数字图像的频域变换
- 格式:pdf
- 大小:3.70 MB
- 文档页数:33
第一章1.连续图像中,图像为一个二维平面,(x,y)图像中的任意一点,f(x,y)为图像于(x,y)于处的值。
连续图像中,(x,y)的取值是连续的,f(x,y)也是连续的数字图像中,图像为一个由有限行有限列组成的二维平面,(i,j)为平面中的任意一点,g(i,j)则为图像在(i,j)处的灰度值,数字图像中,(i,j) 的取值是不连续的,只能取整数,对应第i行j列,g(i,j) 也是不连续的,表示图像i行j列处图像灰度值。
联系:数字图像g(i,j)是对连续图像f(x,y)经过采样和量化这两个步骤得到的。
其中g(i,j)=f(x,y)|x=i,y=j2. 图像工程的内容可分为图像处理、图像分析和图像理解三个层次,这三个层次既有联系又有区别,如下图所示。
图像处理的重点是图像之间进行的变换。
尽管人们常用图像处理泛指各种图像技术,但比较狭义的图像处理主要是对图像进行各种加工,以改善图像的视觉效果并为自动识别奠定基础,或对图像进行压缩编码以减少所需存储空间图像分析主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述。
如果说图像处理是一个从图像到图像的过程,则图像分析是一个从图像到数据的过程。
这里的数据可以是目标特征的测量结果,或是基于测量的符号表示,它们描述了目标的特点和性质。
图像理解的重点是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。
如果说图像分析主要以观察者为中心来研究客观世界,那么图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界(包括没有直接观察到的事物)的。
联系:图像处理、图像分析和图像理解处在三个抽象程度和数据量各有特点的不同层次上。
图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。
图像分析则进入了中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式的描述。
第三章图像增强一.填空题1. 我们将照相机拍摄到的某个瞬间场景中的亮度变化范围,即一幅图像中所描述的从最暗到最亮的变化范围称为____动态范围__。
2.所谓动态范围调整,就是利用动态范围对人类视觉的影响的特性,将动态范围进行__压缩____,将所关心部分的灰度级的变化范围扩大,由此达到改善画面效果的目的。
3. 动态范围调整分为线性动态范围调整和__非线性调整___两种。
4. 直方图均衡化把原始图的直方图变换为分布均匀的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。
基本思想是:对图像中像素个数多的灰度值进行__展宽_____,而对像素个数少的灰度值进行归并,从而达到清晰图像的目的。
5. 数字图像处理包含很多方面的研究内容。
其中,__图像增强_的目的是将一幅图像中有用的信息进行增强,同时将无用的信息进行抑制,提高图像的可观察性。
6. 灰级窗,是只将灰度值落在一定范围内的目标进行__对比度增强___,就好像开窗观察只落在视野内的目标内容一样。
二.选择题1. 下面说法正确的是:(B )A、基于像素的图像增强方法是一种线性灰度变换;B、基于像素的图像增强方法是基于空间域的图像增强方法的一种;C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图像域的方法计算复杂较高;D、基于频域的图像增强方法比基于空域的图像增强方法的增强效果好。
2. 指出下面正确的说法:(D )A、基于像素的图像增强方法是一种非线性灰度变换。
B、基于像素的图像增强方法是基于频域的图像增强方法的一种。
C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图像域的方法计算复杂较高。
D、基于频域的图像增强方法可以获得和基于空域的图像增强方法同样的图像增强效果。
3.指出下面正确的说法:(D )①基于像素的图像增强方法是一种非线性灰度变换。
②基于像素的图像增强方法是基于空域的图像增强方法的一种。
图像的频域变换处理1 实验目的 1. 掌握Fourier ,DCT 和Radon 变换与反变换的原理及算法实现,并初步理解Fourier 、Radon和DCT 变换的物理意义。
2、 利用傅里叶变换、离散余弦变换等处理图像,理解图像变换系数的特点。
3、 掌握图像的频谱分析方法。
4、 掌握图像频域压缩的方法。
5、 掌握二维数字滤波器处理图像的方法。
2 实验原理1、傅里叶变换 fft2函数:F=fft2(A);fftshift 函数:F1=fftshift(F);ifft2函数:M=ifft2(F);2、离散余弦变换:dct2函数 :F=dct2(f2);idct2函数:M=idct2(F);3、 小波变换对静态二维数字图像,可先对其进行若干次二维DWT 变换, 将图像信息分解为高频成分H 、V 和D 和低频成分A 。
对低频部分A ,由于它对压缩的结果影响很大,因此可采用无损编码方法, 如Huffman 、 DPCM 等;对H 、V 和D 部分,可对不同的层次采用不同策略的向量量化编码方法,这样便可大大减少数据量,而图像的解码过程刚好相反。
(1)dwt2[CA,CH,CV,CD]=dwt2(X,’wname’)[CA,CH,CV,CD]=dwt2(X,LO_D,HI_D’)()()⎰⎥⎦⎤⎢⎣⎡-ψ=dt a b t t Rf a 1b ,a W *()⎪⎭⎫ ⎝⎛-ψ=ψa b t a 1t b ,a 112()00(,)[(,)](,)ux vy M N j M N x y f x y eF f x y F u v π---+====∑∑1100(21)(21)(,)(,)()()cos cos 22M N x y x u y v F u v f x y C u C v M Nππ--==++=∑∑CA 图像分解的近似分量,CH 水平分量,CV 垂直分量,CD 细节分量; dwt2(X,’wname ’) 使用小波基wname 对X 进行小波分解。
实验五图像频域变换一、实验目的1.了解傅里叶变换在图像处理中的应用2.利用Matlab语言编程实现图像的频域变换。
二、实验内容1. 打开并显示一幅图像,对其进行Fourier变换,观察其频谱图像。
2. 用两种方法将图像的频域中心移动到图像中心,然后观察其Fourier变换后的频谱图像。
(见Fourier变换的性质:f(x,y) (-1)x+y F(u-N/2,v-N/2))对图像的Fourier变换频谱进行滤波,如:将频谱超过某个给定的值(均值或2/3均值)的变换值变为0,然后再求其Fourier逆变换,比较所得图像与原图像的差别。
3.对图像进行离散余弦变换,并观察其变换域图像。
要求:用Matlab语言进行编程实现上述功能,同时也应该熟悉用Matlab中现有的函数来实现。
傅里叶变换A)傅里叶变换基本操作I = imread(你的图像);imshow(I);title('源图像');J = fft2(I);figure, imshow(J);title('傅里叶变换');%频移JSh = fftshift(J);figure, imshow(JSh);title('傅里叶变换频移');%直接傅里叶反变换Ji = ifft2(J);figure, imshow(Ji/256);title('直接傅里叶反变换');%幅度JA = abs(J);iJA = ifft2(JA);figure, imshow(iJA/256);title('幅度傅里叶反变换');%相位JP = angle(J);iJP = ifft2(JP);figure, imshow(abs(iJP)*100);title('相位傅里叶反变换');B)利用MATLAB软件实现数字图像傅里叶变换的程序I=imread(‘原图像名.gif’); %读入原图像文件imshow(I); %显示原图像fftI=fft2(I); %二维离散傅里叶变换sfftI=fftshift(fftI); %直流分量移到频谱中心RR=real(sfftI); %取傅里叶变换的实部II=imag(sfftI); %取傅里叶变换的虚部A=sqrt(RR.^2+II.^2);%计算频谱幅值A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225;%归一化figure; %设定窗口imshow(A); %显示原图像的频谱C)绘制一个二值图像矩阵,并将其傅里叶函数可视化。
摘要图像的频域处理是指根据一定的图像模型,对图像频谱进行不同程度修改的技术。
二维正交变换是图像处理中常用的变换,其特点是变换结果的能量分布向低频成份方向集中,图像的边缘、线条在高频成份上得到反映,因此正交变换在图像处理中得到广泛运用。
傅里叶作为一种典型的正交变换,在数学上有比较成熟和快速的处理方法。
卷积特性是傅里叶变换性质之一,由于它在通信系统和信号处理中的重要地位--应用最广。
在用频域方法进行卷积过程中尤其要注意傅里叶变换的周期性,注意周期延拓的重要作用,本次课设将对此作详细的介绍。
关键字:频域处理,二维傅里叶变换,卷积,周期延拓1 图像频域处理的概述图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。
如大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变化剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。
频域处理是指根据一定的图像模型,对图像频谱进行不同程度修改的技术,通常作如下假设:1)引起图像质量下降的噪声占频谱的高频段;2)图像边缘占高频段;3)图像主体或灰度缓变区域占低频段。
基于这些假设,可以在频谱的各个频段进行有选择性的修改。
为什么要在频率域研究图像增强(1)可以利用频率成分和图像外表之间的对应关系。
一些在空间域表述困难的增强任务,在频率域中变得非常普通。
(2)滤波在频率域更为直观,它可以解释空间域滤波的某些性质。
(3)可以在频率域指定滤波器,做反变换,然后在空间域使用结果滤波器作为空间域滤波器的指导。
(4)一旦通过频率域试验选择了空间滤波,通常实施都在空间域进行。
2 二维傅里叶变换由于图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。
傅立叶变换在实际中的物理意义,设f 是一个能量有限的模拟信号,则其傅立叶变换就表示f 的谱。
从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。
Part2:解答题和计算题2.1 图像处理基础一、简答题1、解释模拟图像和数字图像的概念。
(10分)模拟图像在水平与垂直方向上灰度变化都是连续的,因此有时又将模拟图像称之为连续图像( continuous image)数字图像是指把模拟图像分解成被称作像素的若干小离散点,并将各像素的颜色值用量化的离散值,即整数值来表示的图像。
因此,又将数字图像称为离散图像(discrete image)。
像素是组成数字图像的基本元素。
2、简述图像的采样和量化过程,并解释图像的空间分辨率和灰度分辨率的概念。
(10分) 空间采样将在空间上连续的图像转换成离散的采样点(即像素)集的操作。
由于图像是二维分布的信息,所以采样是在x轴和y轴两个方向上进行。
量化把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。
量化值一般用整数来表示。
考虑人眼的识别能力,目前非特殊用途的图像均为8bit量化,即用0~255描述“黑~白”。
空间分辨率(spatial resolution ):图像空间中可分辨的最小细节。
一般用单位长度上采样的像素数目或单位长度上的线对数目表示。
灰度分辨率(contrast resolution ):图像灰度级中可分辨的最小变化。
一般用灰度级或比特数表示。
3、在理想情况下获得一幅数字图像时,采样和量化间隔越小,图像的画面效果越好。
当一幅图像的数据量被限制在一个范围内时,如何考虑图像的采样和量化,使得图像的表现效果尽可能的好? (10 分)当限定数字图像的大小时, 为了得到质量较好的图像,一般可采用如下原则:①对缓变的图像,应该细量化,粗采样,以避免假轮廓②对细节丰富的图像,应细采样,粗量化,以避免模糊4、图像量化时,如果量化级别较少时会发生什么现象?为什么? (10分)如果量化级比较少,会出现伪轮廓现象。
原因:量化过程是将连续的颜色划分到有限个级别中,必然会导致颜色的信息缺失。
当量化级别数量级过小时,图像灰度分辨率就会降低,颜色层次就会欠丰富,不同的颜色之间过渡就会变得突然,所以可能会导致伪轮廓现象。
空域处理方法和频域处理方法是数字图像处理中常用的两种方法。
它们有着各自独特的特点和应用场景。
本文将从原理、应用和区别三个方面对这两种处理方法进行详细比较。
一、原理1. 空域处理方法空域处理方法是指直接对图像的像素进行操作。
它是一种基于图像的原始信息进行处理的方法。
常见的空域处理操作包括亮度调整、对比度增强、图像锐化等。
这些操作都是基于每个像素点周围的邻域像素进行计算和处理的。
2. 频域处理方法频域处理方法是将图像从空间域转换到频率域进行处理。
其基本原理是利用傅里叶变换将图像信号从空间域转换到频率域,然后对频率域的图像进行滤波、增强等处理,最后再利用傅里叶反变换将图像信号转换回空间域。
二、应用1. 空域处理方法空域处理方法适用于对图像的局部信息进行处理,如调整图像的明暗、对比度和色调等。
它可以直接对原始图像进行处理,因此在实时性要求较高的场景下具有一定优势。
2. 频域处理方法频域处理方法适用于对图像的全局信息进行处理,如去除图像中的周期性噪声、增强图像的高频细节等。
由于频域处理方法能够通过滤波等手段对图像进行全局处理,因此在一些需要对图像进行频谱分析和滤波的场景下有着独特的优势。
三、区别1. 数据处理方式空域处理方法是直接对图像的像素进行操作,处理过程直接,但只能处理原始图像信息。
而频域处理方法是将图像信号转换到频率域进行处理,可以更全面地分析和处理图像的频率特性。
2. 处理效果空域处理方法主要用于对图像的局部信息进行处理,因此适合对图像的亮度、对比度等进行调整。
而频域处理方法主要针对图像的全局信息进行处理,能够更好地处理图像的频率特性,如滤波、增强等。
3. 处理速度空域处理方法直接对原始图像进行处理,处理速度较快;而频域处理方法需要将图像信号转换到频率域进行处理,处理速度相对较慢。
空域处理方法和频域处理方法分别适用于不同的处理场景。
空域处理方法主要用于对图像的局部信息进行处理,处理速度较快;而频域处理方法主要用于对图像的全局信息进行处理,能够更全面地分析和处理图像的频率特性。
频域分析在数字图像处理中的应用随着数字技术的不断发展,数字图像处理技术越来越成熟。
频域分析是数字图像处理中一种常用的基于时域的方法之一。
在图像处理中,频域分析可以用来分析和识别图像中的特征。
频域分析可以通过将原始图像变换为频率域图像来达到这一目的。
频域分析是一个广泛的概念,涉及到很多技术和算法。
本文将重点讨论如何利用频域分析来处理数字图像。
我们将从以下几个方面来介绍频域分析在数字图像处理中的应用。
一、基本概念频域分析是一种将信号表示为频率成分的过程。
它可以将时域信号转换为频域信号,从而实现对信号特征的识别和分析。
在数字图像处理中,频域分析的基本原理是将图像转换为频率域,以便更好地理解和处理图像。
这种转换可以使用傅里叶变换或小波变换等技术来实现。
二、频域滤波频域滤波是数字图像处理中最常用的应用之一。
它利用频率分析技术来去除图像中的噪声、增强图像的细节和特征。
频域滤波可以分为低通滤波和高通滤波两种。
低通滤波可以去除图像中的高频成分,从而平滑图像。
高通滤波可以去除图像中的低频成分,从而强调图像中的细节和特征。
这些滤波器可以通过傅里叶变换进行设计和实现。
三、频域变换频域变换可以将图像从时域转换为频率域。
这种转换可以通过傅里叶变换、小波变换和离散余弦变换等技术来实现。
这些变换可以将图像中的信号分离为不同的频率成分,从而更好地理解和处理图像。
在频域分析中,傅里叶变换和小波变换是最常用的方法。
四、特征提取频域分析可以用来提取图像中的特征。
这些特征可以包括灰度分布、纹理、形状等。
这些特征可以用来识别目标、分类和匹配。
在脸部识别和指纹识别等领域,频域分析的特征提取技术已经得到广泛应用。
结论:总之,频域分析在数字图像处理中有着广泛的应用。
通过频域分析,可以更好地理解和处理图像。
目前,各种频域分析技术正在不断发展和改进。
可以预见,随着技术的不断更新,频域分析将在数字图像处理中发挥越来越重要的作用。
1. 图像处理的主要方法分几大类?答:图字图像处理方法分为大两类:空间域处理(空域法)和变换域处理(频域法)。
空域法:直接对获取的数字图像进行处理。
频域法:对先对获取的数字图像进行正交变换,得到变换系数阵列,然后再进行处理,最后再逆变换到空间域,得到图像的处理结果2. 图像处理的主要内容是什么?答:图形数字化(图像获取):把连续图像用一组数字表示,便于用计算机分析处理。
图像变换:对图像进行正交变换,以便进行处理。
图像增强:对图像的某些特征进行强调或锐化而不增加图像的相关数据。
图像复原:去除图像中的噪声干扰和模糊,恢复图像的客观面目。
图像编码:在满足一定的图形质量要求下对图像进行编码,可以压缩表示图像的数据。
图像分析:对图像中感兴趣的目标进行检测和测量,从而获得所需的客观信息。
图像识别:找到图像的特征,以便进一步处理。
图像理解:在图像分析的基础上得出对图像内容含义的理解及解释,从而指导和规划行为。
3. 名词解释:灰度、像素、图像分辨率、图像深度、图像数据量。
答:灰度:使用黑色调表示物体,即用黑色为基准色,不同的饱和度的黑色来显示图像.像素:在卫星图像上,由卫星传感器记录下的最小的分立要素(有空间分量和谱分量两种)。
通常,表示图像的二维数组是连续的,将连续参数 x,y ,和 f 取离散值后,图像被分割成很多小的网格,每个网格即为像素 图像分辨率:指对原始图像的采样分辨率,即图像水平或垂直方向单位长度上所包含的采样点数。
单位是“像素点/单位长度”图像深度是指存储每个像素所用的位数,也用于量度图像的色彩分辨率.图像深度确定彩色图像的每个像素可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数.它决定了彩色图像中可出现的最多颜色数,或灰度图像中的最大灰度等级(图像深度:位图图像中,各像素点的亮度或色彩信息用二进制数位来表示,这一数据位的位数即为像素深度,也叫图像深度。
图像深度越深,能够表现的颜色数量越多,图像的色彩也越丰富。