初一数学定理、概念、公式
- 格式:doc
- 大小:92.00 KB
- 文档页数:12
初一数学整理公式定理分类在初一数学的学习中,公式和定理是我们解决问题的重要工具。
为了更好地掌握这些知识,让我们对初一数学中的公式定理进行一个分类整理。
一、代数部分1、有理数的运算加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;一个数同 0 相加,仍得这个数。
减法法则:减去一个数,等于加上这个数的相反数。
乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与 0 相乘,都得 0。
除法法则:除以一个不等于 0 的数,等于乘这个数的倒数。
乘方运算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
2、整式的运算合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
整式的加减:整式的加减实质上就是合并同类项。
3、一元一次方程定义:只含有一个未知数(元),未知数的次数都是 1,等号两边都是整式,这样的方程叫做一元一次方程。
等式的性质:等式两边加(或减)同一个数(或式子),结果仍相等;等式两边乘同一个数,或除以同一个不为 0 的数,结果仍相等。
解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为 1。
二、几何部分1、线段与角线段的中点:若点 M 是线段 AB 的中点,则 AM = BM = 1/2 AB 。
角平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
若 OC 是∠AOB 的平分线,则∠AOC =∠BOC = 1/2 ∠AOB 。
2、相交线与平行线对顶角相等。
邻补角互补。
垂线的性质:过一点有且只有一条直线与已知直线垂直。
平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
初一数学概念1、实数:—有理数与无理数统称为实数。
2、有理数:整数和分数统称为有理数。
3、无理数:无理数是指无限不循环小数。
4、自然数:表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。
5、数轴:规定了圆点、正方向和单位长度的直线叫做数轴。
6、相反数:符号不同的两个数互为相反数。
7、倒数:乘积是1的两个数互为倒数。
8、绝对值:数轴上表示数a的点与圆点的距离称为a的绝对值。
一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。
数学定理公式1、有理数的运算法则⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
⑵减法法则:减去一个数,等于加上这个数的相反数。
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
2、角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。
一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。
邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。
二、对顶角:是两条直线相交形成的。
两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。
对顶角的性质:对顶角相等。
三、垂直1、垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直。
其中一条叫做另一条的垂线,它们的交点叫做垂足。
记做a⊥b垂直是相交的一种特殊情形。
2、垂线的性质:①过一点有且只有一条直线与已知直线垂直;②连接直线外一点与直线上各点的所有线段中,垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
初一到初三数学公式大全总结1点的定理:过两点有且只有一条直线;两点之间线段最短角的定理:同角或等角的补角相等;同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直;直线外一点与直线上各点连接的所有线段中,垂线段最短2平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补3定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°4定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等;有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等5定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上;角的平分线是到角的两边距离相等的所有点的集合6等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边;等腰三角形顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)7定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上;线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称8定理:在直角三角形中,如果一个锐角等于30°那它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形9定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角和等于(n-2)×180°推论:任意多边的外角和等于360°10平行四边形性质定理:1.平行四边形的对角相等2.平行四边形的对边相等3.平行四边形的对角线互相平分推论:夹在两条平行线间的平行线段相等平行四边形判定定理1.两组对角分别相等的四边形是平行四边形2.两组对边分别相等的四边形是平行四边形 3.对角线互相平分的四边形是平行四边形4.一组对边平行相等的四边形是平行四边形11矩形性质定理:矩形的四个角都是直角;矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形12菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形13正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角14定理:关于中心对称的两个图形是全等的;关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称15等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1. 在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边16三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半:L=(a+b)÷2S=L×h17相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理:1. 两角对应相等,两三角形相似(ASA)2. 两边对应成比例且夹角相等,两三角形相似(SAS)3. 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理3:三边对应成比例,两三角形相似(SSS)相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理:1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比2.相似三角形周长的比等于相似比3.相似三角形面积的比等于相似比的平方18定理1:任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值定理2:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值19定理:过不共线的三个点,可以作且只可以作一个圆;垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧定理3:1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等 2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线3.圆的切线垂直经过切点的半径4.三角形的三个内角平分线交于一点,这点是三角形的内心5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 6.圆的外切四边形的两组对边的和相等7.如果四边形两组对边的和相等,那么它必有内切圆8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等20比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b。
初一数学丨数学重要的定义、定理、公式、方法整理有理数1.1正数与负数正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
1.2有理数1、有理数:整数和分数统称有理数。
2、数轴:通常用一条直线上的点表示数,这条直线叫数轴;所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
4、绝对值:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
1.3有理数的加减法有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数4、加法交换律:a+b=b+a5、加法结合律:a+b+c=a+(b+c)=(a+c)+b有理数减法法则:减去一个数,等于加这个数的相反数。
1.4有理数的乘除法1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;乘法交换律:a*b=b*a结合律:a*b*c=a*(b*c)分配律:a(b+c)=ab+ac2、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
1.5有理数的乘方1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。
在a的n次方中,a叫做底数,n叫做指数。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何次幂都是0。
2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
初一初所有数学公式数学公式1、正弦定理:三角形的两条相邻的边的长度都满足正弦定理,即:a/sin A = b/sin B = c/sin C2、余弦定理:三角形的两条相邻边的长度都满足余弦定理,即:a^2=b^2+c^2-2bc*cosA3、勾股定理:三角形的三条边都满足勾股定理,即:a^2+b^2=c^24、角平分线定理:所围四边形中,对角线的两条边的中点都满足角平分线定理,即:AB+BC=AC5、三角形统计定理:在三角形内任意点,B、C、D满足三角形统计定理,即:a AB+b BC+c CD=360°6、三角形四边形性质定理:在任意图形中,其内任意一个四边形,满足三角形四边形性质定理,即:四边形的对角相等。
7、正方形性质定理:长方形内所有边长都相等,满足正方形性质定理,即:对角长相等,且两个对角的中点就是中心。
8、平面空间三条边的定理:三角形的三条边都满足平面空间三条边的定理,即:a*b=c^29、梯形定理:对于任意三点构成的梯形,其内任意一点满足梯形定理,即:同侧两边的大边等于另一侧的差边之和。
10、勾股边长定理:对于一个等腰三角形,其内任意一点满足勾股边长定理,即:二边之和等于斜边的平方。
11、自然斜率定理:对于一条直线,其内任意一点满足自然斜率定理,即:该直线上所有点都具有相同的斜率。
12、极点定理:对于一个抛物线,其内任意一点满足极点定理,即:抛物线的形状取决与它的极点的值(x及y坐标的大小)。
13、椭圆定理:对于一个椭圆,其内任意一点满足椭圆定理,即:椭圆的长轴rao= 椭圆的短轴2a和对角线2c 的差值之和。
14、正比定理:对于两个线段,其内任意一点满足正比定理,即:两个獭段的长度比例相同。
初一数学定理、概念、公式一、有理数(一)有理数1、有理数的分类:按有理数的定义分类:按有理数的性质符号分类:正整数正整数整数零正有理数有理数负整数正分数正分数有理数分数负整数负整数负有理数负分数2、正数和负数用来表示具有相反意义的数。
(二)数轴1、定义:规定了原点、正方向和单位长度的直线叫做数轴。
2、数轴的三要素是:原点、正方向、单位长度。
(三)相反数1、定义:只有符号不同的两个数互为相反数。
2、几何定义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数。
3、代数定义:只有符号不同的两个数叫做互为相反数,的相反数是。
(四)绝对值1、定义:在数轴上表示数a的点与原点的距离叫做数a 的绝对值。
2、几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。
3、代数定义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,的绝对值是。
a (a>0)。
即关于任何有理数a,都有|a|=(a=)–a(a<0)4、绝对值的计算规律:(1)互为相反数的两个数的绝对值相等.(2)若|a|=|b|,则a=b或a=-b.(3)若|a|+|b|=,则|a|=,且|b|=0.相关结论:(1)的相反数是它本身。
(2)非负数的绝对值是它本身。
(3)非正数的绝对值是它的相反数。
(4)绝对值最小的数是。
(5)互为相反数的两个数的绝对值相等。
(6)任何数的绝对值都是它的正数或,即|a|≥。
1(五)倒数1、定义:乘积为“1”的两个数互为倒数。
2、求法:颠倒这个数的分子和分母。
13、a(a≠)的倒数是.a有理数的运算1、有理数的加法法则:1、同号两数相加,取相同的符号,并把绝对值相加;2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、一个数同零相加,仍得这个数;4、两个互为相反数的两个数相加得。
2、有理数的减法法则:减去一个数,即是加上这个数的相反数。
3、有理数的乘法法则:1、两数相乘,同号得正,异号得负,并把绝对值相乘;2、任何数同相乘,都得;3、乘积是1的两个数互为倒数。
初中数学常用的概念、公式和定理整数(包括:正整数、0、负整数)和分数(包括:有限小和无限环循小数)都是有理数.如:-3,-,0.231,0.737373…,,.无限不环循小数叫做无理数..如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.1.绝对值:a≥0丨a丨=a;a≤0-丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3.一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4.把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5.被开方数的小数点每移动2位,算术平方根的小数点就向相同方向移动1位;被开方数的小数点每移动3位,立方根的小数点就向相同方向移动1位.如:已知=0.4858,则-=48.58;已知=1.558,则-=0.1588.6.整式的乘除法:①几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除.②单项式乘以多项式,用单项式乘以多项式的每一个项.③多项式乘以多项式,用一个多项式的每一项分别乘以另一个多项式的每一项.④多项式除以单项式,将多项式的每一项分别除以这个单项式.7.幂的运算性质:①a m×a n=a m+n. ②a m÷a n=a m-n.③(a m)n=a mn. ④(ab)n=a n b n.⑤()n=n. ⑥a-n=n,特别:()-n=()n. ⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=(-)2=,(-3.14)0=1,(--)0=1.8.乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2. ②(a±b)2=a2±2ab+b2. ③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab, (a-b)2=(a+b)2-4ab.9.选择因式分解方法的原则是:先看能否提公因式.在没有公因式的情况下:二项式用平方-差公式或立方和差公式,三项式用十字相乘法(特殊的用完全平方公式),三项以上用分组分解法.注意:因式分解要进行到每一个多项式因式都不能再分解为止.10.分式的运算:乘除法要先把分子、分母都分解因式,并颠倒除式,约分后相乘;加减法应先把分母分解因式,再通分(不能去分母).注意:结果要化为最简分式.11.二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.12.一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=,其中=b2-4ac叫做根的判别式.当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有个相等的实数根;当Δ<0时,方程没有实数根.注意:当Δ≥0时,方程有实数根.③若方程有两个实数根x1和x2,则x1+x2=-,x1x2=,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).④以a和b为根的一元二次方程是x2-(a+b)x+ab=0.13.解分式方程(去分母或换元)和无理方程(两边平方或换元)必须检验.形如:-的方程组,用代入法解;形如:的方程组,先把一个方程分解为两个一次方程,再把这两个方程分别与另一个方程组合成两个方程组,再用代入法分别解这两个方程组.14.不等式两边都乘以或除以同一个负数,不等号要改变方向.15.平面直角坐标系:①各限象内点的坐标如图所示.②横轴(x轴)上的点,纵坐标是0;纵轴(y轴)上的点,横坐标是0.③关于横轴对称的两个点,横坐标相同(纵坐标互为相反数);关于纵轴对称的两个点,纵坐标相同(横坐标互为相反数);关于原点对称的两个点,横坐标、纵坐标都互为相反数.16.一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx又叫做正比例函数(y与x成正比例),图象必过原点.17.反比例函数y=(k ≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(从左向右降);当k<0时,双曲线在二、四象限(从左向右上升).因此,它的增减性与一次函数相反. 18.二次函数y=ax 2+bx+c(a ≠0)的图象叫做抛物线(c 是抛物线与y 轴的交点的纵坐标).①a>0时,开口向上;a<0时,开口向下.②顶点坐标是(-,),对称轴是直线x=-.特别:抛物线y=a(x -h)2+k 的顶点坐标是(h,k),对称轴是直线x=h.注意:求解析式的设法 ①已知三个点的坐标,则设为一般形式y=ax 2+bx+c;②已知顶点坐标(h,k),则设为顶点式y=a(x -h)2+k;③已知抛物线与x 轴的两个交点坐标(x 1,0)和(x 2,0),则设为交点式y=a(x -x 1)(x -x 2).19.抛物线与x 轴的位置关系: 对于抛物线y=ax 2+bx+c ①Δ<0时,它与x 没有交点.②Δ=0时,它与x 轴只有一个交点(与x 轴相切).③Δ>0时,它与x 轴有两个交点(x 1,0)和(x 2,0),其中x 1和x 2是方程ax 2+bx+c=0的两个根.20.统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n 个数x 1,x 2,…,x n ,那么:①平均数=(x 1+x 2+…+x n ).②方差S 2=[(x 1-)2+(x 2-)2+…+(x n-)2.(是整数时用)③S 2=[(x 12+x 22+…+x n 2)-n(-)2].注:各数据的数位较少或平均数是分数时,用此公式.④若将n 个数x 1,x 2,…,x n 各减去一个适当的数a,得到一组新数x 1,,x 2,,…,x n ,,那么原来那组数的方差S 2=这组新数的方差,平均数=a+,.方差越大,这组数据的波动就越大.通常用样-本方差去估计总体方差,用样本平均数去估计总体平均数.方差的算术平方根叫做标准差 (3)频率:①把一组数分成若干个小组,组距=(最大值-最小值)÷组数(求组数时,用收尾法取整数),这时,落在某小组内的数据的个数叫做这组的频数,每一小组的频数与数据总个数的比值叫做这一小组的频率.因此,各组的频率的和等于1.在频率分布直方图中,各小长方形的面积等于相应各组的频率.各小长方形的面积的和等于1.21.锐角三角函数:①设∠A 是Rt Δ的任一锐角,则∠A 的正弦:sinA=,∠A 的余弦:cosA=,∠A 的正切:tanA=,∠A 的余切:cotA=. 并且sinA=cosB,tgA=ctgB,-tgActgA=1,-sin 2A+cos 2A=1.0<sinA<1,-0<cosA<1,tgA>0,ctgA>0.∠A越大,∠A 的正弦和正切值越大,余弦和余切值反而越小. ②余角公式:sin(900-A)=cosA,cos(900-A)=sinA,-tg(900-A)=ctgA,ctg(900-A)=-tgA.③特殊角的三角函数值:-sin300=cos600=,sin450=cos450=-,sin600=cos300=,sin00=cos900=0,sin900=cos00=1,tg300=ctg600=,tg450=ctg450=1-,tg600=ctg300=-,tg00=ctg900=0. ④斜坡的坡度i==.设坡角为α,则i=tg α=.22.三角形:(1)在一个三角形中:等边对等角,等角对等边.(2).证明两个三再形全等的方法有:SAS,AAS,ASA,SSS,HL.(3)在Rt Δ中,斜边上的中线等于斜边的一半.(4)证明一个三角形是直角三角形的方法有:①先证明有一个角等于900.②先证明最长边的平方等于另两边的平方和.③先证明一条边的中线等于这条边的一半.(5)三角形的中位线平行于笫三边,并且等于笫三边的一半. (6)等腰三角形中,顶角的平分线与底边上的中线和高互相重合.23.四边形:(1)n 边形的内角和等于(n -2)1800,外角和等于3600. (2)平行四边形的性质:对边平行且相等;对角相等;邻角互补;对角线互相平分.(3)证明一个四边形是平行四边形的方法有:①先证两组对边平行.②先证两组对边相等. ③先证一组对边平行且相等.④先证两条对角线互相平分.⑤先证两组对角分别相等.(4)矩形的对角线相等且互相平分;菱形的对角线互相垂直平分,并且四条边相等.(5)证明一个四边形是矩形的方法有:①先证明它有三个角是直角.②先证它是平行四边形,再证它有一个角是直角或对角线相等.(6)证明一个四边形是菱形的方法有:①先证明它的四条边相等.②先证它是平行四边形,再证它有一组邻边相等或对角线互相垂直.(7)正方形既是矩形又是菱形,它具有矩形和菱形的所有性质.(8)梯形的中位线平行于两底并且等于两底之和的一半.(9)轴对称图形有:线段,角,等腰三角形,等腰梯形,矩形,菱形,正方形,正多边形,圆.中心对称图形有:线段,平行四边形,矩形,菱形,正方形,边数是偶数的正多边形,圆.24.证明两个三角形相似的方法有:①先证两组对应角相等.②先证两边对应成比例并且夹角相等.③先证三边对应成比例.④先证斜边和一条直角边对应成比例.相似三角形的性质:对应高的比,对应角平分线的比,对应中线的比,周长的比,都等于相似比.面积的比等于相似比的平方.25.平行切割定理:①如图1,DE∥BC=.②如图2,若AB∥CD∥EF则=-,=.26.射影定理:如图3,ΔABC中,若∠ACB=900,CD⊥AB,则:①AC2=AD·AB.②-BC2=BD·BA.③AD2=DA·DB.27.圆的有关性质:(1)垂径定理:如果一条直线具备以下五个性质中的任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径.(2)两条平行弦所夹的弧相等.(3)在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它所对应的其余三组量都分别相等.(4)圆心角的度数等于它所对的弧的度数.(5)一条弧所对的圆周角等于它所对的圆心角的一半.(6)圆周角等于它所对的弧的度数的一半.(7)弦切角等于它所夹的弧的度数的一半.(8)同弧或等弧所对的圆周角相等.(9)在同圆或等圆中,相等的圆周角所对的弧相等.(10).900的圆周角所对的弦是直径.(11)圆内接四边形的对角互补,外角等于它的内对角.28.直线和圆的位置关系:(1)若⊙O的半径为r,圆心到直线L的距离为d,则:①d<r直线L和⊙O相交.②d=r直线L和⊙O相切.③d>r-直线L和⊙O相离.(2)切线的判定定理:经过半径外端并且垂直这条半径的直线是圆的切线.反之:切线垂直过切点的半径.(3)切线长定理,弦切角定理,相交弦定理及其推论,切割线定理及其推论.(4)三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角平分线的交点.三角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点.(5)RtΔ的内切圆的半径R内=-,任意多边形的内切圆的半径R内=.(6)圆外切四边形的一组对边的和等于另一组对边的和.29.圆和圆的位置关系:(1)设两圆半径为R和r,圆心距为d,则:①d>R+r两圆外离.②d=R+r两圆外切.③R-r<d<R+r(R≥r)两圆相交.④d=R-r两圆内切.⑤d<R-r两圆内含.30.圆中常作的辅助线:(1)两圆相交,常作公共弦,连心线.(2)两圆相切,常作公切线,连心线.(3)已知切线,常过切点作半径.(4)已知直径,常作直径所对的圆周角.(5)求解有关弦的问题,作弦心距.(6)弧的中点常和圆心连结.31.各顶点等分圆周正n边形各边相等,各角相等,且每个内角=度,中心角=外角=度.32.面积公式:①S正Δ=×(边长)2.②S平行四边形=底×高.③S菱形=底×高=×(对角线的积)④S圆=πR2.⑤C圆周长=2πR.⑥弧长L=.⑦S扇形==LR.⑧S圆柱侧=底面周长×高.⑨S圆锥侧=×底面周长×母线=πrR,并且2πr=(如上图).。
初一初中数学常用公式与定理数学作为一门基础学科,在初一和初中阶段,对于学生的发展至关重要。
掌握数学常用公式与定理,不仅可以提高数学分析和解决问题的能力,还有助于培养逻辑思维和数学思维能力。
下面是一些初一和初中数学常用的公式与定理以及它们的应用。
1. 代数运算公式代数运算是数学的基础,掌握一些常用的代数运算公式对于解决复杂的代数问题非常有帮助。
下面是一些常用的代数运算公式:1.1 加法和减法公式加法公式:(a+b)^2 = a^2 + 2ab + b^2减法公式:(a-b)^2 = a^2 - 2ab + b^21.2 乘法公式(a+b)(a-b) = a^2 - b^21.3 平方差公式(a+b)^2 - (a-b)^2 = 4ab2. 几何定理几何是数学的重要分支之一,许多几何定理可以帮助我们理解图形的性质和解决几何问题。
下面是一些初一和初中常用的几何定理以及它们的应用:2.1 皮亚诺定理皮亚诺定理表明,在一个平面上的n个点中,任意两点之间的连线的条数等于C(n, 2),即C(n, 2) = n(n-1)/2。
这个定理可以应用于计算几何图形中的线段数量。
2.2 正弦定理正弦定理表明,在一个三角形ABC中,三个内角A、B、C的正弦值与对边a、b、c之间的关系为:sinA/a = sinB/b = sinC/c。
这个定理可以帮助我们计算三角形的边长或角度。
2.3 余弦定理余弦定理表明,在一个三角形ABC中,三个内角A、B、C的余弦值与对边a、b、c之间的关系为:cosA = (b^2 + c^2 - a^2)/(2bc)。
这个定理可以帮助我们计算三角形的边长或角度。
3. 概率与统计概率与统计是数学中的实用工具,在解决排列组合、概率等问题时起着重要作用。
下面是一些初一和初中常用的概率与统计公式:3.1 排列公式排列公式表示从n个不同元素中选取r个元素进行排列的总数,表示为P(n, r) = n!/(n-r)!。
一、初一数学公式1.1 二次根式的性质① 非负性:若a≥0,则√a≥0② 开平方的乘法性:√a×√b=√(a×b)③ 开平方的除法性:√(a/b)=√a/√b (b>0)1.2 整式化简公式①(a+b)²=a²+2ab+b²②(a-b)²=a²-2ab+b²③(a+b)×(a-b)=a²-b²1.3 分式的运算① 加法:a/b+c/d=(ad+bc)/bd② 减法:a/b-c/d=(ad-bc)/bd③ 乘法:a/b×c/d=ac/bd④ 除法:a/b÷c/d=ad/bc2.1 二次函数① 一般式:y=ax²+bx+c (a≠0)② 顶点坐标:( -b/2a , c-b²/4a )③ 判别式:Δ=b²-4ac若Δ>0,则二次函数有两个不同的实根若Δ=0,则二次函数有两个相等的实根若Δ<0,则二次函数无实根2.2 三角函数① 正弦函数:y=Asin(Bx-C)+D② 余弦函数:y=Acos(Bx-C)+D③ 正切函数:y=Atan(Bx-C)+D2.3 同底数幂的运算aⁿ×aᵐ=aⁿᵐaⁿ÷aᵐ=aⁿ⁻ᵐ(a≠0)三、初三数学公式3.1 等差数列① 通项公式:aₙ=a₁+(n-1)d② 前n项和公式:Sₙ=n/2(a₁+aₙ)3.2 三角恒等变换公式① 和差化积公式:sinα±sinβ=2sin(±(α±β)/2)cos(∓(α±β)/2)② 二倍角公式:sin2α=2sinαcosα, cos2α=cos²α-sin²α3.3 平面几何图形① 三角形面积公式:S=(1/2)×底×高② 圆周长公式:C=2πr, 圆面积公式:S=πr²初中数学公式包括初一到初三阶段的各类公式,涵盖了整式化简、二次函数、三角函数、等差数列、三角恒等变换、平面几何图形等内容。
七年级数学必背公式进入初中,尤其是七年级,学生们面临的难关非常多,其中最重要的就是数学这门学科的难关。
这门学科的关键是要掌握大量的数学公式,而以下就是七年级学生必须背诵的数学公式,希望能够学会记忆和应用。
一.有关不等式的公式1.命题:若a>b,则get a≥b2.互补定理:若a>b则1/a<1/b3.比例定理:若a>b, c>d,ac>bd4.比值定理:若a>b, c>d,a/c>b/d二.有关方程的公式1.一元一次方程的解法:解a=b的方程,令b-a=02.一元二次方程的解法:解方程ax2+bx+c=0,令d=b2-4aca.若d=0,则x1=x2= -b/2ab.若d>0,则x1=(-b+√d)/2a, x2=(-b-√d)/2ac.若d<0,则无解三.有关三角形公式1.三角函数定义:若A是∠BAC的内角,则sinA=b/c, cosA=a/c, tanA=b/a2.勾股定理:若∠ABC中,b2+c2=a2,则ABC是直角三角形3.余弦定理:若a,b,c分别是ABC的三边,则a2=b2+c2 -2bc cosA4.正弦定理:若a,b,c分别是ABC的三边,则sinA/a=sinB/b=sinC/c四.有关平面几何公式1.长度定义:在平面上,AB表示点A和点B之间的线段,长度|AB|=点A到点B的距离2.1000法则:在直角三角形ABC中,若a=1000,b=45°,则cosC=1/2,c=1000/23.角的分解定理:若ABC是一个任意角,则ABC=AO1=AO2,其中AO1和AO2是AB、AC的夹角4.等腰三角形定理:若a、b、c是等腰三角形的三边,则ab=2bc五.有关圆的公式1.圆的定义:圆是一种特殊的椭圆,它的中心是一点O,它的边界是一系列点,使得每个点到圆心O的距离都相等2.面积公式:面积S=πr2,其中r是圆的半径3.圆弧长度:弧长S=2πr,其中r是圆的半径4.圆周率定义:圆周率π,其定义为圆的半径长度和圆的圆周长之比六.其他公式1.二次根式:若a≠0,且ax2+bx+c=0,则x1=(-b+√b2-4ac)/2a, x2=(-b-√b2-4ac)/2a2.假设定理:若a1+a2+…+an=0,则a1=a2=…=an=03.连分式的乘除:若A/B=a/b,C/D=c/d,则(A/B)(C/D)=(ac)/(bd)4.算术几何等式:若a≠0,且(a+b)(a-b)=a2-b2,则(a+b)(1+b/a)=1+b以上就是七年级学生必须背诵的数学公式,但是要想掌握,学生们只能多加练习,熟记这些公式,要将它们应用到实际操作中去,从而提高自己的数学能力。
公式▲乘法定律:乘法交换律:a×b = b×a乘法结合律:a×b×c = a×(b×c)乘法分配律:a×c + b×c=c×(a + b) a×c - b×c=c×(a - b)▲除法性质:a÷b÷c = a÷(b×c)▲减法性质:a –b - c = a - (b + c) ▲解方程定律:◇加数 +加数= 和;加数= 和–另一个加数.◇被减数–减数= 差;被减数=差+减数;减数=被减数–差.◇因数×因数= 积;因数= 积÷另一个因数.◇被除数÷除数= 商;被除数=商×除数;除数=被除数÷商.◆行程问题:路程=速度×时间;时间=路程÷速度;速度=路程÷时间.◆相遇问题:相遇路程=(甲速度+乙速度)×相遇时间;相遇时间=相遇路程÷(甲速度+乙速度);甲速度=相遇路程÷相遇时间–乙速度;乙速度=相遇路程÷相遇时间–甲速度.◆工程问题:工作总量=工作效率×工作时间;工作时间=工作总量÷工作效率;工作效率=工作总量÷工作时间;工作总量=计划工作效率×计划工作时间;工作总量=实际工作效率×实际工作时间;实际工作时间=工作总量÷实际工作效率;实际工作效率=工作总量÷实际工作时间;◆买卖问题:总金额=单价×数量;数量=总金额÷单价;单价=总金额÷数量.6年级(1)S=nR2-nr2或S=n(R2-r2)(2)(a-b)除以b*100%或(b-a)除以b*100%(3)出勤人数除以总人数(4)b*(1+C%)或b*(1-C%)(5)利息=本金*利率*时间,利息税=本金*利率*时间*(1-5%)(6)a除以(1+C%)或a除以(1-C%)7年级常用数学公式表:公式表达式平方差 a2-b2=(a+b)(a-b)和差的平方 (a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab和差的立方 a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py常用数学公式表:几何图形公式直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式l=a*r (a是圆心角的弧度数r>0) 扇形面积公式s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h柱体体积公式 V=s*h 圆柱体 V=pi*r2h斜棱柱体积V=S'L (S'是直截面面积,L是侧棱长) 注:pi=3.14159265358979……概念一、有理数0既不是正数,也不是负数。
初一数学知识点公式定理大全以下是初一数学常见的知识点、公式和定理:
1. 整数的四则运算:
- 加法:a + b = b + a
- 减法:a - b ≠ b - a
- 乘法:a × b = b × a
- 除法:a ÷ b ≠ b ÷ a
2. 分数的四则运算:
- 加法:a/b + c/d = (ad + bc) / bd
- 减法:a/b - c/d = (ad - bc) / bd
- 乘法:a/b × c/d = ac / bd
- 除法:(a/b) ÷ (c/d) = ad / bc
3. 小数与分数之间的互相转换:
- 小数转分数:如0.25 = 25/100 = 1/4
- 分数转小数:如3/5 = 0.6
4. 比例与比例的应用:
- 比例关系:a:b = c:d,表示a与b的比例等于c与d的比例
- 等比例:当两个比例相等时,称为等比例
- 比例的性质:比例的两个对角线乘积相等,即ad = bc
5. 百分数与百分比:
- 百分数表示:百分数 = 实际数值/总数值× 100%
- 百分比的应用:如计算折扣、利率、增长率等
6. 一元一次方程:
- 方程的定义:含有未知数的等式称为方程
- 解方程:求出方程中未知数的值
- 解一元一次方程:如ax + b = 0,则x = -b/a
7. 图形的知识:
- 直线、射线、线段的概念
- 平行线与垂直线的性质
- 四边形:矩形、正方形、长方形、平行四边形、梯形、菱形等基本性质以上是初一数学常见的知识点、公式和定理,希望对你有帮助!。
从初一到高三的数学公式、定理
初一:
1. 有理数的加法法则
2. 有理数的减法法则
3. 有理数的乘法法则
4. 有理数的除法法则
5. 平方差公式:a^2 - b^2 = (a + b)(a - b)
6. 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2, a^2 - 2ab + b^2 = (a - b)^2
7. 合并同类项法则
8. 去括号法则
9. 移项法则
10. 一元一次方程解法
初二:
1. 角的平分线性质
2. 等腰三角形的性质和判定
3. 等腰梯形的性质和判定
4. 直角三角形全等的判定
5. 勾股定理及其逆定理
6. 一次函数的图像和性质
7. 二次函数的图像和性质
8. 平行四边形的性质和判定
9. 多边形的内角和和外角和公式
10. 全等三角形的判定和性质
初三:
1. 锐角三角函数定义
2. 解直角三角形
3. 圆的性质和判定
4. 圆周角定理
5. 切线的判定和性质
6. 正多边形的性质和判定
7. 二次函数与一元二次方程的关系
8. 二次函数的判别式Δ=b²-4ac的求法与根的情况的判定。
初⼀数学知识点公式定理⼤全 初中数学是由简单明了的事项⼀步⼀步地发展⽽来,所以,只要学习数学的⼈⽼⽼实实地、⼀步⼀步地去理解,并同时记住其要点,以备以后之需⽤,就⼀定能理解其全部内容。
⼩编在此整理了初⼀数学知识点公式定理⼤全,希望能帮助到您。
数学公式定理⼤全 1 过两点有且只有⼀条直线 2 两点之间线段最短 3 同⾓或等⾓的补⾓相等 4 同⾓或等⾓的余⾓相等 5 过⼀点有且只有⼀条直线和已知直线垂直 6 直线外⼀点与直线上各点连接的所有线段中,垂线段最短 7 平⾏公理经过直线外⼀点,有且只有⼀条直线与这条直线平⾏ 8 如果两条直线都和第三条直线平⾏,这两条直线也互相平⾏ 9 同位⾓相等,两直线平⾏ 10 内错⾓相等,两直线平⾏ 11 同旁内⾓互补,两直线平⾏ 12 两直线平⾏,同位⾓相等 13 两直线平⾏,内错⾓相等 14 两直线平⾏,同旁内⾓互补 15 定理三⾓形两边的和⼤于第三边 16 推论三⾓形两边的差⼩于第三边 17 三⾓形内⾓和定理三⾓形三个内⾓的和等于180° 18 推论1 直⾓三⾓形的两个锐⾓互余 19 推论2 三⾓形的⼀个外⾓等于和它不相邻的两个内⾓的和 20 推论3 三⾓形的⼀个外⾓⼤于任何⼀个和它不相邻的内⾓ 21 全等三⾓形的对应边、对应⾓相等 22 边⾓边公理(SAS) 有两边和它们的夹⾓对应相等的两个三⾓形全等 23 ⾓边⾓公理( ASA)有两⾓和它们的夹边对应相等的两个三⾓形全等 24 推论(AAS) 有两⾓和其中⼀⾓的对边对应相等的两个三⾓形全等 25 边边边公理(SSS) 有三边对应相等的两个三⾓形全等 26 斜边、直⾓边公理(HL) 有斜边和⼀条直⾓边对应相等的两个直⾓三⾓形全等 27 定理1 在⾓的平分线上的点到这个⾓的两边的距离相等 28 定理2 到⼀个⾓的两边的距离相同的点,在这个⾓的平分线上 29 ⾓的平分线是到⾓的两边距离相等的所有点的集合 30 等腰三⾓形的性质定理等腰三⾓形的两个底⾓相等 (即等边对等⾓) 31 推论1 等腰三⾓形顶⾓的平分线平分底边并且垂直于底边 32 等腰三⾓形的顶⾓平分线、底边上的中线和底边上的⾼互相重合 33 推论3 等边三⾓形的各⾓都相等,并且每⼀个⾓都等于60° 34 等腰三⾓形的判定定理如果⼀个三⾓形有两个⾓相等,那么这两个⾓所对的边也相等(等⾓对等边) 35 推论1 三个⾓都相等的三⾓形是等边三⾓形 36 推论 2 有⼀个⾓等于60°的等腰三⾓形是等边三⾓形 37 在直⾓三⾓形中,如果⼀个锐⾓等于30°那么它所对的直⾓边等于斜边的⼀半 38 直⾓三⾓形斜边上的中线等于斜边上的⼀半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和⼀条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45 逆定理如果两个图形的对应点连线被同⼀条直线垂直平分,那么这两个图形关于这条直线对称 46 勾股定理直⾓三⾓形两直⾓边a、b的平⽅和、等于斜边c的平⽅,即a^2+b^2=c^2 47 勾股定理的逆定理如果三⾓形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三⾓形是直⾓三⾓形 48 定理四边形的内⾓和等于360° 49 四边形的外⾓和等于360° 50 多边形内⾓和定理 n边形的内⾓的和等于(n-2)×180° 51 推论任意多边的外⾓和等于360° 52 平⾏四边形性质定理1 平⾏四边形的对⾓相等 53 平⾏四边形性质定理2 平⾏四边形的对边相等 54 推论夹在两条平⾏线间的平⾏线段相等 55 平⾏四边形性质定理3 平⾏四边形的对⾓线互相平分 56 平⾏四边形判定定理1 两组对⾓分别相等的四边形是平⾏四边形 57 平⾏四边形判定定理2 两组对边分别相等的四边形是平⾏四边形 58 平⾏四边形判定定理3 对⾓线互相平分的四边形是平⾏四边形 59 平⾏四边形判定定理4 ⼀组对边平⾏相等的四边形是平⾏四边形 60 矩形性质定理1 矩形的四个⾓都是直⾓ 61 矩形性质定理2 矩形的对⾓线相等 62 矩形判定定理1 有三个⾓是直⾓的四边形是矩形 63 矩形判定定理2 对⾓线相等的平⾏四边形是矩形 64 菱形性质定理1 菱形的四条边都相等 65 菱形性质定理2 菱形的对⾓线互相垂直,并且每⼀条对⾓线平分⼀组对⾓ 66 菱形⾯积=对⾓线乘积的⼀半,即S=(a×b)÷2 67 菱形判定定理1 四边都相等的四边形是菱形 68 菱形判定定理2 对⾓线互相垂直的平⾏四边形是菱形 69 正⽅形性质定理1 正⽅形的四个⾓都是直⾓,四条边都相等 70 正⽅形性质定理2正⽅形的两条对⾓线相等,并且互相垂直平分,每条对⾓线平分⼀组对⾓ 71 定理1 关于中⼼对称的两个图形是全等的 72 定理2 关于中⼼对称的两个图形,对称点连线都经过对称中⼼,并且被对称中⼼平分73逆定理如果两个图形的对应点连线都经过某⼀点,并且被这⼀点平分,那么这两个图形关于这⼀点对称74等腰梯形性质定理等腰梯形在同⼀底上的两个⾓相等 75 等腰梯形的两条对⾓线相等 76 等腰梯形判定定理在同⼀底上的两个⾓相等的梯形是等腰梯形 77 对⾓线相等的梯形是等腰梯形 78 平⾏线等分线段定理如果⼀组平⾏线在⼀条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形⼀腰的中点与底平⾏的直线,必平分另⼀腰 80 推论2 经过三⾓形⼀边的中点与另⼀边平⾏的直线,必平分第三边 81 三⾓形中位线定理三⾓形的中位线平⾏于第三边,并且等于它的⼀半 82 梯形中位线定理梯形的中位线平⾏于两底,并且等于两底和的⼀半 L=(a+b)÷2 S=L×h 83 (1)⽐例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合⽐性质如果a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等⽐性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b 86 平⾏线分线段成⽐例定理三条平⾏线截两条直线,所得的对应线段成⽐例 87 推论平⾏于三⾓形⼀边的直线截其他两边(或两边的延长线),所得的对应线段成⽐例 88 定理如果⼀条直线截三⾓形的两边(或两边的延长线)所得的对应线段成⽐例,那么这条直线平⾏于三⾓形的第三边 89 平⾏于三⾓形的⼀边,并且和其他两边相交的直线,所截得的三⾓形的三边与原三⾓形三边对应成⽐例 90 定理平⾏于三⾓形⼀边的直线和其他两边(或两边的延长线)相交,所构成的三⾓形与原三⾓形相似 91 相似三⾓形判定定理1 两⾓对应相等,两三⾓形相似(ASA) 92 直⾓三⾓形被斜边上的⾼分成的两个直⾓三⾓形和原三⾓形相似 93 判定定理2 两边对应成⽐例且夹⾓相等,两三⾓形相似(SAS) 94 判定定理3 三边对应成⽐例,两三⾓形相似(SSS) 95 定理如果⼀个直⾓三⾓形的斜边和⼀条直⾓边与另⼀个直⾓三⾓形的斜边和⼀条直⾓边对应成⽐例,那么这两个直⾓三⾓形相似 96 性质定理1 相似三⾓形对应⾼的⽐,对应中线的⽐与对应⾓平分线的⽐都等于相似⽐ 97 性质定理2 相似三⾓形周长的⽐等于相似⽐ 98 性质定理3 相似三⾓形⾯积的⽐等于相似⽐的平⽅ 99 任意锐⾓的正弦值等于它的余⾓的余弦值,任意锐⾓的余弦值等于它的余⾓的正弦值 100 任意锐⾓的正切值等于它的余⾓的余切值,任意锐⾓的余切值等于它的余⾓的正切值 101 圆是定点的距离等于定长的点的集合 102 圆的内部可以看作是圆⼼的距离⼩于半径的点的集合 103 圆的外部可以看作是圆⼼的距离⼤于半径的点的集合 104 同圆或等圆的半径相等 105 到定点的距离等于定长的点的轨迹,是以定点为圆⼼,定长为半径的圆 106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107 到已知⾓的两边距离相等的点的轨迹,是这个⾓的平分线 108 到两条平⾏线距离相等的点的轨迹,是和这两条平⾏线平⾏且距离相等的⼀条直线 109 定理不在同⼀直线上的三点确定⼀个圆。
初一上册数学必背公式1. 直角三角形的基本关系勾股定理:直角三角形中,斜边的平方等于两个直角边的平方和。
对于一个直角三角形,它的两个直角边分别是a和b,斜边的长度为c,则勾股定理可以表示为:c^2 = a^2 + b^2正弦定理:对于任意一个三角形ABC,其三边分别为a、b、c,且ABC中∠A对应边a、∠B对应边b、∠C对应边c,则有以下关系成立:a / sin(A) =b / sin(B) =c / sin(C)余弦定理:对于任意一个三角形ABC,其三边分别为a、b、c,且ABC中∠A对应边a、∠B对应边b、∠C对应边c,则有以下关系成立:c^2 = a^2 + b^2 - 2ab * cos(C)2. 平面直角坐标系公式两点间距离公式:在平面直角坐标系中,已知两点的坐标为(A1, A2)和(B1, B2),则两点间的距离为:AB = sqrt((A1 - B1)^2 + (A2 - B2)^2)中点公式:在平面直角坐标系中,已知线段的两个端点坐标为(A1, A2)和(B1,B2),则线段的中点坐标为:M = ((A1 + B1) / 2, (A2 + B2) / 2)斜率公式:在平面直角坐标系中,已知直线上两点的坐标为(A1, A2)和(B1, B2),则直线的斜率为:k = (A2 - B2) / (A1 - B1)3. 相交线性质垂直直角交线性质:在平面直角坐标系中,已知直线k的斜率为k1,而直线l的斜率为k2,如果k1 * k2 = -1,则直线k和直线l是互相垂直的。
平行交线性质:在平面直角坐标系中,已知直线k的斜率为k1,而直线l的斜率为k2,如果k1 = k2,则直线k和直线l是互相平行的。
相交线的四点共线性质:在平面直角坐标系中,已知直线k和直线l相交于点P(x, y),直线m和直线n相交于点Q(x, y),如果点P、Q和P’、Q’分别是直线k、l和m、n上的任意两个相同位置的点,则四点P、Q、P’、Q’共线。
初一数学常用重要公式超全详
细总结
初一数学公式大全
1、正方形:
周长=边长×4 c=4a
面积=边长×边长s=a×a
2、正方体:
表面积=棱长×棱长×6 s表=a×a×6
体积=棱长×棱长×棱长v=a×a×a
3、长方形:
周长=(长+宽)×2 c=2(a+b)
面积=长×宽 s=ab
4、长方体:
表面积(长×宽+长×高+宽×高)×2 s=2(ab+ah+bh)
体积=长×宽×高 v=abh
初一数学重要定理
1 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
2 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
3 推论3 等边三角形的各角都相等,并且每一个角都等于60°
4 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
5 推论1 三个角都相等的三角形是等边三角形
6 推论 2 有一个角等于60°的等腰三角形是等边三角形
7 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
8 直角三角形斜边上的中线等于斜边上的一半。
初一到初三的所有数学公式初一到初三数学公式全攻略:轻松搞定!嘿,大家好!今天我们来聊聊初一到初三的数学公式。
这些公式就像是数学的“秘密武器”,掌握了它们,你会发现数学其实没那么难。
放心啦,我会把这些公式讲得简单易懂,咱们一块儿轻松搞定!1. 初一数学公式1.1 基本几何公式周长与面积:长方形:长方形的周长等于2倍的长加上2倍的宽,即 ( P = 2 times (l + w) )。
面积就更简单了,直接长乘宽就行,公式是 ( A = l times w )。
正方形:正方形的周长是4倍的边长,即 ( P = 4 times a )。
面积也很简单,边长的平方,公式是 ( A = a^2 )。
圆:圆的周长(或者叫做圆周)是2倍的π再乘以半径,即 ( C = 2 pi r )。
面积是π乘以半径的平方,公式是 ( A = pi r^2 )。
1.2 常见代数公式分配律:这个公式说的是 ( a times (b + c) = a times b + a times c )。
就是分配乘法到加法里。
合并同类项:就是把相同的项加在一起,比如 ( 2x + 3x = 5x )。
注意,只有“同类项”才能合并哦。
2. 初二数学公式2.1 线性方程一元一次方程:方程的标准形式是 ( ax + b = 0 )。
解这个方程的步骤是:先把b移到右边,变成( ax = b ),然后把a移到右边,得 ( x = frac{b}{a} )。
两元一次方程组:形如 ( begin{cases} a_1x + b_1y = c_1 a_2x + b_2y = c_2 end{cases} ) 的方程组。
解法可以用代入法或者加减法,方法有点复杂,不过只要掌握了,解方程就像玩游戏一样简单!2.2 平面几何直角三角形:勾股定理:在直角三角形里,直角边的平方和等于斜边的平方,公式是 ( a^2 + b^2 = c^2 )。
这个公式用处超级广泛,碰到直角三角形就能派上用场!三角形面积:面积计算公式是 ( A = frac{1}{2} times 底 times 高 )。
初一数学定理公式大全数学是一门理性而精确的学科,既有理论的推导又有实际问题的应用。
而在初一数学学习的过程中,掌握一些基本定理和公式对于深入理解数学知识和解决数学问题至关重要。
下面将为大家整理一份初一数学定理公式大全,帮助同学们在学习中更好地掌握数学知识。
1. 整数定理- 两个整数的和、差、积仍为整数;- 偶数加偶数等于偶数,奇数加奇数等于偶数,偶数加奇数等于奇数;- 偶数乘以偶数等于偶数,奇数乘以奇数等于奇数,偶数乘以奇数等于偶数。
2. 分数定理- 任何一个正整数a都可以表示为两个互质的正整数的商;- 相同分母的两个分数相加、相减时,保持分母不变,分子相加、相减;- 分子分母都有公因式时,可约分。
3. 等式定理- 若等式两边同时加减、乘除同一个数,等式仍成立;- 若等式两边交换位置,等式仍成立;- 等式两边同乘同除一个不等于零的数,等式仍成立;- 若等式两边都开同一个次方,等式仍成立。
4. 质数定理- 除了1和本身,没有其他正因数的数称为质数;- 每一个大于1的自然数都可以唯一地分解为几个质数的乘积;- 质数的个数是无限的。
5. 平方定理- (a+b)²=a²+2ab+b²;- (a-b)²=a²-2ab+b²;- a²-b²=(a+b)(a-b)。
6. 平行线定理- 在平面上,若一条直线与另外两条直线分别相交,那么这两条直线要么平行,要么相交,并且交角互补。
7. 相似三角形定理- 两个三角形中,对应角相等,对应边成比例,则这两个三角形相似;- 三角形内部的三条高分别经过三个顶点,相交于一点,这个点到三边的距离与三角形面积成正比。
8. 勾股定理- 直角三角形中,斜边的平方等于两直角边平方和;- 已知两边的长求斜边长时,要先求出两边长度的平方和,再开平方根。
9. 三角函数定理- 正弦定理:在三角形ABC中,a/sinA = b/sinB = c/sinC;- 余弦定理:在三角形ABC中,a² = b² + c² - 2bc*cosA;- 正切定理:tanA = sinA/cosA。
初一下册数学公式、定理定义第一章整式的运算1、整式数与字母的乘积的代数式叫做单项式(monomial)(单独的一个数或一个字母也是单项式)。
例如:几个单项式的和叫做多项式(polynomial)。
例如:单项式和多项式统称整式(integral expression)。
例如:一个单项式中,所有字母的指数和叫做这个单项式的次数(degree of monomial)(单独一个非零数的次数是0)。
例如:一个多项式中,次数最高的项的次数,叫做这个多项式的次数。
例如:皮克公式:奥地利数学家皮克(georg pick,18591943)发现了一个计算点阵中多边形面积的公式:S=a+1/2b-1 (其中a表示多边形内部的点数,b表示多边形边界上的点数,s表示多边形的面积)2、整式的加减进行整式加减运算时,如果遇到括号先去括号,再合并同类项。
例如:3、同底数幂的乘法例如:4、幂的乘方与积的乘方幂的乘方,底数不变,指数相乘。
例如:积的乘方等于每个因式的乘方的积。
例如:5、同底数幂相除,底数不变,指数相减。
例如:6、整式的乘法单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
例如:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
例如:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如:7、平方差公式两数和与这两数差的积,等于它们的平方差。
例如:8、完全平方公式叙述完全平方公式:叙述杨辉三角定律:9、整式的除法单项式相除,把系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
例如:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
例如:10、复习巩固举例说明什么是整式?说一说如何进行整式的加减运算。
说一说如何进行幂的运算,每一步的依据是什么?用数2,3,4组成一个算式,使得运算结果最大?说一说如何做整式的乘法,有关整式乘法的公式有哪些?举例说明如何进行单项式除以单项式,多项式除以单项式的运算。
一、有理数(一)有理数1、有理数的分类:按有理数的定义分类:按有理数的性质符号分类:正整数正整数整数零正有理数有理数负整数正分数正分数有理数 0分数负整数负整数负有理数负分数2、正数和负数用来表示具有相反意义的数。
(二)数轴1、定义:规定了原点、正方向和单位长度的直线叫做数轴。
2、数轴的三要素是:原点、正方向、单位长度。
(三)相反数1、定义:只有符号不同的两个数互为相反数。
2、几何定义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数。
3、代数定义:只有符号不同的两个数叫做互为相反数,0的相反数是0。
(四)绝对值1、定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值。
2、几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。
3、代数定义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。
a (a>0),即对于任何有理数a,都有|a|=0(a=0)–a(a<0)4、绝对值的计算规律:(1)互为相反数的两个数的绝对值相等.(2)若|a|=|b|,则a =b或a =-b.(3)若|a|+|b|=0,则|a|=0,且|b|=0.相关结论:(1)0的相反数是它本身。
(2)非负数的绝对值是它本身。
(3)非正数的绝对值是它的相反数。
(4)绝对值最小的数是0。
(5)互为相反数的两个数的绝对值相等。
(6)任何数的绝对值都是它的正数或0,即|a|≥0。
(五)倒数1、定义:乘积为“1”的两个数互为倒数。
2、求法:颠倒这个数的分子和分母。
3、a(a≠0)的倒数是1a.有理数的运算一、有理数的加法法则:1、同号两数相加,取相同的符号,并把绝对值相加;2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、一个数同零相加,仍得这个数;4、两个互为相反数的两个数相加得0。
二、有理数的减法法则:减去一个数,等于加上这个数的相反数。
三、有理数的乘法法则:1、两数相乘,同号得正,异号得负,并把绝对值相乘;2、任何数同0相乘,都得0;3、乘积是1的两个数互为倒数。
四、有理数的除法法则:1、除以一个不等于0的数,等于乘以这个数的倒数;2、两个有理数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
五、乘方1、定义:求n个相同因数的积的运算,叫做乘方。
2、幂的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数;负数的偶次幂是正数;0的任何次正整数次幂都是0。
六、有理数的混合运算顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
七、科学计数法、有效数字、近似数1、科学计数法(1)定义:把一个绝对值大于10的数表示成 a×10n的形式(其中a是整数数位只有一位的数,即1≤|a|<10,n是正整数),这种计数方法叫做科学计数法。
(2)用科学计数法表示一个n位整数,其中10的指数是这个数的整数位数减1。
2、有效数字的定义:四舍五入后的近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数的有效数字。
3、近似数的定义:一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。
整式的加减一、单项式、多项式、整式的概念单项式:由数与字母的乘积组成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
多项式:几个单项式的和叫做多项式。
整式:单项式与多项式统称整式。
二、单项式的系数和次数单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数之和。
三、多项式的项、常数项、次数在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项,多项式中次数最高项的次数,就是这个多项式的次数。
四、同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项,所有常数项都是同类项。
五、合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
六、合并同类项步骤:⑴.准确的找出同类项。
⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
⑶.写出合并后的结果。
七、升幂排列与降幂排列为便于多项式的运算,可以用加法的交换律将多项式各项的位置按某一字母指数大小顺序重新排列。
若按某个字母的指数从大到小的顺序排列,叫做这个多项式按这个字母降幂排列。
若按某个字母的指数从小到大的顺序排列,叫做这个多项式按这个字母升幂排列。
八、去括号的法则括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。
九、整式加减的一般步骤是:(1)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。
括号里各项都不变符号;括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号。
(2)合并同类项: 同类项的系数相加,所得的结果作为系数.字母和字母的指数不变。
一元一次方程一、一元一次方程的概念定义: 方程中只含有一个未知数(元),并且未知数的指数是1(次),未知数的式子都是 整式,这样的方程叫做一元一次方程。
等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a = b , 那么a ±c = b ±c等式的性质2:等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。
如果a = b ,那么ac = bc ;如果a = b (c ≠0),那么a c = b c移项 :把方程中的某一项,改变符号后,从方程的左边(右边)移到右边(左边),这种变形叫做移项。
解一元一次方程的一般步骤:1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;4.合并同类项:把方程化成ax=b(a ≠0)的形式;5.系数化成1:在方程两边都除以未知数的系数a ,得到方程的解x = b a图形认识初步一、常见的立体图形:柱形、锥体、球体1、柱体中有①圆柱:底面是圆,侧面是曲面;②棱柱:底面是多边形,侧面是长方形;2、锥体中有①圆锥:底面是圆,侧面是曲面;②棱锥:底面是多边形,侧面是三角形;二、几何图形都是由点、线、面、体组成的包围着体的是面,面与面相接的地方是线,线和线相交的地方是点。
点动成线,线动成面,面动成体,体、面、线、点都是几何图形。
三、直线、射线、线段1、直线(1)概念:向两方无限延伸的的一条笔直的线。
如代数中的数轴,就是一条直线(它只规定了原点、方向和长度单位)。
(2)基本性质:经过两点有一条直线,并且只有一条直线;也可以简单地说“两点确定一条直线”。
(3)特点:①直线没有长短,向两方无限延伸;②直线没有粗细;③两点确定一条直线;④两条直线相交有唯一一个交点。
2、射线(1)概念:直线上一点和它一旁的部分叫做射线。
(2)特点:只有一个端点,向一方无限延伸,无法度量。
3、线段(1)概念:直线上两点和它们之间的部分叫做线段。
线段有两个端点,有长度。
(2)基本性质:两点之间线段最短。
(3)特点:有两个端点,不能向任何一方延伸,可以度量,可以较长短。
4、线段的中点:把一条线段分成两条相等线段的点。
四、角1、角的概念:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。
3、角度制及换算(1)角度制的概念:以度、分、秒为单位的角的度量制,叫做角度制。
(2)角度制的换算:1°=60′ 1′=60″1周角=360° 1平角=180°1直角=90°(3)换算方法:把高级单位转化为低级单位要乘进率;把低级单位转化为高级单位要除以进率;转化时必须逐级进行,“越级”转化容易出错。
4、角的大小的比较:(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;(2)度量法。
5、角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
6、余角和补角:(1)余角:如果两个角的和等于90°(直角),那么这两个角互为余角,其中一个角是另一个角的余角;(2)补角:如果两个角的和等于180°(平角),那么这两个角互为补角,其中一个角是另一个角的补角;(3)余角的性质:等角的余角相等;等角的性质:同角的补角相等。
相交线1. 相交线的定义:在同一平面内,如果两条直线只有一个公共点,那么这两条直线叫做相交线。
2. 对顶角的定义:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
3. 对顶角的性质:对顶角相等。
4. 邻补角的定义:有公共顶点和一条公共边,并且互补的两个角称为邻补角。
5. 邻补角的性质:邻补角互补。
6、垂线的定义:垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
7、垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
9、同位角:两个角都在两条被截线同侧,并在截线的同旁,这样的一对角叫做同位角。
10、内错角:两个角都在两条被截线之间,并且在截线的两旁,这样的一对角叫做内错角。
11、同旁内角:两个角都在两条被截线之间,并且在截线的同旁,这样的一对角叫做同旁内角。
12、平行线的概念在同一平面内,不相交的两条直线叫做平行线。
13、平行公理:经过直线外一点,有且只有一条直线与已知直线平行。
14、平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也平行。
15、平行线的判定方法:(1)判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
(2)判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
(3)判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
(4)两条直线都和第三条直线平行,那么这两条直线平行。
(5)在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行。
16、命题的概念:判断一件事情的语句叫做命题。
17、命题的形式:命题由题设和结论两部分组成,通常可以写成“如果……那么……”的形式。
“如果”后面的部分是题设,“那么”后面的部分是结论。
18、命题包括两种:判断为正确的命题称为真命题;判断为错误的命题称为假命题。
19、平移的定义:把一个图形整体沿某一方向移动一定的距离,叫做平移变换,简称平移。