高一物理必修二《小船过河问题》
- 格式:ppt
- 大小:499.50 KB
- 文档页数:18
小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
21.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间 ,显然,当时,即船头的指向与河岸垂直,渡河时间最θυυsin 1船ddt ==︒=90θ小为,合运动沿v 的方向进行。
vd2.位移最小若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短水船v v <呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据船头与河岸的夹角应为水船v v =θcos,船沿河漂下的最短距离为:水船v v arccos=θθθsin )cos (min 船船水v d v v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间s s dt 2030602===υ(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。
小船渡河问题归纳总结小船渡河问题是物理学中的一个经典问题,它涉及到相对运动、速度、时间和距离等多个物理概念。
以下是关于小船渡河问题的归纳总结,详细介绍:一、基本概念1. 小船渡河:指的是一个船只在河流中从一岸行驶到另一岸的过程。
2. 静水速度:船只在静止的水中行驶的速度,通常记为vc。
3. 河流速度:河流的流速,通常记为vs。
4. 合速度:船只在河流中的实际速度,是静水速度和河流速度的矢量和。
5. 渡河时间:船只从一岸出发到达另一岸所需要的时间。
6. 渡河距离:船只在水面上实际行驶的距离。
二、问题分类1. 最短时间渡河:在给定河宽和船只静水速度的条件下,求船只渡河的最短时间。
2. 最短距离渡河:在给定河宽和船只静水速度的条件下,求船只渡河的最短距离。
3. 指定地点渡河:船只需要在河对岸的指定地点登陆,求船只的行驶方向和速度。
三、解题方法1. 最短时间渡河:-当静水速度大于河流速度时,船只应该以静水速度垂直于河岸行驶,这样渡河时间最短。
-当静水速度小于河流速度时,船只无法垂直于河岸行驶,此时渡河时间取决于静水速度与河流速度的比值。
-当静水速度等于河流速度时,船只可以垂直于河岸行驶,渡河时间也是最短的。
2. 最短距离渡河:-当静水速度大于河流速度时,船只应该以静水速度与河流速度的比值确定合速度的方向,使得合速度垂直于河岸,这样渡河距离最短。
-当静水速度小于河流速度时,船只无法垂直于河岸行驶,此时渡河距离取决于静水速度与河流速度的比值。
-当静水速度等于河流速度时,船只可以垂直于河岸行驶,渡河距离也是最短的。
3. 指定地点渡河:-确定船只的合速度方向,使得合速度的方向与指定地点的连线垂直。
-计算合速度的大小,使得船只能够准确到达指定地点。
四、实际应用1. 航海导航:在航海过程中,船只需要在不同的水流速度和方向下,选择合适的行驶方向和速度,以达到目的地。
2. 水上救援:在进行水上救援时,救援船只需要根据河流的流速和救援地点的位置,选择合适的行驶方向和速度,以尽快到达救援地点。
小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间θυυsin 1船ddt ==,显然,当︒=90θ时,即船头的指向与河岸垂直,渡河时间最小为vd,合运动沿v 的方向进行。
2.位移最小 若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,v 2设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水船v v =θcos 船头与河岸的夹角应为水船v v arccos=θ,船沿河漂下的最短距离为:此时渡河的最短位移:船水v dv ds ==θcos 【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少? ★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。
可由几何方法求得,即以v 1的末端为圆心,以v 2的长度为半径作圆,从v 1的始端作此圆的切线,该切线方向即为最短航程的方向,如图所示。
小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间sin1船d dt,显然,当90时,即船头的指向与河岸垂直,渡河时间最小为vd ,合运动沿v 的方向进行。
2.位移最小若水船结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水cos若水船v v ,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v与圆相切时,α角最大,根据水船v v cos船头与河岸的夹角应为v水θv αABEv船v 水v船θvV水v 船θv 2v 1水船v v arccos,船沿河漂下的最短距离为:sin)cos (min 船船水v dv v x 此时渡河的最短位移:船水v dv d scos【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间ss dt2030602(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v方向越接近垂直河岸方向,航程越短。
小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间θυυsin 1船ddt ==,显然,当︒=90θ时,即船头的指向与河岸垂直,渡河时间最小为vd,合运动沿v 的方向进行。
2.位移最小 若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水船v v =θcos 船头与河岸的夹角应为2水船v v arccos=θ,船沿河漂下的最短距离为:θθsin )cos (min 船船水v dv v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问: (1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间s s dt 2030602===υ (2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽; ②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。
高一物理小船渡河问题知识点
嘿,朋友们!今天咱来聊聊高一物理里超有意思的小船渡河问题呀!
你想想看,小船在河里要去到对岸,这就好像你要去一个你特别想去的地方,可不能瞎走对吧!这里面的门道可不少呢。
先说最短渡河时间,那就是让船头直直地指向对岸呀,就像你目标明确地直接朝着目的地冲刺一样!比如说,小船速度是 5 米每秒,河宽 20 米,那最短渡河时间不就是 20 除以 5 等于 4 秒嘛!
还有最短渡河位移呢!这就好比你想走最短的路到达目的地。
如果水流速度比较小,那小船可以斜着开,找到那个最合适的角度,让渡河的位移最短。
就好像你要避开一些障碍,找到最佳路线一样!比如水流速度是 3 米每秒,小船速度是 4 米每秒,那通过计算就能找到那个神奇的角度啦!
哎呀,这小船渡河问题是不是特别有趣呀!真的超级神奇的!我觉得学物理就是这么有意思,能发现好多生活中的奇妙现象呢!大家一定要好好学物理呀!。
运动的合成与分解实例——小船渡河模型一、基础知识(一)小船渡河问题分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v 1(船在静水中的速度)、v 2(水流速度)、v (船的实际速度).(3)三种情景①过河时间最短:船头正对河岸时,渡河时间最短,t 短=(d 为河宽).dv 1②过河路径最短(v 2<v 1时):合速度垂直于河岸时,航程最短,s 短=d .船头指向上游与河岸夹角为α,cos α=.v 2v 1③过河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=,最短航程:s 短==d .v 1v 2dcos αv 2v 1(二)求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移.无论哪类都必须明确以下四点:(1)解决这类问题的关键是:正确区分分运动和合运动,船的航行方向也就是船头指向,是分运动.船的运动方向也就是船的实际运动方向,是合运动,一般情况下与船头指向不一致.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则按水流方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.(4)求最短渡河位移时,根据船速v 船与水流速度v 水的大小情况用三角形法则求极限的方法处理.二、练习1、一小船渡河,河宽d =180 m ,水流速度v 1=2.5m /s.若船在静水中的速度为v 2=5m/s ,则:(1)欲使船在最短时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?解析 (1)欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图所示.合速度为倾斜方向,垂直分速度为v 2=5 m/s.t == s =36 sdv 21805v == m/s v 21+v 2525x =v t =90 m5(2)欲使船渡河的航程最短,应垂直河岸渡河,船头应朝上游与垂直河岸方向成某一夹角α,如图所示.有v 2sin α=v 1,得α=30°所以当船头向上游偏30°时航程最短.x ′=d =180 m.t ′== s =24 sdv 2cos 30°1805233答案 (1)垂直河岸方向 36 s 90 m(2)向上游偏30° 24 s 180 m532、一条船要在最短时间内渡过宽为100 m 的河,已知河水的流速v 1与船离河岸的距离x变化的关系如图甲所示,船在静水中的速度v 2与时间t 的关系如图乙所示,则以下判断中正确的是( )A .船渡河的最短时间是25 sB .船运动的轨迹可能是直线C .船在河水中的加速度大小为0.4 m/s 2D .船在河水中的最大速度是5 m/s 答案C解析 船在行驶过程中,船头始终与河岸垂直时渡河时间最短,即t = s =20 s ,A1005错误;由于水流速度变化,所以合速度变化,船头始终与河岸垂直时,运动的轨迹不可能是直线,B 错误;船在最短时间内渡河t =20 s ,则船运动到河的中央时所用时间为10 s ,水的流速在x =0到x =50 m 之间均匀增加,则a 1= m /s 2=0.4 m/s 2,同理4-010x =50 m 到x =100 m 之间a 2= m /s 2=-0.4 m/s 2,则船在河水中的加速度大小为0-4100.4 m/s 2,C 正确;船在河水中的最大速度为v = m/s = m/s ,D 错误.52+42413、如5所示,河水流速与距出发点垂直距离的关系如图甲所示,船在静水中的速度与时间的关系如图乙所示,若要使船以最短时间渡河,则( )A .船渡河的最短时间是60 sB .船在行驶过程中,船头始终与河岸垂直C .船航行的轨迹是一条直线D .船的最大速度是5 m/s 答案 BD解析 当船头指向垂直于河岸时,船的渡河时间最短,其时间t == s =100 s ,A dv 23003错,B 对.因河水流速不均匀,所以船在河水中的航线是一条曲线,当船行驶至河中央时,船速最大,最大速度v = m /s =5 m/s ,C 错,D 对.42+324、(2019·江苏·3)如图所示,甲、乙两同学从河中O 点出发,分别沿直线游到A 点和B 点后,立即沿原路线返回到O 点,OA 、OB 分别与水流方向平行和垂直,且OA =OB .若水流速度不变,两人在静水中游速相等,则他们所用时间t 甲、t 乙的大小关系为( )A .t 甲<t 乙B .t 甲=t 乙C .t 甲>t 乙D .无法确定答案 C解析 设两人在静水中游速为v 0,水速为v ,则t 甲=+= t 乙==<xOAv 0+v xOAv 0-v 2v 0xOAv 20-v 22xOBv 20-v 22xOAv 20-v 22v 0xOAv 20-v2故A 、B 、D 错,C 对.5、甲、乙两船在同一条河流中同时开始渡河,河宽为H ,河水流速为v 0,划船速度均为v ,出发时两船相距H ,甲、乙两船船头均与河岸成60°角,如图所示.已知乙船恰好233能垂直到达对岸A 点,则下列判断正确的是( )A .甲、乙两船到达对岸的时间不同B .v =2v 0C .两船可能在未到达对岸前相遇D .甲船也在A 点靠岸答案 BD解析 渡河时间均为,乙能垂直于河岸渡河,对乙船由v cos60°=v 0得Hv sin 60°v =2v 0,甲船在该时间内沿水流方向的位移为(v cos 60°+v 0)=H ,刚好到达Hv sin 60°233A 点,综上所述,A 、C 错误,B 、D 正确.6、一快艇要从岸边某处到达河中离岸100 m 远的浮标处,已知快艇在静水中的速度图象如图甲所示,流水的速度图象如图乙所示,假设行驶中快艇在静水中航行的分速度方向选定后就不再改变,则( )A .快艇的运动轨迹可能是直线B .快艇的运动轨迹只能是曲线C .最快到达浮标处通过的位移为100 mD .最快到达浮标处所用时间为20 s解析 快艇的实际速度为快艇在静水中的速度与水速的合速度.由图象可知快艇在静水中为匀加速直线运动,水为匀速直线运动,两速度不在同一条直线上,故快艇必做曲线运动,A 错误,B 正确;当快艇与河岸垂直时,到达浮标处时间最短,而此时快艇做曲线运动,故位移大于100 m ,C 错误;由题图甲可知快艇的加速度为a ==0.5 m/s 2,ΔvΔt 最短位移为x =100 m ,对快艇由x =at 2得:t = =s =20 s ,即最快到达浮标处122x a 2×1000.5所用时间为20 s ,D 正确.答案 BD。