2018届高三文科数学一轮复习 数列求和
- 格式:ppt
- 大小:3.18 MB
- 文档页数:33
高考第一轮复习之方法指导——《数列求和的方法》数列求和是高中数学中非常重要的一个概念,也是高考中经常会涉及到的内容。
下面给出一些数列求和的方法指导,希望对高考复习有所帮助。
1.等差数列求和:等差数列是高中数学中最基本的数列之一,求和方法也是最为简单的。
对于一个等差数列:a_1,a_2,a_3,...,a_n,如果首项是a_1,公差是d,则数列的和可以通过如下公式计算:S_n=(n/2)(a_1+a_n)其中,S_n表示数列的和,n表示数列的项数,a_n表示数列的最后一项。
2.等比数列求和:等比数列也是高中数学中常见的数列类型,求和方法相对于等差数列要稍复杂一些。
对于一个等比数列:a_1,a_2,a_3,...,a_n,如果首项是a_1,公比是q,则数列的和可以通过如下公式计算:S_n=(a_1(q^n-1))/(q-1)其中,S_n表示数列的和,n表示数列的项数,q表示数列的公比。
3.等差数列前n项和:如果需要计算等差数列的前n项的和,可以通过使用等差数列求和公式快速计算。
首先,计算数列的首项a_1和最后一项a_n,然后带入求和公式即可。
4.等差数列项数:如果需要计算等差数列的项数n,可以通过反推求解。
首先,计算数列的首项a_1和最后一项a_n,然后使用如下公式:n=(a_n-a_1)/d+1其中,n表示等差数列的项数,a_n表示最后一项,a_1表示首项,d表示公差。
5.等差数列的和等于0:如果一个等差数列的和等于0,可以应用等差数列的性质进行求解。
首先,计算数列的首项a_1和公差d,然后使用等差数列求和公式解方程:n/2(a_1+a_n)=0可得等差数列的项数n。
6.等差数列差数求和:如果需要计算等差数列的差数的和,可以使用差数求和公式进行计算。
该公式是等差数列求和公式的一个变形。
首先,计算差数的和:S_d=(n/2)(a_2-a_1)其中,S_d表示差数的和,n表示数列的项数,a_1表示首项,a_2表示第二项。
§6.4数列求和1.熟练掌握等差、等比数列的前n项和公式.2.掌握非等差、等比数列求和的几种常见方法.考纲展示►考点1公式法求和1.公式法直接利用等差数列、等比数列的前n项和公式求和.(1)等差数列的前n项和公式:n a1+a n n n-1S n==na1+d.2 2(2)等比数列的前n项和公式:S n=Error!2.倒序相加法与并项求和法(1)倒序相加法:如果一个数列{a n}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(2)并项求和法:在一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.例如,S n=1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050.非等差、等比数列求和的常用方法:倒序相加法;并项求和法.(1)[教材习题改编]一个球从100 m高处自由落下,着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是()A.100+200×(1-2-9) B.100+100(1-2-9)C.200(1-2-9) D.100(1-2-9)答案:A(2)[教材习题改编]已知函数f(n)=n2cos nπ,且a n=f(n)+f(n+1),则a1+a2+a3+…+a100=________.- 1 -答案:-100解析:因为f(n)=n2cos nπ=Error!所以f(n)=(-1)n·n2,由a n=f(n)+f(n+1)=(-1)n·n2+(-1)n+1·(n+1)2=(-1)n[n2-(n+1)2]=(-1)n+1·(2n+1),得a1+a2+a3+…+a100=3+(-5)+7+(-9)+…+199+(-201)=50×(-2)=-100.数列求和的两个易错点:公比为参数;项数的奇偶数.(1)设数列{a n}的通项公式是a n=x n,则数列{a n}的前n项和S n=________.答案:S n=Error!x1-x n解析:当x=1时,S n=n;当x≠1时,S n=.1-x(2)设数列{a n}的通项公式是a n=(-1)n,则数列{a n}的前n项和S n=________.答案:S n=Error!解析:若n为偶数,则S n=0;若n为奇数,则S n=-1.1[典题1](1)已知数列{a n}中,a1=1,a n=a n-1+(n≥2),则数列{a n}的前9项和等于2________.[答案]271[解析]由a1=1,a n=a n-1+(n≥2),21 可知数列{a n}是首项为1,公差为的等差数列,29 ×9-1 1故S9=9a1+×=9+18=27.2 2(2)若等比数列{a n}满足a1+a4=10,a2+a5=20,则{a n}的前n项和S n=________.10[答案](2n-1)9[解析]由题意a2+a5=q(a1+a4),得20=q×10,故q=2,代入a1+a4=a1+a1q3=10,10得9a1=10,即a1=.9101-2n9 10故S n==(2n-1).1-2 9- 2 -[点石成金]数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差或等比或可求数列前n项和的数列来求之.考点2分组转化法求和分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.1 1 1 1(1)数列1 ,3 ,5 ,…,的前n项和S n=________________.8 [2n-1+2n]2 41答案:n2+1-2n(2)已知数列{a n}中,a n=Error!设数列{a n}的前n项和为S n,则S9=________.答案:377[典题2]已知数列{a n}的通项公式是a n=2·3n-1+(-1)n·(ln2-ln 3)+(-1)n n ln 3,求其前n项和S n.[解]由通项公式知,S n=2(1+3+…+3n-1)+[-1+1-1+…+(-1)n]·(ln2-ln3)+[-1+2-3+…+(-1)n n]ln 3,所以当n为偶数时,1-3n n nS n=2×+ln 3=3n+ln 3-1;1-3 2 2当n为奇数时,1-3n n-1S n=2×-(ln 2-ln 3)+ln 31-3 ( -n)2n-1=3n-ln 3-ln 2-1.2综上知,S n=Error![点石成金]分组转化法求和的常见类型- 3 -(1)若a n=b n±c n,且{b n},{c n}为等差或等比数列,可采用分组转化法求{a n}的前n项和.(2)通项公式为a n=Error!的数列,其中数列{b n},{c n}是等比或等差数列,可采用分组转化法求和.[提醒]某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.在等差数列{a n}中,已知公差d=2,a2是a1 与a4 的等比中项.(1)求数列{a n}的通项公式;(2)设b n=an n+1,记T n=-b1+b2-b3+b4-…+(-1)n b n,求T n.2解:(1)由题意知,(a1+d)2=a1(a1+3d),即(a1+2)2=a1(a1+6),解得a1=2.所以数列{a n}的通项公式为a n=2n.(2)由题意知,b n=an n+1=n(n+1).2所以T n=-1×2+2×3-3×4+…+(-1)n n×(n+1).因为b n+1-b n=2(n+1),可得当n为偶数时,T n=(-b1+b2)+(-b3+b4)+…+(-b n-1+b n)=4+8+12+ (2)n4+2n2 n n+2==;2 2当n为奇数时,n-1n+1n+1 2T n=T n-1+(-b n)=-n(n+1)=-.2 2所以T n=Error!考点3错位相减法求和- 4 -错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数 列的前 n 项和即可用此法来求,如等比数列的前 n 项和公式就是用此法推导的.1 1 1 (1)[教材习题改编]数列 1, , ,…, 的前 n 项和为________. 1+2 1+2+3 1+2+…+n 2n 答案: n +11 2解析:因为 =1+2+…+n nn +111=2(,-n +1)n所以数列的前 n 项和为1 1 1 1 11112n2×(1-=2×n +1)=.+ - + - +…+ -n +1) (1-2 23 3 4nn +12 4 6 2n(2)[教材习题改编]数列 , , ,…, ,…的前 n 项的和为________. 2 22 23 2n n +2 答案:4- 2n -1解析:设该数列的前 n 项和为 S n , 2 4 6 2n 由题可知,S n = + + +…+ ,①2 22 23 2n 12 4 6 2nS n = + + +…+ ,②2 22 23 24 2n +1 ①-②,得12 2 2 222n12n( 2 )1- S n = + + + +…+ - =2- -,2 22 23 24 2n2n +1 2n -1 2n +1n +2∴S n =4- . 2n -1[典题 3] [2015·山东卷]设数列{a n }的前 n 项和为 S n .已知 2S n =3n +3. (1)求{a n }的通项公式;(2)若数列{b n}满足a n b n=log3a n,求{b n}的前n项和T n.[解](1)因为2S n=3n+3,所以2a1=3+3,故a1=3,当n≥2时,2S n-1=3n-1+3,- 5 -此时2a n=2S n-2S n-1=3n-3n-1=2×3n-1,即a n=3n-1,所以a n=Error!1(2)因为a n b n=log3a n,所以b1=,3当n≥2时,b n=31-n log33n-1=(n-1)·31-n.1所以T1=b1=;3当n≥2时,T n=b1+b2+b3+…+b n1=+[1×3-1+2×3-2+…+(n-1)×31-n],3所以3T n=1+[1×30+2×3-1+…+(n-1)×32-n],两式相减,得22T n=+(30+3-1+3-2+…+32-n)-(n-1)×31-n32 1-31-n=+-(n-1)×31-n3 1-3-113 6n+3=-,6 2 × 3n13 6n+3 所以T n=-,12 4 × 3n经检验,n=1时也适合.13 6n+3综上知,T n=-.12 4 × 3n[点石成金]用错位相减法求和的三个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n-qS n”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[2015·天津卷]已知{a n}是各项均为正数的等比数列,{b n}是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7.(1)求{a n}和{b n}的通项公式;(2)设c n=a n b n,n∈N*,求数列{c n}的前n项和.解:(1)设数列{a n}的公比为q,数列{b n}的公差为d,由题意知q>0.- 6 -由已知,有Error!消去 d ,整理得 q 4-2q 2-8=0,解得 q 2=4. 又因为 q >0,所以 q =2,所以 d =2. 所以数列{a n }的通项公式为 a n =2n -1,n ∈N *; 数列{b n }的通项公式为 b n =2n -1,n ∈N *. (2)由(1)有 c n =(2n -1)·2n -1, 设{c n }的前 n 项和为 S n ,则 S n =1×20+3×21+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1, 2S n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n , 上述两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =2n +1-3-(2n -1)·2n =-(2n -3)·2n -3, 所以 S n =(2n -3)·2n +3,n ∈N *.考点 4 裂项相消法求和裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (2)常见的裂项技巧: 1 1 1① = - . n n +1 n n +1 111 1②=2(n +2).-n n +2n11 11③=2(2n +1). -2n -12n +12n -11④ = n +1- n . n + n +1[考情聚焦] 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求 得其和.裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相 消的基本思想,变换数列 a n 的通项公式,达到求解目的.主要有以下几个命题角度:- 7 -角度一 1形如 a n = 型n n +k[典题 4] [2017·重庆模拟]设 S n 为等差数列{a n }的前 n 项和,已知 S 3=a 7,a 8-2a 3=3.(1)求 a n ;1 3 1 (2)设 b n = ,数列{b n }的前 n 项和为 T n ,求证:T n > - (n ∈N *). S n 4 n +1 (1)[解] 设数列{a n }的公差为 d , 由题意,得Error!解得 a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1.n n -1(2)[证明] 由(1),得 S n =na 1+2d =n (n +2),111 1 ∴b n ==- . 2(n +2)n n +2n∴T n =b 1+b 2+…+b n -1+b n1 11 11111= n +2)]2[( 3 )-1-+(4 )+…+(-n +1)+( -2n -1n11 11=2( --n +2),1+2 n +1 1 1 11∴T n =-n +2)2(1+-2 n +1 1111>2(1+ - -n +1)2 n +13 1 = - .4 n +1 3 1 故 T n > - . 4 n +1 角度二1 形如a n=型n+k+n[典题5][2017·江南十校联考]已知函数f(x)=x a的图象过点(4,2),令a n=1,n∈N*.记数列{a n}的前n项和为S n,则S2 014=()f n+1+f nA. 2 013-1B. 2 014-1C. 2 015-1D. 2 015+1[答案] C1[解析]由f(4)=2可得4a=2,解得a=,2- 8 -1则f(x)=x.21 1∴a n===-,n+1 nf n+1+f n n+1+nS2 014=a1+a2+a3+…+a2 014=( 2-1)+( 3-2)+( 4-3)+…+( 2 014-2 013)+( 2 015-2 014)=2 015-1.角度三n+1形如a n=型n2n+22[典题6]正项数列{a n}的前n项和S n满足:S2n-(n2+n-1)S n-(n2+n)=0.(1)求数列{a n}的通项公式a n;n+1 5 (2)令b n=,数列{b n}的前n项和为T n.证明:对于任意的n∈N*,都有T n< .n+22a2n64 (1)[解]由S2n-(n2+n-1)S n-(n2+n)=0,得[S n-(n2+n)](S n+1)=0.由于{a n}是正项数列,所以S n>0,S n=n2+n.于是a1=S1=2,当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.综上,数列{a n}的通项公式为a n=2n.(2)[证明]由于a n=2n,n+1 n+1故b n==n+22a2n4n2n+221 1 1 =-.16[ n+22]n21 1 1 1 1 1 1 1 1 1T n=-+…+n+22]16[1-+-+-+-32 22 42 32 52 n-1 2 n+1 2 n21 1 1 1=16[ n+22] 1+--22 n+121 1 5<16×( =.1+22)64[点石成金]利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相1 1 1 1 1 1 1 1等.如:若{a n}是等差数列,则=d( -a n+1),=2d( -a n+2).a n a n+1 a n a n a n+2 a n- 9 -[方法技巧]非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成.(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.[易错防范] 1.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n,a n+1的式子应进行合并.2.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项,特别是隔项相消.真题演练集训1.[2016·北京卷]已知{a n}为等差数列,S n为其前n项和.若a1=6,a3+a5=0,则S6=________.答案:6解析:设等差数列{a n}的公差为d,由已知,得Error!解得Error!1 所以S6=6a1+×6×5d2=36+15×(-2)=6.2.[2015·新课标全国卷Ⅱ]设S n是数列{a n}的前n项和,且a1=-1,a n+1=S n S n+1,则S n=________.1答案:-n解析:∵a n+1=S n+1-S n,a n+1=S n S n+1,∴S n+1-S n=S n S n+1.1 1 1 1 ∵S n≠0,∴-=1,即-=-1.S n S n+1 S n+1 S n1 1又=-1,∴是首项为-1,公差为-1的等差数列.S1 {S n}1∴=-1+(n-1)×(-1)=-n,S n1∴S n=-.n3.[2016·山东卷]已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n- 10 -.+1(1)求数列{b n}的通项公式;a n+1n+1(2)令c n=,求数列{c n}的前n项和T n.b n+2n解:(1)由题意知,当n≥2时,a n=S n-S n-1=6n+5,当n=1时,a1=S1=11,所以a n=6n+5.设数列{b n}的公差为d,由Error!得Error!可解得b1=4,d=3.所以b n=3n+1.6n+6n+1(2)由(1)知,c n==3(n+1)·2n+1.3n+3n又T n=c1+c2+…+c n,所以T n=3×[2×22+3×23+…+(n+1)×2n+1],2T n=3×[2×23+3×24+…+(n+1)×2n+2],两式作差,得-T n=3×[2×22+23+24+…+2n+1-(n+1)×2n+2]=3×41-2n[ -n+1×2n+2]4+=-3n·2n+2,1-2所以T n=3n·2n+2.4.[2015·新课标全国卷Ⅰ]S n为数列{a n}的前n项和.已知a n>0,a2n+2a n=4S n+3.(1)求{a n}的通项公式;1(2)设b n=,求数列{b n}的前n项和.a n a n+1解:(1)由a2n+2a n=4S n+3,①可知a n+21+2a n+1=4S n+1+3.②②-①,得a n+21-a2n+2(a n+1-a n)=4a n+1,即2(a n+1+a n)=a n+21-a2n=(a n+1+a n)(a n+1-a n).由a n>0,得a n+1-a n=2.又a21+2a1=4a1+3,解得a1=-1(舍去)或a1=3.所以{a n}是首项为3,公差为2的等差数列,通项公式为a n=2n+1.(2)由a n=2n+1可知,1 1b n==a n a n+1 2n+12n+3- 11 -1 1 1 = - . 2(2n +3)2n +1设数列{b n }的前 n 项和为 T n ,则T n =b 1+b 2+…+b n1 1 11 1 1 1n=2[(=.-5 )+( 7 )+…+(-2n +3)]-3 52n +132n +3课外拓展阅读 数列求和1[典例] 已知数列{a n }的前 n 项和 S n =- n 2+kn (其中 k ∈N *),且 S n 的最大值为 8.2 (1)确定常数 k ,并求 a n ;9-2a n(2)求数列{ 2n }的前 n项和 T n .[审题视角]- 12 -1[解析] (1)当 n =k ,k ∈N *时,S n =-n 2+kn 取得最大值, 21 1即 8=S k =- k 2+k 2= k 2,故 k 2=16,k =4.2 2 1 7 当n =1时,a 1=S 1=- +4= ,2 2 9 当n ≥2 时,a n =S n -S n -1= -n .2 9 当 n=1时,上式也成立,故 a n = -n .2 9-2a n n (2)因为 = , 2n 2n -1 23 n -1 n 所以T n =1+ + +…++ ,① 2 22 2n -2 2n -13n -1 n 所以2T n =2+2+ +…++ ,② 22n -3 2n -2- 13 -1 1 n②-①,得2T n-T n=2+1++…+-2 2n-2 2n-11 n n+2=4--=4-.2n-2 2n-1 2n-1n+2故T n=4-.2n-1方法点睛9-2a n 1.根据数列前n项和的结构特征和最值确定k和S n,求出a n后再根据{ 2n}的结构特征确定利用错位相减法求T n.在审题时,要审题目中数式的结构特征判定解题方案.2.利用S n求a n时不要忽视当n=1的情况;错位相减时不要漏项或算错项数.3.可以通过当n=1,2时的特殊情况对结果进行验证.- 14 -。
高考数学一轮总复习数列与级数的求和公式推导与应用高考数学一轮总复习:数列与级数的求和公式推导与应用数列与级数是高中数学中的重要内容,也是高考数学考试中常见的考点之一。
在高考中,理解、掌握数列与级数的求和公式的推导与应用是解题的关键。
本文将重点介绍数列与级数的求和公式的推导方法,并结合实际应用问题进行解析。
一、数列的求和公式推导1.1 等差数列的求和公式对于等差数列{an},其中a1为首项,d为公差,n为项数,其前n项和Sn可以用下式表示:Sn = (a1 + an) * n / 2推导过程如下:首先,将数列{an}逆序相加并累加两式,得到:2Sn = (a1 + an) + (a2 + a{n-1}) + (a3 + a{n-2}) + ... + (an + a1)由于等差数列的关系式为an = a1 + (n-1)d,则上式可以简化为:2Sn = (a1 + a1 + (n-1)d) + (a1 + d + a1 + (n-2)d) + (a1 + 2d + a1 + (n-3)d) + ... + (a1 + a1 + (n-1)d)化简后得:2Sn = n(a1 + an)最终得到等差数列的求和公式:Sn = (a1 + an) * n / 21.2 等比数列的求和公式对于等比数列{an},其中a1为首项,q为公比,n为项数,其前n 项和Sn可以用下式表示:Sn = a1 * (1 - q^n) / (1 - q)推导过程如下:首先,将Sn与qSn相减得:Sn - qSn = a1 * (1 - q^n) - a1 * q * (1 - q^(n-1))化简后得:Sn(1 - q) = a1(1 - q^n)由于等比数列的关系式为an = a1 * q^(n-1),则上式可以简化为:Sn(1 - q) = an最终得到等比数列的求和公式:Sn = a1 * (1 - q^n) / (1 - q)二、数列求和公式的应用2.1 应用一:计算等差数列的前n项和假设某等差数列的首项为a1,公差为d,共有n项。
第04节 数列求和【考纲解读】【知识清单】一.数列求和1. 等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+. 2.等比数列前n 项和公式 一般地,设等比数列123,,,,,n a a a a 的前n 项和是=n S 123n a a a a ++++,当1≠q 时,qq a S n n --=1)1(1或11n n a a qS q -=-;当1q =时,1na S n =(错位相减法). 3. 数列前n 项和①重要公式:(1)1nk k ==∑123n ++++=2)1(+n n (2)1(21)nk k =-=∑()13521n ++++-=2n(3)31nk k ==∑2333)1(2121⎥⎦⎤⎢⎣⎡+=+++n n n(4)21nk k ==∑)12)(1(613212222++=++++n n n n②等差数列中,m n m n S S S mnd +=++;③等比数列中,n mm n n m m n S S q S S q S +=+=+.对点练习:1.【2017课标1,理4】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C2. 已知{}n a 为正项等比数列,n S 是它的前n 项和,若116a =,且4a 与7a 的等差中项为98,则5S 的值( ) A .29 B .31 C .33 D .35 【答案】B【解析】由题意得479+=4a a ,因此363911+=()6482q q q q ⇒=⇒=舍去负值,因此55116(1)231.112S -==-选B.【考点深度剖析】数列求和是高考重点考查的内容之一,命题形式多种多样,以解答题为主,难度中等或稍难,数列求和问题为先导,在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.考查等差数列的求和多于等比数列的求和,往往在此基础上考查“裂项相消法”、“错位相减法”.【重点难点突破】考点1 数列求和【1-1】已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根,则数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和 . 【答案】1422n n n S ++=-【1-2】【2017届浙江嘉兴市高三上基础测试】已知数列{}n a 的前n 项和为n S ,若11a =,且12n n S ta =-,其中*n N ∈.(1)求实数t 的值和数列{}n a 的通项公式; (2)若数列{}n b 满足32log n n b a =,求数列11{}n n b b +的前n 项和n T . 【答案】(1)23=t ,13-=n n a ;(2)12121121+=⎪⎭⎫ ⎝⎛+-n n n . 【解析】试题分析:(1)由n n a S =可得32t =,2n ≥时由1n n n a S S -=-得数列{}n a 为首项为1,公比为3的等比数列,可得通项公式;(2)化简21n b n =-,则11111()22121n n b b n n +=--+,用裂项相消求和,可得前项和.试题解析: (1)当1=n 时,21111-==ta S a ,得23=t ,从而 2123-=n n a S ,则 2≥n 时,⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=-=--2123212311n n n n n a a S S a 得 13-=n n a a又01≠a 得31=-n n a a,故数列{}n a 为等比数列,公比为3,首项为1.∴13-=n n a(2)由(1)得 1223-=n n a 得 12-=n b n ∴()()⎪⎭⎫⎝⎛+--=+-=-121121*********n n n n b b n n 得 ⎪⎭⎫⎝⎛+--++-+-=121121513131121n n T n12121121+=⎪⎭⎫ ⎝⎛+-=n nn【领悟技法】1.公式法:如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n 项和的公式来求和.对于一些特殊的数列(正整数数列、正整数的平方和立方数列等)也可以直接使用公式求和.2.倒序相加法:类似于等差数列的前n 项和的公式的推导方法,如果一个数列{}n a 的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.3.错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的. 若n n n a b c =∙,其中{}n b 是等差数列,{}n c 是公比为q 等比数列,令112211n n n n n S b c b c b c b c --=++++,则n qS =122311n n n n b c b c b c b c -+++++两式错位相减并整理即得.4.裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n 项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.适用于类似1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项不为零的等差数列,c 为常数)的数列、部分无理数列等.用裂项相消法求和,需要掌握一些常见的裂项方法: (1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭,特别地当1k =时,()11111n n n n =-++; (21k=,特别地当1k ==(3)()()221111212122121n n a n n n n ⎛⎫==+- ⎪-+-+⎝⎭(4)()()()()()1111122112n a n n n n n n n ⎛⎫==- ⎪ ⎪+++++⎝⎭(5))()11(11q p qp p q pq <--= 5.分组转化求和法:有一类数列{}n n a b +,它既不是等差数列,也不是等比数列,但是数列{},{}n n a b 是等差数列或等比数列或常见特殊数列,则可以将这类数列适当拆开,可分为几个等差、等比数列或常见的特殊数列,然后分别求和,再将其合并即可.6.并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如()()1nn a f n =-类型,可采用两项合并求解.例如,22222210099989721n S =-+-++-()()()100999897215050=++++++=.7. 在利用裂项相消法求和时应注意:(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或有时前面剩下两项,后面也剩下两项.对于不能由等差数列、等比数列的前n 项和公式直接求和的问题,一般需要将数列通项的结构进行合理的拆分,转化成若干个等差数列、等比数列的求和.应用公式法求和时,要保证公式使用的正确性,尤其要区分好等差数列、等比数列的通项公式及前n 项和公式.使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.用错位相减法求和时,应注意(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式.8. [易错提示] 利用裂项相消法解决数列求和问题,容易出现的错误有两个方面: (1)裂项过程中易忽视常数,如)211(21)2(1+-=+n n n n 容易误裂为112n n -+,漏掉前面的系数12; (2)裂项之后相消的过程中容易出现丢项或添项的问题,导致计算结果错误. 应用错位相减法求和时需注意:①给数列和S n 的等式两边所乘的常数应不为零,否则需讨论; ②在转化为等比数列的和后,求其和时需看准项数,不一定为n . 【触类旁通】【变式一】【2017课标II ,理15】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ 。
第四节数列求和A组基础题组1.数列{a n},{b n}(n∈N*)都是等差数列,a1=2,b1=8,且a20+b20=50.则{a n+b n}的前20项的和为()A.600B.610C.620D.6302.已知数列{a n}的通项公式是a n=2n-3,则其前20项和为()A.380-B.400-C.420-D.440-3.(2016德州模拟)数列{a n}的通项公式为a n=ncos,其前n项和为S n,则S2016等于()A.1008B.2016C.504D.04.已知函数f(x)=x2+bx的图象在点A(1,f(1))处的切线的斜率为3,数列的前n项和为S n,则S2016的值为()A. B. C. D.5.已知数列{a n}中,a n=-4n+5.等比数列{b n}中,公比q满足q=a n-a n-1(n≥2)且b1=a2,则|b1|+|b2|+|b3|+…+|b n|=()A.1-4nB.4n-1C.D.6.(2016重庆第一次适应性测试)在数列{a n}中,若a1=2,且对任意正整数m,k,总有a m+k=a m+a k,则{a n}的前n项和S n=.7.在数列{a n}中,a2=4,a3=15,若S n为{a n}的前n项和,且数列{a n+n}是等比数列,则S n=.8.(2015课标Ⅱ,16,5分)设S n是数列{a n}的前n项和,且a1=-1,a n+1=S n S n+1,则S n=.9.(2016天津,18,13分)已知{a n}是等比数列,前n项和为S n(n∈N*),且-=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(-1)n}的前2n项和.10.(2016郑州模拟)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,a n.(2)若d<0,求|a1|+|a2|+|a3|+…+|a n|.B组提升题组11.(2016江西高安中学等九校联考)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S16等于()A.5B.6C.7D.1612.(2016南昌模拟)已知数列{a n},{b n}满足a1=1,a2=2,b1=2,且对任意的正整数i,j,k,l,当i+j=k+l时,都有a i+b j=a k+b l,则(a1+b1)+(a2+b2)+(a3+b3)+…+(a2017+b2017)]的值为()A.2016B.2017C.2018D.201913.(2016广西高三适应性测试)已知数列{}的前n项和S n=n2,则数列的前n项和T n=.14.已知数列{a n}满足a n+1=+,且a1=,则该数列的前2016项的和等于.15.已知数列{a n}的前n项和S n=-n2+kn(其中k为常数,且k∈N*),且S n的最大值为8.(1)确定常数k,并求a n;(2)求数列的前n项和T n.16.(2016济南模拟)已知公比q不为1的等比数列{a n}的首项a1=,前n项和为S n,且a4+S4,a5+S5,a6+S6成等差数列.(1)求数列{a n}的通项公式;(2)对n∈N*,在a n与a n+1之间插入n个数,使这n+2个数成等差数列,记插入的这n个数的和为b n,求数列{b n}的前n项和T n.答案全解全析A组基础题组1.A由题意知{a n+b n}也为等差数列,所以{a n+b n}的前20项和为S20===600.2.C由a n=2n-3,得其前20项和S20=2(1+2+…+20)-3=2×-3×=420-.3.A易知a1=cos=0,a2=2cosπ=-2,a3=0,a4=4,…….所以数列{a n}的所有奇数项为0,前2016项中所有偶数项(共1008项)依次为-2,4,-6,8,…,-2014,2016.故S2016=0+(-2+4)+(-6+8)+…+(-2014+2016)=1008.4.D因为f'(x)=2x+b,所以f'(1)=2+b=3,所以b=1,所以f(x)=x2+x,所以==-,所以S2016=1-+-+…+-=1-=.5.B由已知得b1=a2=-3,q=-4,∴b n=(-3)×(-4)n-1,∴|b n|=3×4n-1,即{|b n|}是以3为首项,4为公比的等比数列.∴|b1|+|b2|+…+|b n|==4n-1.6.答案n(n+1)解析依题意得a n+1=a n+a1,即有a n+1-a n=a1=2,所以数列{a n}是以2为首项,2为公差的等差数列,a n=2+2(n-1)=2n,S n==n(n+1).7.答案3n--1解析∵{a n+n}是等比数列,∴数列{a n+n}的公比q====3,则{a n+n}的通项为a n+n=(a2+2)·3n-2=6·3n-2=2·3n-1,则a n=2·3n-1-n,∴S n=-=3n--1.8.答案-解析由已知得a n+1=S n+1-S n=S n+1S n,又由a1=-1知S n≠0,则有-=-1,故数列是以-1为首项,-1为公差的等差数列,则=-1+(n-1)×(-1)=-n,所以S n=-.9.解析(1)设数列{a n}的公比为q.由已知,有-=,解得q=2,或q=-1.又由S6=a1·=63,知q≠-1,所以a1·=63,得a1=1.所以a n=2n-1.(2)由题意,得b n=(log2a n+log2a n+1)=(log22n-1+log22n)=n-,即{b n}是首项为,公差为1的等差数列.设数列{(-1)n}的前n项和为T n,则T2n=(-+)+(-+)+…+(-+)=b1+b2+b3+b4+…+b2n-1+b2n==2n2.10.解析(1)由题意得,5a3·a1=(2a2+2)2,将a3=a1+2d,a2=a1+d及a1=10代入,并化简得d2-3d-4=0,解得d=-1或d=4,所以a n=-n+11,n∈N*或a n=4n+6,n∈N*.(2)设数列{a n}的前n项和为S n,因为d<0,所以由(1)得d=-1,a n=-n+11,则当n≤11时,|a1|+|a2|+|a3|+…+|a n|=S n=-n2+n;当n≥12时,|a1|+|a2|+|a3|+…+|a n|=-S n+2S11=n2-n+110.综上所述,|a1|+|a2|+|a3|+…+|a n|=B组提升题组11.C根据题意,这个数列的前8项分别为5,6,1,-5,-6,-1,5,6,易得从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S16=2×0+7=7.故选C.12.D由题意易知a1+b2=a2+b1,∴b2=2+2-1=3,又b1+a3=a2+b2,∴a3=2+3-2=3,又a3+b2=a2+b3,∴b3=3+3-2=4.同理可得a4=4,b4=5,……,a2017=2017,b2017=2018,所以(a1+b1)+(a2+b2)+(a3+b3)+…+(a2017+b2017)]=(1+2018)×2017]=2019.13.答案解析由题意得==∴=2n-1.∴==,∴T n===.14.答案1512解析因为a1=,a n+1=+,所以a2=1,从而a3=,a4=1,……,即得a n=故数列的前2016项的和S2016=1008×=1512.15.解析(1)当n=k时,S n=-n2+kn取最大值,即8=S k=-k2+k2=k2,故k2=16,因此k=4,从而a n=S n-S n-1=-n(n≥2).又a1=S1=,所以a n=-n(n∈N*).(2)令b n==,则T n=b1+b2+…+b n=1+++…++,所以T n=2T n-T n=2+2++…++-1+++…++=2+1++…+-=4--=4-.16.解析(1)因为a4+S4,a5+S5,a6+S6成等差数列,所以2(a5+S5)=a4+S4+a6+S6,化简得2a6-3a5+a4=0,∴2q2-3q+1=0,解得q=(q=1舍去),故a n=.(2)记插入的n个数为x i(i=1,2,…,n),由(1)及等差数列的性质及前n项和公式可知x1+x n=a n+a n+1,b n==n×,所以T n=1×+2×+3×+…+(n-1)×+n×,①T n=1×+2×+3×+…+(n-1)×+n×,②①-②得T n=+++…+-n=⇒T n==.。
1. 掌握数列的求和方法:(1) 直接利用等差、等比数列求和公式;(2) 通过适当变形(构造)将未知数列转化为等差、等比数列,再用公式求和;(3) 根据数列特征,采用累加、累乘、错位相减、逆序相加等方法求和;(4) 通过分组、拆项、裂项等手段分别求和;(5) 在证明有关数列和的不等式时要能用放缩的思想来解题(如n(n-1)<n2<n(n+1),能用函数的单调性(定义法)来求数列和的最值问题及恒成立问题.2. 数列是特殊的函数,这部分内容中蕴含的数学思想方法有函数与方程思想、分类讨论思想、化归转化思想、数形结合思想等,高考题中所涉及的知识综合性很强,既有较繁的运算又有一定的技巧,在解题时要注意从整体去把握.高频考点一等差、等比数列求和公式及利用例1 已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1) 求数列{a n}和{b n}的通项公式;(2) 求数列{b n}的前n项和.从而b n =3n +2n -1(n =1,2,…).(2) 由(1)知b n =3n +2n -1(n =1,2,…).数列{3n}的前n 项和为32n(n +1),数列{2n -1}的前n 项和为1×1-2n 1-2=2n -1,所以,数列{b n }的前n 项和为32n(n +1)+2n -1.【变式探究】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N +),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N +),求数列{T n }的最大项的值与最小项的值.(2)由(1)得S n=1-⎝⎛⎭⎫-12n =⎩⎨⎧1+12n,n 为奇数,1-12n,n 为偶数,当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大, 所以34=S 2≤S n <1,故0>S n -1S n≥S 2-1S 2=34-43=-712.综上,对于n ∈N +,总有-712≤S n -1S n≤56.所以数列{T n }最大项的值为56,最小项的值为-712. 高频考点二 可转化为等差、等比数列求和 例2、已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *. (1) 求数列{a n }的通项公式;(2) 设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n]=n. 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.高频考点三 根据数列特征,用适当的方法求和例3 已知数列{a n }的前n 项和S n =-12n 2+kn(k ∈N *),且S n 的最大值为8. (1) 确定常数k ,求a n ;(2) 求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .【解析】(1) 当n =k ∈N *时,S n =-12n 2+kn 取最大值,即8=-12k 2+k 2=12k 2,故k =4,从而a n =S n -S n -1=92-n(n ≥2).又a 1=S 1=72,所以a n =92-n.(2) 因为b n =9-2a n 2n =n 2n -1,T n =b 1+b 2+…+b n =1+22+322+…+n -12n -2+n2n -1,所以T n =2T n-T n =2+1+12+…+12n -2-n 2n -1=4-12n -2-n2n -1=4-n +22n -1.【变式探究】已知数列{a n }和{b n }满足a 1=1,a 2=2,a n >0,b n =a n a n +1(n ∈N *),且{b n }是以q 为公比的等比数列.(1) 证明:a n +2=a n q 2;(2) 若c n =a 2n -1+2a 2n ,证明:数列{c n }是等比数列; (3) 求和:1a 1+1a 2+1a 3+1a 4+…+1a 2n -1+1a 2n .【解析】(解法1)(1) 证明:由b n +1b n =q ,有a n +1a n +2a n a n +1=a n +2a n=q, ∴ a n +2=a n q 2(n ∈N *) . (2) 证明:∵ a n =a n -2q 2,∴ a 2n -1=a 2n -3q 2=…=a 1q 2n -2,a 2n =a 2n -2q 2=…=a 2q 2n -2,∴ c n =a 2n -1+2a 2n =a 1q 2n -2+2a 2q 2n -2=(a 1+2a 2)q 2n -2=5q 2n -2,∴ {c n }是首项为5,以q 2为公比的等比数列.(3) 解:由(2)得1a 2n -1=1a 1q 2-2n ,1a 2n =1a 2q 2-2n ,于是1a 1+1a 2+…+1a 2n =(1a 1+1a 3+…+1a 2n -1)+(1a 2+1a 4+…+1a 2n )=1a 1⎝⎛⎭⎫1+1q 2+1q 4+…+1q 2n 2+1a 2(1+1q 2+1q 4+…+1q 2n -2)=32⎝⎛⎭⎫1+1q 2+1q4+…+1q 2n-2. 由题知q>0,当q =1时,1a 1+1a 2+…+1a 2n =32⎝⎛⎭⎫1+1q 2+1q 4+…+1q 2n -2=32n ;当q ≠1时,1a 1+1a2+…+1a 2n=32⎝⎛⎭⎫1+1q 2+1q 4+…+1q 2n -2=32⎝ ⎛⎭⎪⎫1-q -2n 1-q -2=32⎣⎢⎡⎦⎥⎤q 2n -1q 2n -2(q 2-1).故1a 1+1a 2+…+1a 2n=⎩⎪⎨⎪⎧32n ,q =1,32⎣⎢⎡⎦⎥⎤q 2n -1q 2n -2(q 2-1),q ≠1.面同解法1).高频考点四 数列求和的综合应用例4 将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表: a 1a 4 a 5 a 6 a 7 a 8 a 9 a 10 …记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1,S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n ≥2).【解析】(1) 证明:数列⎩⎨⎧⎭⎬⎫1S n 成等差数列,并求数列{b n }的通项公式;所以q =2.记表中第k(k ≥3)行所有项的和为S ,则S =b k (1-q k )1-q =-2k (k +1)·(1-2k )1-2=2k (k +1)(1-2k )(k ≥3).1.【2016高考天津理数】已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等差中项.(Ⅰ)设22*1,n n n c b b n N +=-∈,求证:{}n c 是等差数列;(Ⅱ)设()22*11,1,nnn n k a d T b n N ===-∈∑,求证:2111.2nk kT d =<∑【答案】(Ⅰ)详见解析(Ⅱ)详见解析(Ⅰ)证明:由题意得21n n n b a a +=,有22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此()212122n n n n c c d a a d +++-=-=,所以{}n c 是等差数列.(Ⅱ)证明:()()()2222221234212n n n T b b b b b b -=-++-+++-+()()()24222222221,n n d a a a n a a d d n n =++++=⋅=+所以()222211111111111112121212nn n k k k kT d k k d k k d n d ===⎛⎫⎛⎫==-=⋅-< ⎪ ⎪+++⎝⎭⎝⎭∑∑∑. 2.【2016高考新课标3理数】已知数列{}n a 错误!未找到引用源。
高三数学一轮复习备考数列的求和说课高三数学一轮复习备考中,数列的求和是一个重要的考点。
在本文中,我将对数列的求和进行深入解析,包括常见的等差数列和等比数列的求和公式,以及一些应用题的解题方法。
首先,让我们来回顾一下数列的概念。
数列是由一系列按照一定规律排列的数所组成的集合。
数列的每一项称为数列的项,用ai表示,其中i表示项的位置。
数列中的规律可以用一个通项公式来表示。
对于等差数列来说,通项公式为an=a1+(n-1)d,其中a1为首项,d为公差;而对于等比数列来说,通项公式为an=a1*r^(n-1),其中a1为首项,r为公比。
接下来,我们来看一下等差数列的求和公式。
对于等差数列来说,其求和公式是非常有用的。
设等差数列的首项为a1,公差为d,前n项和为Sn。
那么等差数列的求和公式可以表示为Sn=n/2*(a1+an),其中an表示等差数列的第n项。
在使用等差数列的求和公式时,需要明确几个关键的概念。
首先,当n为奇数时,a1和an为等差数列中间的一项;当n为偶数时,a1和an分别为等差数列的相邻两项,此时中间没有项。
其次,等差数列的前n项和与等差数列的倒序前n项和相等。
例如,对于等差数列1,3,5,7,9来说,其首项为1,公差为2。
我们可以使用等差数列的求和公式来计算前3项的和。
根据公式,n=3,所以Sn=3/2*(1+5)=9。
除了等差数列外,我们还有等比数列的求和公式。
对于等比数列来说,其求和公式也是非常重要的。
设等比数列的首项为a1,公比为r,前n项和为Sn。
等比数列的求和公式可以表示为Sn=a1*(1-r^n)/(1-r),其中r不等于1。
在使用等比数列的求和公式时,需要注意一些特殊情况。
当公比|r|小于1时,等比数列的前n项和随着n的增加而趋近于一个常数,即Sn的极限存在;当公比|r|大于1时,等比数列的前n项和随着n的增加呈无穷趋近于正无穷或负无穷;当公比|r|等于1时,等比数列不存在有限的前n项和,但存在极限。
第4讲 数列求和一、选择题1.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( ) A.7 B.15 C.20 D.25解析15242451,5551522a a a a a a S ++==⇒=⨯=⨯=.答案 B2.若数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10=( ). A .15B .12C .-12D .-15解析 设b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15. 答案 A3.在数列{a n }中,a n =1nn +,若{a n }的前n 项和为2 0132 014,则项数n 为( ).A .2 011B .2 012C .2 013D .2 014解析 ∵a n =1nn +=1n -1n +1,∴S n =1-1n +1=n n +1=2 0132 014,解得n =2 013. 答案 C4.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( ). A .3 690B .3 660C .1 845D .1 830解析 当n =2k 时,a 2k +1+a 2k =4k -1, 当n =2k -1时,a 2k -a 2k -1=4k -3, ∴a 2k +1+a 2k -1=2,∴a 2k +1+a 2k +3=2, ∴a 2k -1=a 2k +3,∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(4×30-1)=+2=30×61=1 830.答案 D5. 已知数列{a n }的通项公式为a n =2n +1,令b n =1n(a 1+a 2+…+a n ),则数列{b n }的前10项和T 10=( )A .70B .75C .80D .85解析 由已知a n =2n +1,得a 1=3,a 1+a 2+…+a n =+2n +2=n(n +2),则b n =n +2,T 10=+2=75,故选B .答案 B6.数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=( ).A.212B .6C .10D .11解析 依题意得a n +a n +1=a n +1+a n +2=12,则a n +2=a n ,即数列{a n }中的奇数项、偶数项分别相等,则a 21=a 1=1,S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21=10(a 1+a 2)+a 21=10×12+1=6,故选B.答案 B 二、填空题7.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q |=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12. 答案 -2 2n -1-128.等比数列{a n }的前n 项和S n =2n-1,则a 21+a 22+…+a 2n =________. 解析 当n =1时,a 1=S 1=1, 当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1,又∵a 1=1适合上式.∴a n =2n -1,∴a 2n =4n -1.∴数列{a 2n }是以a 21=1为首项,以4为公比的等比数列. ∴a 21+a 22+…+a 2n =-4n1-4=13(4n-1). 答案 13(4n-1)9.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n项和S n =________.解析 设等比数列{a n }的公比为q ,则a 4a 1=q 3=27,解得q =3.所以a n =a 1q n -1=3×3n -1=3n,故b n =log 3a n =n , 所以1b n b n +1=1nn +=1n -1n +1. 则S n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.答案nn +110.设f (x )=4x4x +2,利用倒序相加法,可求得f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫211+…+f ⎝ ⎛⎭⎪⎫1011的值为________. 解析 当x 1+x 2=1时,f (x 1)+f (x 2)=4x 14x 1+2+4x 24x 2+2=2×4x 1+x 2+x 1+4x 24x 1+x 2+x 1+4x 2+4=1.设S =f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫211+…+f ⎝ ⎛⎭⎪⎫1011,倒序相加有2S =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫1011+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫211+f ⎝ ⎛⎭⎪⎫911+…+f ⎝ ⎛⎭⎪⎫1011+f ⎝ ⎛⎭⎪⎫111=10,即S =5. 答案 5 三、解答题11.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ; (2)求1S 1+1S 2+…+1S n.解 (1)设{a n }的公差为d ,{b n }的公比为q ,则d 为正数,a n =3+(n -1)d ,b n =qn -1.依题意有⎩⎪⎨⎪⎧S 2b 2=+d q =64,S 3b 3=+3d q 2=960,解得⎩⎪⎨⎪⎧d =2,q =8或⎩⎪⎨⎪⎧d =-65,q =403.(舍去)故a n =3+2(n -1)=2n +1,b n =8n -1.(2)S n =3+5+…+(2n +1)=n (n +2), 所以1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1nn +=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-2n +3n +n +.12.已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=12S n (n =1,2,3,…).(1)求数列{a n }的通项公式;(2)设b n =log 32(3a n +1)时,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n . 解 (1)由已知得⎩⎪⎨⎪⎧a n +1=12S n,a n=12S n -1n,得到a n +1=32a n (n ≥2).∴数列{a n }是以a 2为首项,以32为公比的等比数列.又a 2=12S 1=12a 1=12,∴a n =a 2×⎝ ⎛⎭⎪⎫32n -2=12⎝ ⎛⎭⎪⎫32n -2(n ≥2).又a 1=1不适合上式,∴a n =⎩⎪⎨⎪⎧1,n =1,12⎝ ⎛⎭⎪⎫32n -2,n ≥2.(2)b n =log 32(3a n +1)=log 32⎣⎢⎡⎦⎥⎤32·⎝ ⎛⎭⎪⎫32n -1=n .∴1b n b n +1=1n+n =1n -11+n . ∴T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=⎝ ⎛⎭⎪⎫11-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -11+n =1-11+n =n n +1.13.设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,n ∈N *.(1)求数列{a n }的通项;(2)设b n =n a n,求数列{b n }的前n 项和S n .思维启迪:(1)由已知写出前n -1项之和,两式相减.(2)b n =n ·3n的特点是数列{n }与{3n}之积,可用错位相减法. 解 (1)∵a 1+3a 2+32a 3+…+3n -1a n =n3,①∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,②①-②得3n -1a n =13,∴a n =13n .在①中,令n =1,得a 1=13,适合a n =13n ,∴a n =13n .(2)∵b n =na n,∴b n =n ·3n.∴S n =3+2×32+3×33+…+n ·3n, ③ ∴3S n =32+2×33+3×34+…+n ·3n +1.④④-③得2S n =n ·3n +1-(3+32+33+ (3)),即2S n =n ·3n +1-31-3n1-3,∴S n =2n -13n +14+34. 探究提高 解答本题的突破口在于将所给条件式视为数列{3n -1a n }的前n 项和,从而利用a n 与S n 的关系求出通项3n -1a n ,进而求得a n ;另外乘公比错位相减是数列求和的一种重要方法,但值得注意的是,这种方法运算过程复杂,运算量大,应加强对解题过程的训练,重视运算能力的培养.14.将数列{a n }中的所有项按每一行比上一行多两项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9…已知表中的第一列数a 1,a 2,a 5,…构成一个等差数列,记为{b n },且b 2=4,b 5=10.表中每一行正中间一个数a 1,a 3,a 7,…构成数列{c n },其前n 项和为S n . (1)求数列{b n }的通项公式;(2)若上表中,从第二行起,每一行中的数按从左到右的顺序均构成等比数列,公比为同一个正数,且a 13=1. ①求S n ;②记M ={n |(n +1)c n ≥λ,n ∈N *},若集合M 的元素个数为3,求实数λ的取值范围.解 (1)设等差数列{b n }的公差为d , 则⎩⎪⎨⎪⎧b 1+d =4,b 1+4d =10,解得⎩⎪⎨⎪⎧b 1=2,d =2,所以b n =2n .(2)①设每一行组成的等比数列的公比为q .由于前n 行共有1+3+5+…+(2n -1)=n 2个数,且32<13<42,a 10=b 4=8, 所以a 13=a 10q 3=8q 3,又a 13=1,所以解得q =12.由已知可得c n =b n qn -1,因此c n =2n ·⎝ ⎛⎭⎪⎫12n -1=n2n -2.所以S n =c 1+c 2+c 3+…+c n =12-1+220+321+…+n2n -2,12S n =120+221+…+n -12n -2+n2n -1, 因此12S n =12-1+120+121+…+12n -2-n 2n -1=4-12n -2-n 2n -1=4-n +22n -1,解得S n =8-n +22n -2.②由①知c n =n 2n -2,不等式(n +1)c n ≥λ,可化为n n +2n -2≥λ.设f (n )=n n +2n -2,计算得f (1)=4,f (2)=f (3)=6,f (4)=5,f (5)=154.因为f (n +1)-f (n )=n +-n2n -1,所以当n ≥3时,f (n +1)<f (n ).因为集合M 的元素个数为3,所以λ的取值范围是(4,5].。
第六章 数列 6.4 数列求和 理1.等差数列的前n 项和公式S n =n a 1+a n 2=na 1+n n -2d .2.等比数列的前n 项和公式S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.3.一些常见数列的前n 项和公式 (1)1+2+3+4+…+n =n n +2.(2)1+3+5+7+…+2n -1=n 2. (3)2+4+6+8+…+2n =n (n +1). (4)12+22+…+n 2=n n +n +6.【知识拓展】 数列求和的常用方法 (1)公式法等差、等比数列或可化为等差、等比数列的可直接使用公式求和. (2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. 常见的裂项公式 ①1n n +=1n -1n +1; ②1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( √ ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ ) (3)求S n =a +2a 2+3a 3+…+na n之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )1.(2017·潍坊调研)设{a n }是公差不为0的等差数列,a 1=2,且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n 等于( ) A.n 2+7n4B.n 2+5n3C.2n 2+3n4D .n 2+n答案 A解析 设等差数列的公差为d ,则a 1=2,a 3=2+2d ,a 6=2+5d .又∵a 1,a 3,a 6成等比数列,∴a 23=a 1·a 6. 即(2+2d )2=2(2+5d ),整理得2d 2-d =0. ∵d ≠0,∴d =12.∴S n =na 1+n n -2d =n 24+74n .2.(教材改编)数列{a n }中,a n =1n n +,若{a n }的前n 项和S n =2 0172 018,则n 等于( )A .2 016B .2 017C .2 018D .2 019答案 B 解析 a n =1nn +=1n -1n +1, S n =a 1+a 2+…+a n=(1-12+12-13+…+1n -1n +1)=1-1n +1=n n +1. 令nn +1=2 0172 018,得n =2 017. 3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200B .-200C .400D .-400 答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和S n =________. 答案 2n +1-2+n 2解析 S n =-2n1-2+n+2n -2=2n +1-2+n 2.5.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2 017=________.答案 1 008解析 因为数列a n =n cosn π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4.故S 4=a 1+a 2+a 3+a 4=2.a 5=0,a 6=-6,a 7=0,a 8=8,故a 5+a 6+a 7+a 8=2,∴周期T =4. ∴S 2 017=S 2 016+a 2 017 =2 0164×2+2 017·cos 2 0172π=1 008.题型一 分组转化法求和例1 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2n a+(-1)na n ,求数列{b n }的前2n 项和. 解 (1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n2-n -2+n -2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)nn .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n ). 记A =21+22+ (22),B =-1+2-3+4-…+2n , 则A =-22n1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.引申探究本例(2)中,求数列{b n }的前n 项和T n . 解 由(1)知b n =2n+(-1)n·n . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n2-2;当n 为奇数时,T n =(21+22+ (2))+[-1+2-3+4-…-(n -2)+(n -1)-n ] =2n +1-2+n -12-n=2n +1-n 2-52.∴T n=⎩⎪⎨⎪⎧2n +1+n2-2,n 为偶数,2n +1-n 2-52,n 为奇数.思维升华 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.提醒:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n . 解 S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3, 所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+(n -12-n )ln 3=3n-n -12ln 3-ln 2-1.综上所述,S n=⎩⎪⎨⎪⎧3n+n2ln 3-1,n 为偶数,3n -n -12ln 3-ln 2-1,n 为奇数.题型二 错位相减法求和例2 (2016·山东)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =a n +n +1b n +n,求数列{c n }的前n 项和T n .解 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,满足上式,所以a n =6n +5.设数列{b n }的公差为d .由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d ,可解得⎩⎪⎨⎪⎧b 1=4,d =3,所以b n =3n +1.(2)由(1)知,c n =n +n +1n +n=3(n +1)·2n +1,又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2].两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n)1-2-(n +1)×2n +2 =-3n ·2n +2,所以T n =3n ·2n +2.思维升华 错位相减法求和时的注意点(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .解 (1)由题意有⎩⎪⎨⎪⎧10a 1+45d =100,a 1d =2即⎩⎪⎨⎪⎧2a 1+9d =20,a 1d =2,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1或⎩⎪⎨⎪⎧a n=19n +,b n=9·⎝ ⎛⎭⎪⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,① 12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32n -1.题型三 裂项相消法求和 命题点1 形如a n =1nn +k型 例3 (2015·课标全国Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解 (1)由a 2n +2a n =4S n +3, 可知a 2n +1+2a n +1=4S n +1+3.即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3 =n3(2n +3).命题点2 形如a n =1n +n +k型例4 已知函数f (x )=x a的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n项和为S n ,则S 2 017=________. 答案2 018-1解析 由f (4)=2,可得4a=2,解得a =12,则f (x )=12x . ∴a n =1f n ++f n=1n +1+n=n +1-n ,S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 017- 2 016)+( 2 018- 2 017)= 2 018-1.思维升华 (1)用裂项相消法求和时,要对通项进行变换,如:1n +n +k =1k(n +k -n ),1n n +k =1k (1n -1n +k ),裂项后可以产生连续相互抵消的项.(2)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12.(1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .解 (1)∵S 2n =a n ⎝⎛⎭⎪⎫S n -12,a n =S n -S n -1 (n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n ,① 由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.四审结构定方案典例 (12分)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)设数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和为T n ,求证:T n <4.(1)S n =-12n 2+kn ――――――→S n 是关于n的二次函数n =k 时,S n 最大 ――――――――→根据S n 的结构特征确定k 的值k =4;S n =-12n 2+4n ――→根据S n 求a n a n =92-n (2)9-2a n 2n=n 2n -1―――――――――→根据数列结构特征确定求和方法 T n =1+22+322+…+n -12n -2+n 2n -1――――――→错位相减法求和 计算可得T n ―→证明:T n <4 规范解答(1)解 当n =k ∈N *时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[3分]当n ≥2时,a n =S n -S n -1=92-n .当n =1时,上式也成立. 综上,a n =92-n .[6分](2)证明 ∵9-2a n 2n =n2n -1,∴T n =1+22+322+…+n -12n -2+n2n -1,①2T n =2+2+32+…+n -12n -3+n2n -2.②[7分]②-①,得2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n 2n -1=4-n +22n -1.[11分]∴T n =4-n +22n -1.∴T n <4.[12分]1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n答案 A解析 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+(12+122+…+12n )=n 2+1-12n .2.(2016·西安模拟)设等比数列{a n }的前n 项和为S n ,已知a 1=2 016,且a n +2a n +1+a n +2=0(n ∈N *),则S 2 016等于( ) A .0 B .2 016 C .2 015 D .2 014答案 A解析 ∵a n +2a n +1+a n +2=0(n ∈N *),∴a n +2a n q +a n q 2=0,q 为等比数列{a n }的公比,即q 2+2q +1=0,∴q =-1.∴a n =(-1)n -1·2 016,∴S 2 016=(a 1+a 2)+(a 3+a 4)+…+(a 2 015+a 2 016)=0.3.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A .120B .70C .75D .100答案 C解析 因为S n n =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75.4.在数列{a n }中,若a n +1+(-1)na n =2n -1,则数列{a n }的前12项和等于( ) A .76 B .78 C .80 D .82答案 B解析 由已知a n +1+(-1)na n =2n -1,得a n +2+(-1)n +1·a n +1=2n +1,得a n +2+a n =(-1)n(2n-1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.5.已知函数f (n )=⎩⎪⎨⎪⎧n 2当n 为奇数时,-n 2当n 为偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( ) A .0 B .100 C .-100 D .10 200答案 B解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100) =-(1+2+…+99+100)+(2+3+…+100+101) =-50×101+50×103=100.故选B.6.设数列{a n }的通项公式为a n =2n -7,则|a 1|+|a 2|+…+|a 15|等于( ) A .153 B .210 C .135 D .120答案 A解析 令a n =2n -7≥0,解得n ≥72.∴从第4项开始大于0,∴|a 1|+|a 2|+…+|a 15|=-a 1-a 2-a 3+a 4+a 5+…+a 15=5+3+1+1+3+…+(2×15-7)=9++2=153.7.(2016·福州模拟)已知数列{a n }的通项公式为a n =1n +n +1,若前n 项和为10,则项数n 为________. 答案 120 解析 ∵a n =1n +n +1=n +1-n ,∴S n =a 1+a 2+…+a n=(2-1)+(3-2)+…+(n +1-n ) =n +1-1.令n +1-1=10,得n =120.8.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________. 答案 60解析 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60.9.(2016·大连模拟)若已知数列的前四项是112+2,122+4,132+6,142+8,则数列的前n 项和为______________. 答案 34-2n +3n +n +解析 由前四项知数列{a n }的通项公式为a n =1n 2+2n, 由1n 2+2n =12(1n -1n +2)知, S n =a 1+a 2+a 3+…+a n -1+a n=12[1-13+12-14+13-15+…+(1n -2-1n )+(1n -1-1n +1)+(1n -1n +2)] =12[1+12-1n +1-1n +2] =34-2n +3n +n +.*10.已知正项数列{a n }的前n 项和为S n ,∀n ∈N *,2S n =a 2n +a n .令b n =1a n a n +1+a n +1a n,设{b n }的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为________.答案 9解析 ∵2S n =a 2n +a n ,① ∴2S n +1=a 2n +1+a n +1,②②-①,得2a n +1=a 2n +1+a n +1-a 2n -a n ,a 2n +1-a 2n -a n +1-a n =0,(a n +1+a n )(a n +1-a n -1)=0.又∵{a n }为正项数列,∴a n +1-a n -1=0, 即a n +1-a n =1.在2S n =a 2n +a n 中,令n =1,可得a 1=1.∴数列{a n }是以1为首项,1为公差的等差数列. ∴a n =n , ∴b n =1n n +1+n +n=n +n -n n +1[n n +1+n +n n +n -n n +1]=n +n -n n +1n n +=1n-1n +1,∴T n =1-1n +1,∴T 1,T 2,T 3,…,T 100中有理数的个数为9.11.已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列. (1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n . 解 (1)∵{a n -1}是等比数列且a 1-1=2,a 2-1=4,a 2-1a 1-1=2,∴a n -1=2·2n -1=2n ,∴a n =2n+1.(2)b n =na n =n ·2n+n ,故T n =b 1+b 2+b 3+…+b n =(2+2×22+3×23+…+n ·2n)+(1+2+3+…+n ). 令T =2+2×22+3×23+…+n ·2n, 则2T =22+2×23+3×24+…+n ·2n +1.两式相减,得-T =2+22+23+ (2)-n ·2n +1=-2n1-2-n ·2n +1,∴T =2(1-2n)+n ·2n +1=2+(n -1)·2n +1.∵1+2+3+…+n =n n +2, ∴T n =(n -1)·2n +1+n 2+n +42.12.(2016·天津)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63.(1)求数列{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和. 解 (1)设数列{a n }的公比为q . 由已知,有1a 1-1a 1q =2a 1q2,解得q =2或q =-1.又由S 6=a 1·1-q61-q =63,知q ≠-1,所以a 1·1-261-2=63,得a 1=1.所以a n =2n -1.(2)由题意,得b n =12(log 2a n +log 2a n +1)=12(log 22n -1+log 22n)=n -12, 即{b n }是首项为12,公差为1的等差数列.设数列{(-1)n b 2n }的前n 项和为T n ,则T 2n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =2nb 1+b 2n2=2n 2.*13.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *).(1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =12log n a .求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n <34. (1)解 ∵S n =16-13a n ,∴当n ≥2时,a n =S n -S n -1=13a n -1-13a n ,∴a n =14a n -1.又∵S 1=a 1=16-13a 1,∴a 1=18,∴a n =18⎝ ⎛⎭⎪⎫14n -1=⎝ ⎛⎭⎪⎫122n +1.(2)证明 由c n +1-c n =12log n a =2n +1,得当n ≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n -c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1), 1c n=1n +n -=12(1n -1-1n +1), ∴1c 2+1c 3+1c 4+…+1c n=12×⎣⎢⎡ ⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1-1n +1=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+12-⎝ ⎛⎭⎪⎫1n +1n +1 =34-12⎝ ⎛⎭⎪⎫1n +1n +1<34. 又∵1c 2+1c 3+1c 4+…+1c n ≥1c 2=13,∴原式得证.。
第5节 数列求和学习目标:掌握数列求和的方法:公式法、分组、倒序相加、并项、裂项相消、错位相减 学习重点:公式法、分组、并项、裂项相消、错位相减 学习难点:裂项相消、错位相减、并项1.公式法(1) 等差数列的前n 和的求和公式: 或(2)等比数列前n 项和公式:当1≠q 时, 或 ;当1q =时, (3)常见数列的前n 项和公式(1)1+2+3+4+…+n = ;(2)1+3+5+7+…+(2n -1)= ;(3)2+4+6+8+…+2n = .2.分组:适合数列错误!未找到引用源。
或⎩⎨⎧=是偶数是奇数n b n a C n n n ,,,数列错误!未找到引用源。
是等差数列或等比数列或常见特殊数列3.倒序相加:适合一个数列{}n a 的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数4.并项:形如()()1nn a f n =-类型,可采用两项合并求解. 5.裂项相消:适用于错误!未找到引用源。
、部分无理数列等6.错位相减:适用于错误!未找到引用源。
,其中错误!未找到引用源。
是等差数列,错误!未找到引用源。
是公比为错误!未找到引用源。
等比数列1.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为 ( )A .120B .70C .75D .1002.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为________3. =+++++︒︒︒︒︒89sin 88sin ...3sin 2sin 1sin 222224. 22222210099989721n S =-+-++-=5. 已知数列{}n a 的通项公式为nn a n ++=11 求它的前n 项的和6.已知数列{a n }的前n 项和为S n 且a n =n ·2n ,则S n =________.考点突破一 裂项相消【例1】 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.【变式】 1.2.()=++⋅⋅⋅+⨯+⨯+⨯21531421311n n3.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式;(2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .4. )12)(12()2(2+-=n n n a n ,求{a n }的前n 项和考点突破二 错位相减【例2】已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n ,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .【变式】设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .考点突破三 并项求和 【例3】 设,求 1611S S +变式(1)求n S 2(2)求n S【变式】 在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)令b n =()21+n n a ,记T n =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n链接高考【2017课标1,文17】记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6. (1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.【2017课标II ,文17】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=(1)若335a b += ,求{}n b 的通项公式;(2)若321T =,求3S .【2017课标3,文17】设数列{}n a 满足123(21)2n a a n a n +++-=.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.(2016)已知是公差为3的等差数列,数列满足.(I)求的通项公式;(II)求的前n项和.(13)在数列{a n}中, a1=2,a n+1=2a n, S n为{a n}的前n项和。