牛莱公式及简单定积分计算
- 格式:ppt
- 大小:1.23 MB
- 文档页数:37
定积分计算公式大全一、定积分的基本公式。
1. 牛顿 - 莱布尼茨公式(Fundamental Theorem of Calculus)- 如果函数f(x)在区间[a,b]上连续,并且F(x)是f(x)的一个原函数,即F^′(x) = f(x),那么∫_a^bf(x)dx=F(b)-F(a)。
- 例如:计算∫_1^2x^2dx,因为F(x)=(1)/(3)x^3是f(x) = x^2的一个原函数,所以∫_1^2x^2dx=(1)/(3)x^3big_1^2=(1)/(3)×2^3-(1)/(3)×1^3=(8)/(3)-(1)/(3)=(7)/(3)。
2. 定积分的线性性质。
- ∫_a^b[k_1f(x)+k_2g(x)]dx = k_1∫_a^bf(x)dx + k_2∫_a^bg(x)dx,其中k_1,k_2为常数。
- 例如:计算∫_0^1(2x + 3x^2)dx,根据线性性质∫_0^1(2x+3x^2)dx =2∫_0^1xdx+3∫_0^1x^2dx。
- 因为∫_0^1xdx=(1)/(2)x^2big_0^1=(1)/(2),∫_0^1x^2dx=(1)/(3)x^3big_0^1=(1)/(3),所以∫_0^1(2x + 3x^2)dx=2×(1)/(2)+3×(1)/(3)=1 + 1=2。
二、定积分的换元积分法。
设函数f(x)在区间[a,b]上连续,函数x = φ(t)满足条件:1. φ(α)=a,φ(β)=b;2. φ(t)在[α,β](或[β,α])上具有连续导数,且其值域R_φ⊆[a,b],则∫_a^bf(x)dx=∫_α^βf[φ(t)]φ^′(t)dt。
例如:计算∫_0^4(dx)/(1 + √(x))。
令t=√(x),则x = t^2,dx = 2tdt。
当x = 0时,t = 0;当x = 4时,t=2。
所以∫_0^4(dx)/(1+√(x))=∫_0^2(2t)/(1 + t)dt=2∫_0^2(t + 1-1)/(1 + t)dt=2∫_0^2(1-(1)/(1 + t))dt=2<=ft[t-ln(1 + t)]big_0^2=2(2-ln3)三、定积分的分部积分法。
牛顿莱布尼茨公式与积分运算知识点:牛顿-莱布尼茨公式与积分运算一、牛顿-莱布尼茨公式牛顿-莱布尼茨公式是微积分基本定理的表述,它建立了微分学与积分学之间的联系。
公式如下:如果函数f(x)在区间[a, b]上连续,并且在区间(a, b)内可导,那么函数f(x)在区间[a, b]上的定积分可以表示为:∫(from a to b) f(x)dx = F(b) - F(a)其中,F(x)是f(x)的一个原函数,即F’(x) = f(x)。
二、积分运算的基本性质1.线性性质:设f(x)和g(x)是两个可积函数,α和β是两个常数,则有:∫(from a to b) (αf(x) + βg(x))dx = α∫(from a to b) f(x)dx + β∫(from a to b) g(x)dx2.保号性:如果f(x)在区间[a, b]上非负(非正),则∫(from a to b)f(x)dx非负(非正)。
3.可加性:如果f(x)和g(x)在区间[a, b]上可积,且它们的区间分界点相同,那么:∫(from a to b) f(x)dx + ∫(from a to b) g(x)dx = ∫(from a to b) (f(x) + g(x))dx4.换元积分法:设 Integration variable change : x = g(t),dx = g’(t)dt,则有:∫(from a to b) f(x)dx = ∫(from g(a) to g(b)) f(g(t))g’(t)dt三、积分运算的基本公式1.幂函数的积分公式:∫(from a to b) x^n dx = (1/n+1)x^(n+1) + C,其中C为积分常数。
2.指数函数的积分公式:∫(fro m a to b) e^x dx = e^x + C。
3.对数函数的积分公式:∫(from a to b) ln|x| dx = ln|x| + C。
牛顿莱布尼兹公式牛顿-莱布尼兹公式是微积分中的一个重要公式,它用于计算定积分。
该公式是由英国科学家艾萨克·牛顿和德国数学家戈特弗里德·威廉·莱布尼兹独立发现的。
牛顿-莱布尼兹公式可以用来计算定积分,其中定积分是指在给定区间上的函数曲线下的面积。
定积分表示了一个函数的积分,即该函数在区间上的所有小的面积之和。
假设$f(x)$是在闭区间$[a,b]$上连续的函数,那么牛顿-莱布尼兹公式可以写作:$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$其中$F(x)$是$f(x)$的一个原函数。
原函数是指对于给定函数的导数。
为了更好地理解牛顿-莱布尼兹公式,我们可以通过一个简单的例子来说明。
假设我们想要计算函数$f(x)=2x$在区间$[1,3]$上的定积分。
根据牛顿-莱布尼兹公式,我们需要找到$f(x)$的原函数$F(x)$。
在这个例子中,$f(x)$的原函数$F(x)$可以是任何使得$F'(x)=2x$成立的函数。
我们知道,$x^2$是$f(x)$的一个原函数,因为它的导数是$2x$。
因此,我们可以将牛顿-莱布尼兹公式应用于此问题,从而计算得到:$$\int_{1}^{3} (2x) dx = x^2 \Big,_{1}^{3} = 9 - 1 = 8$$所以,函数$f(x)=2x$在区间$[1,3]$上的定积分是8牛顿-莱布尼兹公式的重要性在于它提供了计算定积分的一种直观方法。
它意味着我们只需要找到函数$f(x)$的一个原函数$F(x)$,然后通过求解原函数在给定区间上的差值来计算定积分。
这种方法比使用Riemann和或其他数值方法进行数值积分更为简便,特别是当给定函数的原函数可以表示为一般公式时。
值得注意的是,牛顿-莱布尼兹公式假定给定函数在指定区间上是连续的,且存在原函数。
如果给定函数并不满足这些要求,那么该公式将不再适用。
此外,当函数在一些点上非连续或不可导时,必须进行其他方法的考虑。
⽜顿布莱尼茨公式是什么推导过程有哪些⽜顿布莱尼茨公式通常也被称为微积分基本定理,揭⽰了定积分与被积函数的原函数或者不定积分之间的联系。
那么,⽜顿布莱尼茨公式是什么呢?下⾯⼩编整理了⼀些相关信息,供⼤家参考!⽜顿布莱尼茨公式⽜顿-莱布尼兹公式,⼜称为微积分基本定理,其内容是:若函数f(x)在闭区间[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且从a到b的定积分(积分号下限为a上限为b):∫f(x)dx=F(b)-F(a)其意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了⼀个完善、令⼈满意的⽅法.⽜顿布莱尼茨公式证明过程证明:设:F(x)在区间(a,b)上可导,将区间n等分,分点依次是x1,x2,…xi…x(n-1),记a=x0,b=xn,每个⼩区间的长度为Δx=(b-a)/n,则F(x)在区间[x(i-1),xi]上的变化为F(xi)-F(x(i-1))(i=1,2,3…)当Δx很⼩时,F(x1)-F(x0)=F’(x1)*ΔxF(x2)-F(x1)=F’(x2)*Δx……F(xn)-F(x(n-1))=F’(xn)*Δx所以,F(b)-F(a)=F’(x1)*Δx+ F’(x2)*Δx+…+ F’(xn)*Δx当n→+∞时,∫(a,b)F’(x)dx=F(b)-F(a)⽜顿布莱尼茨公式意义⽜顿-莱布尼茨公式的发现,使⼈们找到了解决曲线的长度,曲线围成的⾯积和曲⾯围成的体积这些问题的⼀般⽅法。
它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或⼀定精度的近似值。
⽜顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之⼀。
它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为⼀门真正的学科。
⽜顿-莱布尼茨公式是积分学理论的主⼲,利⽤⽜顿⼀莱布尼茨公式可以证明定积分换元公式,积分第⼀中值定理和积分型余项的泰勒公式。