常微分方程试题及参考答案
- 格式:doc
- 大小:45.00 KB
- 文档页数:5
《常微分方程》考试参考答案(A卷)《常微分方程》考试参考答案(A 卷)一、填空题(每空2分,共30分)1、()dy y g dx x = ln y x c x=+ 2、()()dy f x y dx= 2x y e = 3、2222M N y x= 4、1212(,)(,)f x y f x y L y y -≤-5、存在不全为0的常数12,k c c c ,使得恒等式11()()0k k c x tc x t +=对于所有[,]t a b ∈ 都成立()0w t ≡6、412341011i i λλλλλ-===-==- 1234cos sin t t x c e c e c tc t -=+++7、322x xy y c -+=二、判断题(每题2分,共10分)1、√2、×3、×4、√5、√三、计算题(每题15分,共60分)1、解:231()dy y dx x x y +=+ 变量分离231y dx dy y x x =++ 两边积分2221(1)1211y x dx dx y x xλ+=-++ 2211ln 1ln ln 122y x x +=-+ 22ln(1)(1)2ln ||y x x ++=从而解得通解为:222(1)(1)x y cx ++=2、解:先求30dx x dt+=的通解:33dt t x ce ce --?== 利用常数变易法,令原方程解为3()t x c t e -= 解得:3223551()5dt t t t t t c t e e dt c e e dt c e dt c e c --?=+=+=+=+ ∴原方程的通解为:533211()55t t t t x e c e ce e --=+=+3、解:先求对应齐线性方程:(4)20x x x ''-+=的通解特征函数42()210F λλλ=-+= 123411λλ==-从而通解为:1234()()t t x c c t e c c t e -=+++ 现求原方程一个特解,这里:2()30f t t λ=-= 0λ=不是特征根,即原方程有形如:2x At Bt c =++的特解把它代入原方程有:2243A At Bt C t -+++=- 解得101A B C ===21x t =+ ∴原方程通解为:21234()()1t t x e c c t e c c t t -=+++++4、解:令cos sin y p t x t '==?=2cos dy pdx tdt == 原方程的通解为:11sin 242y t t c =++ 5、解:由111x y +≤≤得112011a b x y ==-≤≤-≤≤ 从而()(,)4222x y Rf M max f x y y y L y -∈?===-=≤=?∴11min(,)min(1,)44b h a M === 从而解存在区间为114x +≤ 231123221327()011()3311()[()]3311111139186342o o x x x y x x dx x x x x dx x x x x --====+=-+=---+?? 2(21)1(21)!24o ML y y h +-≤=+。
计 算 题(每题10分)1、求解微分方程2'22x y xy xe -+=。
2、试用逐次逼近法求方程2y x dxdy+=通过点(0,0)的第三次近似解. 3、求解方程'2x y y y e -''+-=的通解4、求方程组dx dt ydydtx y ==+⎧⎨⎪⎩⎪2的通解5、求解微分方程'24y xy x +=6、试用逐次逼近法求方程2y x dxdy-=通过点(1,0)的第二次近似解。
7、求解方程''+-=-y y y e x '22的通解8、求方程组dxdt x ydydtx y =+=+⎧⎨⎪⎩⎪234的通解9、求解微分方程xy y x '-2=24 10、试用逐次逼近法求方程2y x dxdy-=通过(0,0)的第三次近似解. 11、求解方程''+-=-y y y e x '24的通解12、求方程组dxdtx y dydtx y =+=+⎧⎨⎪⎩⎪2332的通解13、求解微分方程x y y e x (')-=14、试用逐次逼近法求方程22x y dxdy+=通过点(0,0)的第三次逼近解. 15、求解方程''+-=--y y y e x '22的通解16、求解方程x e y y y -=-+''32 的通解17、求方程组⎪⎩⎪⎨⎧-+=-+=yx dt dydtdx x y dt dy dt dx243452的通解 18、解微分方程22(1)(1)0x y dx y x dy -+-= 19、试用逐次逼近法求方程2dyx y dx=-满足初始条件(0)0y =的近似解:0123(),(),(),()x x x x ϕϕϕϕ.20、利用逐次逼近法,求方程22dyy x dx=-适合初值条件(0)1y =的近似解:012(),(),()x x x ϕϕϕ。
常微分期末试题及答案[正文开始]第一部分:选择题1. 若函数 f(x) = 3x^2 + 2x + c 在区间 [0, 1] 上是增函数,则实数 c 的取值范围是:A) c > 1/4B) c > -1/4C) c < 1/4D) c < -1/4答案:A) c > 1/4解析:当 f(x) 是增函数时,f'(x) > 0。
对于 f(x) = 3x^2 + 2x + c,求导得到 f'(x) = 6x + 2。
显然当 x > -1/3 时,f'(x) > 0,即 c > 1/4。
2. 解微分方程 dy/dx = x^2 + 1 的通解为:A) y = (1/3)x^3 + x + CB) y = (1/3)x^3 + CC) y = (1/3)x^2 + x + CD) y = (1/3)x^2 + C答案:A) y = (1/3)x^3 + x + C解析:对方程 dy/dx = x^2 + 1 进行积分,得到 y = (1/3)x^3 + x + C,其中 C 为积分常数。
3. 设三角函数f(x) = sin(2x + π/3),则 f'(x) = ?A) 2cos(2x + π/3)B) 2cos(2x - π/3)C) 2cos(2x)D) 2cos(2x + π/6)答案:B) 2cos(2x - π/3)解析:根据链式法则,对sin(2x + π/3) 求导,得到 f'(x) = 2cos(2x +π/3) * 2 = 2cos(2x - π/3)。
4. 设 f(x) = e^x,g(x) = ln(x),则 f(g(2)) = ?A) e^2B) e^3C) 2D) ln(2)答案:A) e^2解析:首先求 g(2) = ln(2),然后将结果代入 f(x) = e^x 中计算,得到 f(g(2)) = f(ln(2)) = e^ln(2) = 2。
第十二章常微分方程(A)、是非题1.任意微分方程都有通解。
(X )2.微分方程的通解中包含了它所有的解。
15•微分方程xy |nx 0的通解是y 2In① y 3 In xdx xdy 0是可分离变量微分方程。
② xy 2x dx y x 2y dy 0是可分离变量微分方程。
③ x? y 4是齐次方程。
y 2y 0是二阶常系数齐次线性微分方程。
6. ysiny 是一阶线性微分方程。
(X)7. y 3 3x yxy 不是一阶线性微分方程。
(O )8. y 2y 5y 0的特征方程为r 22r 5 0。
(9. dy 1 xy 2 xy 2是可分离变量的微分方程。
dx、填空题1.在横线上填上方程的名称o )(O )2. sin xy x cosx 的通解中应含 _3个独立常数。
3. 1 e 2x 的通解是-e 2x C 1x C 2。
42x4.1 sin2x cosx 的通解是 -sin2x cosx C 1x C 2。
45. xy 2x 2yx 41是二 ______ 阶微分方程。
3.函数y 3sinx 4cosx 是微分方程y y 0的解。
(0 )4.函数y x 2 e x 是微分方程y 2y y0的解。
(X )C (C 为任意常数)。
(0 )④xyy x 2 sinx 是一阶线性微分方程。
6 .微分方程y y阶微分方程。
1A. 3 B7. y y 满足y L 0 2的特解是(B ) oxA. y e x 1 B . y 2e x C . y 2 e 2&微分方程y y sinx 的一个特解具有形式 A . y a sinx24 .微分方程y 3y 3的一个特解是(cosxC 1e xC 2e x 是方程y y 0的(A ),其中C 1,C 2为任意常数。
A.通解B .特解C .是方程所有的解 D .上述都不对7. 8.丄所满足的微分方程是yx空的通解为y xCx 2。
9.dx dy 0的通解为 x10.dy dx 2yx 15x 1 2,其对应的齐次方程的通解为11. 方程xy 1 0的通解为y 12. 3阶微分方程x 3 * 5的通解为yx 2Cxe 2 o x C 1 x C 2 x C 3 o120三、选择题1 .微分方程 xyy 3y 4y 0的阶数是(D ) oA. 3 B 2 .微分方程x 51的通解中应含的独立常数的个数为3.下列函数中,哪个是微分方程dy 2xdx 0的解(A . y 2xB . y x 2C .2x Dy a cosxy xy 3y 2 011 .在下列函数中,能够是微分方程 y y 0的解的函数是(C )y 1 B . y x C . y sinx D . y.Cx17.微分方程0的解为(B )C . y x asin x bcosxy acosx bsinx9.下列微分方程中,是二阶常系数齐次线性微分方程。
常微分方程试题及答案一、单项选择题(每题5分,共20分)1. 下列哪一项不是常微分方程的特点?A. 未知函数是连续的B. 未知函数是可微的C. 未知函数的导数是未知的D. 方程中包含未知函数的导数答案:A2. 常微分方程的解是指满足方程的函数,下列哪一项不是解的性质?A. 唯一性B. 存在性C. 可微性D. 可积性答案:D3. 一阶线性微分方程的一般形式是:A. \( y' + p(x)y = q(x) \)B. \( y' = p(x)y + q(x) \)C. \( y' - p(x)y = q(x) \)D. \( y' + p(x)y = q(x) \) 或 \( y' - p(x)y = q(x) \)答案:A4. 已知微分方程 \( y'' - y = 0 \) 的一个特解是 \( y = e^x \),那么它的通解是:A. \( y = C_1e^x + C_2e^{-x} \)B. \( y = C_1e^x + C_2 \)C. \( y = C_1e^x + C_2e^x \)D. \( y = C_1 + C_2e^{-x} \)答案:A二、填空题(每题5分,共20分)1. 微分方程 \( y'' + y' + y = 0 \) 的通解是 \( y = C_1e^{-x}+ C_2e^{-\frac{1}{2}x} \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
2. 微分方程 \( y'' - 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
3. 微分方程 \( y'' + 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
《常微分方程》题库及答案一.求解下列方程1.求方程0sin cos =+x y dxdyx之通解; 2.求方程xx y ax dy cos 1tan =+之通解; 3.解初值问题2(1)20(0)1dy x xy dx y ⎧-+=⎪⎨⎪=⎩; 4.求方程()lndy x yxy x y dx x+-=+ 之通解; 5.求方程 yx xy y dx dy 321++= 的通解; 6. 求方程 0)3()3(2323=-+-dy y x y dx xy x 的通解; 7.求由以xxx x cos ,sin 为基本解组的线性齐次方程; 8.求方程 2)(22x dx dy xdx dy y +-=的通解及奇解; 9.求方程⎰+=+xx y x dt dtt dy 02)(2))((1 的通解; 10. 求方程 0)sin ()2sin (22=-++dy y xy dx x y x 的通解; 11.求由以 x x x ln , 为基本解组的线性齐次方程; 12.求方程 2222)(12dxdy y y dx y d += 的通解. 13.求方程y y dxdyln =之通解。
14.求方程xy dxdyy x 2)(22=+之通解。
15.求方程0)(222=-+dy y x xydx 之通解。
16. 求方程y x e dxdy-=之通解。
17. 求方程0)2(=+---dy xe y dx e yy 之通解。
18. 求方程x x y y sec tan '=+之通解。
二.1.解初值问题⎪⎩⎪⎨⎧-==y x e axdyy 20)1(2.求如下微分方程组之通解:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=++-=--=z x dtdz z y x dtdyz y x dt dx2. 3.求出初值问题的逐次近似解21,0y y y :2(0)0dyx y dxy =+=⎧⎪⎨⎪⎩. 4. 求出微分方程0).().(=+dy y x N dx y x M 有形如)(22y x +=ϕυ的积分因子的充要条件。
自考常微分方程试题及答案一、选择题(每题2分,共10分)1. 以下哪一项是一阶微分方程?A. dy/dx + 2y = x^2B. d^2y/dx^2 + y = 0C. dy/dx = 0D. d^3y/dx^3 - y = x答案:A2. 常数变易法主要用于求解什么类型的二阶线性微分方程?A. 欧拉方程B. 伯努利方程C. 线性齐次方程D. 线性非齐次方程答案:D3. 以下哪个解是微分方程y'' - y' - 2y = 0的一个特解?A. y = e^(2x)B. y = e^(-x)C. y = e^(x)D. y = e^(x/2)答案:A4. 微分方程y' = y/x 表示的曲线族是:A. 一系列直线B. 一系列抛物线C. 一系列双曲线D. 一系列椭圆答案:C5. 如果一个函数满足微分方程y'' + y' + y = 0,那么它是:A. 一个奇函数B. 一个偶函数C. 一个周期函数D. 一个非周期函数答案:D二、填空题(每题3分,共15分)6. 解微分方程dy/dx = x^2 - y^2,当y(0) = 1时,y(1)的值为_________。
答案:07. 微分方程的通解为y = C1 * e^x + C2 * e^(-x),其中C1和C2是任意常数,该方程是_________阶线性齐次方程。
答案:一8. 微分方程y'' - 2y' + y = 0的特征方程为_________。
答案:r^2 - 2r + 1 = 09. 微分方程dy/dx = sin(x) + cos(y)满足初始条件y(0) = 0的解是y =_________。
答案:arccos(cos(x))10. 微分方程y' = y^2的解是y =_________。
答案:C/x + C^2,其中C是任意常数。
三、解答题(共75分)11. (15分)求解微分方程dy/dx - y = e^x,并给出通解。
常微分方程习题及解答一、问答题:1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义?答:微分方程就是联系着自变量,未知函数及其导数的关系式。
常微分方程,自变量的个数只有一个。
偏微分方程,自变量的个数为两个或两个以上。
常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。
2.举例阐述常数变易法的基本思想。
答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。
例:求()()dyP x y Q x dx=+的通解。
首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dxy c ⎰=l ,然后将常数c 变易为x 的待定函数()c x ,令()()P x dxy c x ⎰=l ,微分之,得到()()()()()P x dxP x dx dy dc x c x P x dx dx⎰⎰=+l l ,将上述两式代入方程中,得到 ()()()()()()()()()P x dxP x dx P x dxdc x c x P x dx c x P x Q x ⎰⎰+⎰=+l l l即()()()P x dx dc x Q x dx-⎰=l 积分后得到()()()P x dxc x Q x dx c -⎰=+⎰%l 进而得到方程的通解()()(())P x dxP x dxy Q x dx c -⎰⎰=+⎰%l l3.高阶线性微分方程和线性方程组之间的联系如何?答:n 阶线性微分方程的初值问题()(1)11(1)01020()...()()()(),(),....()n n n n n nx a t xa t x a t x f t x t x t x t ηηη---'⎧++++=⎪⎨'===⎪⎩ 其中12()(),...(),()n a t a t a t f t ,是区间a tb ≤≤上的已知连续函数,[]0,t a b ∈,12,,...,n ηηη是已知常数。
第7章 常微分方程一、单项选择题1.微分方程3245(''')3('')(')0y y y x -++=阶数是( b )A.4阶 B .3阶 C .2阶 D .1阶2.微分方程222y x dxdy x +=是( b ) A.一阶可分离变量方程 B.一阶齐次方程 C.一阶非齐次线性方程 D.一阶齐次线性方程3.下列方程中,是一阶线性微分方程的是( c )A.0'2)'(2=+-x yy y xB.0'2=-+x yy xyC.0'2=+y x xyD.0)()67(=++-dy y x dx y x4.方程x y xy =-'满足初始条件11==x y 的特解是( a )A.x x x y +=lnB.Cx x x y +=lnC.x x x y +=ln 2D.Cx x x y +=ln 25.微分方程y y x 2='的通解为( c )A .2x y =B . c x y +=2C . 2cx y =D .0=y6.微分方程y y x ='满足1)1(=y 的特解为 ( a )A.x y =B. c x y +=C.cx y =D.0=y8.微分方程05))(sin(2''=+-+x y y xy y 是( a )A 一阶微分方程B 二阶微分方程C 可分离变量的微分方程D 一阶线性微分方程9.微分方程2y xy '=的通解为( c )A .2x y e C =+B . x y Ce =C . 2x y Ce =D .22x y Ce =二、填空题1.微分方程34()"30y y y y '++=的阶数为__2____;2.微分方程0=+y dxdy 的通解是x y ce -=; 3.微分方程02=+'xy y 的通解是2x y ce -=;4.微分方程x y y e +'=的通解是()10,0x ye C e C ++=<; 5. 一阶线性微分方程()()y P x y Q x '+=的通解为()()()()P x dx P x dx P x dx y Ce e Q x e dx --⎰⎰⎰=+⎰; 6. n 阶微分方程的通解含有__n __个独立的任意常数。
常微分方程试题一、填空题(每小题3分,共39分)1.常微分方程中的自变量个数是________.2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________.3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变量分离方程.4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________.5.方程=(x+1)3的通解为________.6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满足初始条件 (x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解.7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________.8.方程+a1(t) +…+a n-1(t) +a n(t)x=0中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________.9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________.10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式.11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之等价的一阶方程组________.12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基解矩阵exp A t=________.13.方程组的奇点类型是________.二、计算题(共45分)1.(6分)解方程= .2.(6分)解方程x″(t)+ =0.3.(6分)解方程(y-1-xy)dx+xdy=0.4.(6分)解方程5.(7分)求方程:S″(t)-S(t)=t+1满足S(0)=1, (0)=2的解.6.(7分)求方程组的基解矩阵Φ(t).7.(7分)验证方程:有奇点x1=1, x2=0,并讨论相应驻定方程的解的稳定性.三、证明题(每小题8分,共16分)1.设f(x,y)及连续,试证方程dy-f(x,y)dx=0为线性方程的充要条件是它有仅依赖于x的积分因子.2.函数f(x)定义于-∞<x<+∞,且满足条件|f(x1)-f(x2)|≤N|x1-x2|,其中0<N<1,证明方程x=f(x)存在唯一的一个解.常微分方程试题参考答案一、填空题(每小题3分,共39分)1.12. 2+c1t+c23.u=4. c为任意常数5.y= (x+1)4+c(x+1)26.y=y0+7. (x)=8.对任意t9.x(t)=c1e t+c2te t+c3e-t+c4te-t10.x(t)=c1x1(t)+c2x2(t) +c n x n(t)11. x1(1)=1,x2(1)=2, x3(1)=312.expAt=e-2t[E+t(A+2E)+ ]13.焦点二、计算题(共45分)1.解:将方程分离变量为改写为等式两边积分得y-ln|1+y|=ln|x|-即y=ln 或e y=2.解:令则得=0当0时-arc cosy=t+c1y=cos(t+c1) 即则x=sin(t+c1)+c2当=0时y= 即x3.解:这里M=y-1-xy, N=x令u=xye-xu关于x求偏导数得与Me-x=ye-x-e-x-xye-x 相比有则因此u=xye-x+e-x方程的解为xye-x+e-x=c4.解:方程改写为这是伯努利方程,令z=y1-2=y-1 代入方程得解方程z==于是有或5.特征方程为特征根为对应齐线性方程的通解为s(t)=c1e t+c2e-tf(t)=t+1, 不是特征方程的根从而方程有特解=(At+B),代入方程得-(At+B)=t+1两边比较同次幂系数得A=B=-1故通解为S(t)=c1e t+c2e-t-(t+1)据初始条件得c1=因此所求解为:S(t)=6.解:系数矩阵A=则,而det特征方程det( )=0, 有特征根对对对因此基解矩阵7.解:因故x1=1,x2=0是方程组奇点令X1=x1-1, X2=x2, 即x1=X1+1,x2=X2代入原方程,得化简得*这里R(X)= , 显然(当时)方程组*中,线性部分矩阵det(A- )=由det(A- )=0 得可见相应驻定解渐近稳定三、证明题(每小题8分,共16分)1.证明:若dy-f(x,y)dx=0为线性方程则f(x,y)=因此仅有依赖于x的积分因子反之,若仅有依赖于x的积分因子。
常微分方程试题及答案(共4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--常微分方程模拟试题一、填空题(每小题3分,本题共15分)1.一阶微分方程的通解的图像是 2 维空间上的一族曲线.2.二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是.3.方程02=+'-''y y y 的基本解组是 .4.一个不可延展解的存在在区间一定是 区间.5.方程21d d y xy -=的常数解是 . 二、单项选择题(每小题3分,本题共15分)6.方程y x xy +=-31d d 满足初值问题解存在且唯一定理条件的区域是( ). (A )上半平面 (B )xoy 平面 (C )下半平面 (D )除y 轴外的全平面7. 方程1d d +=y xy ( )奇解. (A )有一个 (B )有两个 (C )无 (D )有无数个8.)(y f 连续可微是保证方程)(d d y f xy =解存在且唯一的( )条件. (A )必要 (B )充分 (C )充分必要 (D )必要非充分9.二阶线性非齐次微分方程的所有解( ).(A )构成一个2维线性空间 (B )构成一个3维线性空间(C )不能构成一个线性空间 (D )构成一个无限维线性空间10.方程323d d y xy =过点(0, 0)有( B ). (A) 无数个解 (B) 只有一个解 (C) 只有两个解 (D) 只有三个解三、计算题(每小题6分,本题共30分)求下列方程的通解或通积分: 11. y y xy ln d d = 12. xy x y x y +-=2)(1d d 13. 5d d xy y xy += 14.0)d (d 222=-+y y x x xy15.3)(2y y x y '+'=四、计算题(每小题10分,本题共20分)16.求方程255x y y -='-''的通解.17.求下列方程组的通解.⎪⎪⎩⎪⎪⎨⎧-=+=x ty t y t x d d sin 1d d 五、证明题(每小题10分,本题共20分)18.设)(x f 在),0[∞+上连续,且0)(lim =+∞→x f x ,求证:方程 )(d d x f y xy =+ 的一切解)(x y ,均有0)(lim =+∞→x y x . 19.在方程0)()(=+'+''y x q y x p y 中,)(),(x q x p 在),(∞+-∞上连续,求证:若)(x p 恒不为零,则该方程的任一基本解组的朗斯基行列式)(x W 是),(∞+-∞上的严格单调函数.常微分方程模拟试题参考答案一、填空题(每小题3分,本题共15分)1.2 2.线性无关(或:它们的朗斯基行列式不等于零)3.x x x e ,e 4.开 5.1±=y二、单项选择题(每小题3分,本题共15分)6.D 7.C 8.B 9.C 10.A三、计算题(每小题6分,本题共30分)11.解: 1y =为常数解 (1分)当0≠y ,1≠y 时,分离变量取不定积分,得 C x yy y +=⎰⎰d ln d (3分) 通积分为x C y e ln = (6分)注:1y =包含在常数解中,当0c =时就是常数解,因此常数解可以不专门列出。
1.常微分方程y′+2y=4e x的通解形式为?o A. y=2e x+Ce−2xo B. y=2e x+Ce2xo C. y=2e−x+Ce2xo D. y=2e−x+Ce−2x参考答案: A解析: 该方程为一阶线性常微分方程,通过积分因子法求解,积分因子为e2x,从而得到通解形式。
2.方程y″−4y′+4y=0的特征方程为?o A. r2−4r+4=0o B. r2+4r+4=0o C. r2−4r−4=0o D. r2+4r−4=0参考答案: A解析: 特征方程由方程的系数确定,对于y″−4y′+4y=0,特征方程为r2−4r+4=0。
3.方程y″+9y=0的解中包含的函数类型是?o A. 指数函数o B. 三角函数o C. 对数函数o D. 幂函数参考答案: B解析: 该方程的特征方程为r2+9=0,解得r=±3i,因此解中包含三角函数。
4.方程y′=2y+3的平衡点是?o A. y=−32o B. y=32o C. y=−3o D. y=3参考答案: A解析: 平衡点满足y′=0,解方程0=2y+3得y=−3。
25.方程y″+4y′+4y=e2x的特解形式为?o A. y=Ax2e2xo B. y=Axe2xo C. y=A2xe2xo D. y=Ae2x参考答案: B解析: 由于e2x的形式,特解形式应为Axe2x。
6.方程y′=y2−4的奇点是?o A. y=2o B. y=−2o C. y=0o D. y=2,y=−2参考答案: D解析: 奇点满足y′=0,解方程0=y2−4得y=2,y=−2。
7.方程y″−5y′+6y=0的特征根是?o A. r=2,r=3o B. r=−2,r=−3o C. r=2,r=−3o D. r=−2,r=3参考答案: A解析: 特征方程为r2−5r+6=0,解得r=2,r=3。
8.方程y′=3y+e x的通解中包含的函数是?o A. e3xo B. e−3xo C. e xo D. e−x参考答案: A解析: 该方程为一阶线性方程,通解中包含e3x。
常微分方程练习试卷一、填空题。
1.方程 x 3 d2x 10 是阶(线性、非线性)微分方程 .dt 22. 方程 x dyf (xy ) 经变换 _______ ,能够化为变量分别方程.y dx3.微分方程 d 3 y y 2x 0 知足条件 y(0) 1, y (0)2 的解有个 .dx 34. 设 常 系 数 方程 yy*2 xxx,则此方程的系数ye x 的 一个 特解 y ( x) eexe,, .5. 朗斯基队列式 W (t )0是函数组 x 1(t), x 2 (t),L , x n (t ) 在 a x b 上线性有关的条件 .6. 方程 xydx (2 x 2 3y 2 20) dy 0 的只与 y 有关的积分因子为.7. 已知 X A(t) X 的基解矩阵为 (t ) 的,则 A(t ).8. 方程组 x '2 0.0 x 的基解矩阵为59. 可用变换 将伯努利方程化为线性方程 .10 . 是知足方程 y2 y 5y y 1 和初始条件的独一解 .11. 方程的待定特解可取的形式 :12. 三阶常系数齐线性方程 y 2 y y 0 的特点根是二、计算题1. 求平面上过原点的曲线方程 , 该曲线上任一点处的切线与切点和点 (1,0) 的连线互相垂直 .dy x y 1 2.求解方程.dxx y 3d 2 x dx 2。
3. 求解方程 x2( )dt dt4.用比较系数法解方程 . .5.求方程y y sin x 的通解.6.考证微分方程(cos x sin x xy 2 )dx y(1 x2 )dy0 是适合方程,并求出它的通解.311A X 的一个基解基解矩阵(t) ,求dXA X7.设 A,,试求方程组dX241dt dt 知足初始条件x(0)的解 .8.求方程dy2x13y2经过点 (1,0)的第二次近似解 . dx9.求dy)34xy dy8y20 的通解(dxdx10. 若A 21试求方程组 x Ax 的解(t ),(0)141,并求expAt2三、证明题1.若(t), (t ) 是 X A(t) X 的基解矩阵,求证:存在一个非奇怪的常数矩阵 C ,使得(t)(t )C .2.设 ( x) (x0 , x) 是积分方程y(x)y0x2 y( )]d ,x0 , x [ , ] [x0的皮卡逐渐迫近函数序列 {n (x)} 在 [,] 上一致收敛所得的解,而(x) 是这积分方程在 [ ,] 上的连续解,试用逐渐迫近法证明:在[,] 上( x)( x) .3. 设都是区间上的连续函数 ,且是二阶线性方程的一个基本解组 . 试证明 :(i)和都只好有简单零点(即函数值与导函数值不可以在一点同时为零);(ii)和没有共同的零点;(iii)和没有共同的零点.4. 试证:假如(t ) 是dXAX 知足初始条件(t0 )的解,那么(t) exp A(t t 0 ) dt.答案一 . 填空题。
第十二章 常微分方程(A)一、是非题1.任意微分方程都有通解。
( X )2.微分方程的通解中包含了它所有的解。
( X )3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。
( O ) 4.函数x e x y ⋅=2是微分方程02=+'-''y y y 的解。
( X )5.微分方程0ln =-'x y x 的通解是()C x y +=2ln 21 (C 为任意常数)。
( O )6.y y sin ='是一阶线性微分方程。
( X ) 7.xy y x y +='33不是一阶线性微分方程。
( O ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。
( O )9.221xy y x dxdy +++=是可分离变量的微分方程。
( O )二、填空题1.在横线上填上方程的名称①()0ln 3=-⋅-xdy xdx y 是可分离变量微分方程。
②()()022=-++dy y x y dx x xy 是可分离变量微分方程。
③xy y dx dy x ln ⋅=是齐次方程。
④x x y y x sin 2+='是一阶线性微分方程。
⑤02=-'+''y y y 是二阶常系数齐次线性微分方程。
2.x x y x y cos sin =-'+'''的通解中应含 3 个独立常数。
3.x e y 2-=''的通解是21241C x C e x ++-。
4.x x y cos 2sin -=''的通解是21cos 2sin 41C x C x x +++-。
5.124322+=+'+'''x y x y x y x 是 3 阶微分方程。
6.微分方程()06='-''⋅y y y 是 2 阶微分方程。
常微分方程练习试卷及答案常微分方程练试卷一、填空题。
1.方程d2x/dt2+1=是二阶非线性微分方程。
2.方程xdy/ydx=f(xy)经变换ln|x|=g(xy)可以化为变量分离方程。
3.微分方程d3y/dx3-y2-x=0满足条件y(0)=1,y'(0)=2的解有一个。
4.设常系数方程y''+αy'+βy=γex的一个特解y(x)=e-x+e2x,则此方程的系数α=-1,β=2,γ=1.5.朗斯基行列式W(t)≠0是函数组x1(t),x2(t)。
xn(t)在[a,b]上线性无关的条件。
6.方程xydx+(2x2+3y2-20)dy=0的只与y有关的积分因子为1/y3.7.已知X'=A(t)X的基解矩阵为Φ(t),则A(t)=Φ(t)-1dΦ(t)/dt。
8.方程组x'=[2,5;1,0]x的基解矩阵为[2e^(5t),-5e^(5t);e^(5t),1]。
9.可用变换将伯努利方程y'+p(x)y=q(x)化为线性方程。
10.方程y''-y'+2y=2e^x的通解为y(x)=C1e^x+C2e^2x+e^x。
11.方程y'''+2y''+5y'+y=1和初始条件y(0)=y'(0)=y''(0)=0的唯一解为y(x)=e^-x/2[sin(5^(1/2)x/2)-cos(5^(1/2)x/2)]。
12.三阶常系数齐线性方程y'''-2y''+y=0的特征根是1,1,-1.二、计算题1.设曲线方程为y(x)=kx/(1-k^2),则曲线上任一点处的斜率为y'(x)=k/(1-k^2),切点为(0,0),切线方程为y=kx,点(1,0)的连线斜率为-1/k,因此k=-1,曲线方程为y=-x/(1+x)。
常微分方程试题
一、填空题(每小题3分,共39分)
1.常微分方程中的自变量个数是________.
2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________.
3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变
量分离方程.
4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式
为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________.
5.方程=(x+1)3的通解为________.
6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满
足初始条件 (x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解.
7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________.
8.方程+a1(t) +…+a n-1(t) +a n(t)x=0
中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________.
9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________.
10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组
x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式.
11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之
等价的一阶方程组________.
12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基
解矩阵exp A t=________.
13.方程组
的奇点类型是________.
二、计算题(共45分)
1.(6分)解方程
= .
2.(6分)解方程
x″(t)+ =0.
3.(6分)解方程
(y-1-xy)dx+xdy=0.
4.(6分)解方程
5.(7分)求方程:
S″(t)-S(t)=t+1
满足S(0)=1, (0)=2的解.
6.(7分)求方程组
的基解矩阵Φ(t).
7.(7分)验证方程:
有奇点x1=1, x2=0,并讨论相应驻定方程的解的稳定性.
三、证明题(每小题8分,共16分)
1.设f(x,y)及连续,试证方程
dy-f(x,y)dx=0
为线性方程的充要条件是它有仅依赖于x的积分因子.
2.函数f(x)定义于-∞<x<+∞,且满足条件|f(x1)-f(x2)|≤N|x1-x2|,其中0<N<1,证明
方程
x=f(x)
存在唯一的一个解.
常微分方程试题参考答案
一、填空题(每小题3分,共39分)
1.1
2. 2+c1t+c2
3.u=
4. c为任意常数
5.y= (x+1)4+c(x+1)2
6.y=y0+
7. (x)=
8.对任意t
9.x(t)=c1e t+c2te t+c3e-t+c4te-t
10.x(t)=c1x1(t)+c2x2(t) +c n x n(t)
11. x1(1)=1,x2(1)=2, x3(1)=3
12.expAt=e-2t[E+t(A+2E)+ ]
13.焦点
二、计算题(共45分)
1.解:将方程分离变量为
改写为
等式两边积分得
y-ln|1+y|=ln|x|-
即y=ln 或e y=
2.解:令则得
=0
当0时
-
arc cosy=t+c1
y=cos(t+c1) 即
则x=sin(t+c1)+c2
当=0时
y= 即
x
3.解:这里M=y-1-xy, N=x
令u=xye-x
u关于x求偏导数得
与Me-x=ye-x-e-x-xye-x 相比有
则
因此
u=xye-x+e-x
方程的解为xye-x+e-x=c
4.解:方程改写为
这是伯努利方程,令
z=y1-2=y-1 代入方程
得
解方程z=
=
于是有
或
5.特征方程为
特征根为
对应齐线性方程的通解为s(t)=c1e t+c2e-t
f(t)=t+1, 不是特征方程的根
从而方程有特解=(At+B),代入方程得
-(At+B)=t+1
两边比较同次幂系数得
A=B=-1
故通解为S(t)=c1e t+c2e-t-(t+1)
据初始条件得
c1=
因此所求解为:S(t)=
6.解:系数矩阵A=
则,而det
特征方程det( )=0, 有特征根
对
对
对
因此基解矩阵
7.解:因故x1=1,x2=0是方程组奇点
令X1=x1-1, X2=x2, 即x1=X1+1,x2=X2代入原方程,得化简得*
这里R(X)= , 显然(当时)
方程组*中,线性部分矩阵
det(A- )=
由det(A- )=0 得
可见相应驻定解渐近稳定
三、证明题(每小题8分,共16分)
1.证明:若dy-f(x,y)dx=0为线性方程
则f(x,y)=
因此仅有依赖于x的积分因子
反之,若仅有依赖于x的积分因子。
这里M=-f(x,y),N=1
由-
方程为这是线性方程.
2.证明:由条件|f(x
1)-f(x
2
)| N|x
1
-x
2
|,易知,f(x)为连续函数,
任取x
作逐步点列
x
n+1=f(x
n
) n=0,1,
考虑级数x
+ 因
由归纳法知对任意k,|x
k -x
k-1
|
故级数x
+ 收敛
即序列{x
n
}收敛,设
对x
n+1=f(x
n
),两边求极限,注意f(x)连续,故x*=f(x*)
即x*是方程x=f(x)的解
又设是方程x=f(x)的任一解,则因N<1,必有x*=
因此解是唯一的。