分的几何意义。
二、教学重点:定积分的概念、用定义求简单的定积分、定积分的几何意义。
教学难点:定积分的概念、定积分的几何意义。
教学流程:一、复:1.回忆前面曲边梯形的面积,汽车行驶的路程等问题的解决方法,解决步骤:分割→近似代替(以直代曲)→求和→取极限(逼近)2.对这四个步骤再以分析、理解、归纳,找出共同点。
二、新课探析:1.定积分的概念:设函数f(x)在区间[a,b]上连续,用分点一般地将区间[a,b]等分成n个小区间,每个小区间长度为Δx,取一点ξi(i=1,2.n)在每个小区间[x(i-1),xi]上任取一点ξi,作和式:Sn=∑f(ξi)Δx,当上述和式Sn无限趋近于常数S,即S=limSn(n→∞)时,上述常数S称为函数f(x)在区间[a,b]上的定积分。
记为:S=∫baf(x)dx,其中∫为积分号,b为积分上限,a为积分下限,f(x)为被积函数,x为积分变量,[a,b]为积分区间,∫f(x)dx为被积式。
说明:1)定积分不是Sn。
2)用定义求定积分的一般方法是:①分割:n等分区间[a,b];②近似代替:取点ξi∈[xi-1,xi];③求和:∑f(ξi)Δx;④取极限:∫f(x)dx=lim∑f(ξi)Δx(n→∞)。
3)曲边图形面积:S=∫f(x)dx。
2.定积分的几何意义:从几何上看,如果在区间[a,b]上函数f(x)连续且恒有f(x)≥0,则定积分∫f(x)dx表示由直线x=a,x=b(a≠b),y=0和y=f(x)所围成的曲边梯形的面积,如图中的阴影部分。
另外,定积分还可以表示变速运动路程S=∫bta2v(t)dt和变力做功W=∫btaF(r)dr的大小。
1.5.3定积分的概念一:教学目标1、通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;能用定积分的定义求简单的定积分;理解掌握定积分的几何意义; 2、借助于几何直观定积分的基本思想,理解定积分的概念;二:教学重难点重点 定积分的概念、定积分法求简单的定积分、定积分的几何意义 难点 定积分的概念、定积分的几何意义三:教学目标:1.创设情景1.解决步骤:2 2.新课讲授1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b ax n-∆=),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ= ,作和式:11()()n nn i i i i b aS f x f n ξξ==-=∆=∑∑如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。
记为:()ba S f x dx =⎰其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。
说明:(1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()baf x dx ⎰,而不是n S .(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:1()ni i b af n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑⎰ (3)曲边图形面积:()baS f x dx =⎰;变速运动路程21()t t S v t dt =⎰;变力做功 ()baW F r dr =⎰2.定积分的几何意义如果在区间[,]a b 上函数连续且恒有()0f x ≥,那么定积分()baf x dx ⎰表示由直线,x a x b ==(a b ≠),0y =和曲线()y f x =所围成的曲边梯形的面积。
定积分的计算方法总结归纳定积分是微积分中的重要概念,它在求解曲线面积、体积、质量、重心等问题中起着重要的作用。
在实际问题的求解过程中,经常需要计算不定积分和定积分,而定积分的计算方法是其中的重点和难点之一、本文将对定积分的计算方法进行总结归纳。
首先,我们应该熟练掌握不定积分的计算方法,因为定积分可以看作是不定积分的主要应用之一、常见的不定积分计算方法有:换元法、分部积分法、有理函数积分法等。
这些方法是解决不定积分问题的基本思路,只有熟练掌握了这些方法,才能够在定积分的计算中游刃有余。
除了不定积分的计算方法外,还需要掌握一些特殊函数的积分。
例如,正弦函数、余弦函数、指数函数、对数函数等都有其特殊的积分公式,而这些特殊函数的积分计算通常是通过不定积分法进行的。
掌握这些特殊函数的积分公式,可以在定积分的计算中大大简化问题。
在计算定积分时,常常需要对区间进行分割,这就引出了“分割与求和”的方法。
具体来说,将待积函数在给定区间上分割成若干个小区间,然后通过求和的方式来逼近定积分的值。
这种方法叫做分割求和法,也是定积分的定义之一、通常情况下,我们可以将区间等分为n个小区间,然后通过求和来逼近积分的值。
当n趋于无穷大时,逼近结果就趋于定积分的准确值。
当然,分割求和法并不是唯一的逼近定积分的方法,还有其他的逼近方法,例如使用插值函数逼近原函数、使用泰勒公式展开逼近等。
这些方法相对复杂一些,通常在高级数学课程中会进行学习和应用。
对于一些特殊的曲线、图形的定积分计算,还可以使用几何方法进行求解。
例如,对于平面上一段曲线围成的面积,可以通过将其分割为若干个小矩形或小三角形,然后通过求和的方式来逼近面积的值。
对于空间中的体积计算也可以使用类似的方法。
几何方法求解定积分通常符合直观的几何思维,但在实际计算时可能需要一些复杂的步骤和技巧。
最后,还有一些高级的定积分计算方法,比如留数法、辐角原理等,这些方法通常应用在复数函数积分中。