网络管理体系结构
- 格式:ppt
- 大小:906.00 KB
- 文档页数:21
综合网络管理系统体系结构设计作者:邵华欣, 李振富, 刘彩丽来源:《现代电子技术》2011年第09期摘要:综合网络管理系统体系结构是指导系统设计、建设、评估、管理的准则和标准。
从有利于通信网集中统一管理,适合通信网络的特点,立足现状,着眼发展和采用适当的技术四个方面分析了系统体系结构的设计需求,然后采用基于CORBA的TMN架构,从功能体系结构、信息体系结构和物理体系结构进行体系结构的设计。
关键词:综合网络管理系统; 体系结构; TMN; CORBA中图分类号:TN915-34文献标识码:A文章编号:1004-373X(2011)09-0021-04System Structure Design for Integrated Network Management SystemSHAO Hua-xin, LI Zhen-fu, LIU Cai-li(Xi’an Communication College, Xi’an 710106, China)Abstract: The system structure of integrated network management system is the rule and standard of system design, construction, evaluation and management. The design requirement of system structure is analyzed from four aspects such as available for integrated management of communication network, applicable for characteristics of communication network, suitable for current development and, and adopting proper technique. The system structure is designed based on TMN structure of CORBA through function system structure, information system structure and physics system structure.Keywords: integrated network management system; system structure; TMN; CORBA0 引言随着现代通信技术的迅猛发展,通信网种类越来越多,网络规模不断扩大,按传输手段分有有线网、卫星网、短波网、超短波网等;按传输业务分有数据网、电话网、视讯网、广播网等[1]。
计算机网络管理精讲课1课程代码:02379授课老师:陈老师什么是计算机网络管理?计算机网络管理是指采用计算机软、硬件技术对客户端计算机、服务器、存储和交换机、路由器等网络设备及相关软件组成的网络和信息系统进行管理的工作。
试题题型单项选择题40%填空题10%问答题30%应用题20%本次课程内容网络管理概论第一节:网络管理的基本概念第二节:网络管理的体系结构第三节:网络管理的功能第一章、网络管理概论第一节、网络管理的基本概念(1.1)目录 | CONTENTS 1.1.1:网络管理概述1.1.2:网络管理的目标1.1.3:网络管理的对象1.1.4:网络管理的标准知识点6:企业流程再造和持续改进知识点7:组织运用信息系统获取竞争优势1.1.1:网络管理概述1.1 网络管理1、计算机网络管理:是指采用计算机软、硬件技术对客户端计算机、服务器、存储和交换机、路由器等网络设备及相关软件组成的网络和信息系统进行管理的工作。
1.1.1:网络管理的基本概论2、网络管理需要完成的两个任务:一是对网络的运行状态进行监视,二是对网络的运行进行控制。
1.1.1:网络管理的基本概论3、网络管理系统需要解决以下4个方面问题:(1)网络设备的复杂性问题;(2)网络的可靠性问题;(3)网络的安全性问题;(4)网络的可扩充性问题。
1、网络管理的根本目标是最大程度地满足网络管理者和网络用户对计算机网络的有效性、可靠性、开放性、综合性、安全性和经济性的要求。
(1)有效性(2)可靠性(3)开放性(4)综合性(5)安全性(6)经济性1、在网络管理中设计的资源依其形态主要分为两大类,即硬件资源和软件资源。
2、硬件资源是指:物理介质、计算机设备和网络设备。
3、软件资源是主要包括:操作系统、应用软件和通信软件。
1、OSI参考模型:CMIS和CMIP标准2、TCP/IP参考模型:SGMP、SNMP、CMOT、SMI、MIB-2、SNMPV3、RMONv1和RMONv23、TMN参考模型:服务和商业配置问题4、IEEE LAN/MAN参考模型:IEEE 802 .1b(CMOL)5、Web参考模型:WBEM、JMX、DMTF1、在网络管理中涉及的资源依其形态主要分为两大类,即硬件资源和_______资源。
ISO/OSI网络体系结构计算机网络1. ISO/OSI网络体系结构:即开放系统互联参考模型(Open System Interconnect Reference Model)。
是ISO(国际标准化组织)根据整个计算机网络功能将网络分为物理层、数据链路层、网络层、传输层、会话层、表示层、应用层七层。
也称"七层模型"。
每层之间相对独立,下层为上层提供服务。
物理层(Physics Layer) 1. 物理层是网络的最底层。
实现的物理实体主要是通信媒体(线路)和通信接口,其主要指实现传输原始比特流的物理连接的各种特性(手段)。
物理层的概念:(1)OSI:在物理信道实体之间合理地通过中间系统,为比特传输所需物理连接的激活、保持和去活提供的机械的、电气的、功能特性和规程特性的手段。
(2) CCITT(国际电话与电报顾问委员会):利用物理的、电气的、功能和规程特性在DTE和DCE之间实现对物理信道的建立、保持和拆除功能。
信道实体的特性:物理特性(特性),电气特性,功能特性,规程特性。
2.物理的功能:(1)实现各节点之间的位传输。
保证位传输的正确性,并向数据链路层提供一个透明的位流传输。
(2)在DTE,DCE之间完成对数据链路的建立、保持和拆除操作。
3. 解决的主要问题:物理层负责一个节点(主机、工作站)与下一节点之间的比特流(位)传输。
包括传输介质的接口,数据信号的编码,电压或电压放大,接头尺寸,形状及输出针,以及与位流的物理传输相关的其它任何东西。
4.物理层的四个特性:物理特性(机械特性),电气特性,功能特性,规程特性。
(1) 机械特性(物理特性):指通信实体间硬件连接接口的机械特点。
如:接口的形状、大小;接口引脚的个数、功能、规格、引脚的分布;相应通信媒体的参数和特性。
(2)电气特性:线路连接方式、信号电平、传输速率、电缆长度和阻抗。
(3)功能特性:接口电路的功能,物理接口各条信号线的用途(用法)。
第8章网络管理系统一.网络管理简介二.网络管理基本功能三.网络管理模型四.网络管理体系结构一、网络管理简介计算机网络管理就是对网络资源进行规划、设计、配置、组织、监测、分析和控制,使网络资源能够得到最有效的利用,能及时地分析与排除在网络中遇到的故障或者潜在的问题,最大限度地提高计算机网络的服务质量、工作性能和运行效率,并确保计算机网络能够尽可能长时间的正常地、经济地、可靠地、安全地运行。
二、网络管理基本功能1、故障管理故障管理是网络管理的最基本功能之一,故障管理就是收集、过滤和归并网络事件,有效地发现、确认、记录和定位网络故障,分析故障原因并给出排错建议与排错工具,形成故障发现、故障告警、故障隔离、故障排除和故障预防的一整套机制。
故障管理的主要功能A.故障管理范围的确定B.故障事件级别的确定C.梯度告警设置D.故障实时监测E.故障告警通知F.告警信息预处理故障管理的主要功能(cont.)A.故障信息管理B.故障信息统计C.故障诊断D.故障修复E.检测与排错支持工具2、计费管理计费管理就是通过收集网络用户对网络资源和网络应用的使用情况信息,生成多种使用信息统计报告,并根据一定的计费规则(比如,根据用户使用的网络流量、用户的网络使用时间或用户使用的网络应用等),采用一定的网络计费工具,生成计费单。
计费管理的主要功能A.统计资源利用率B.确定费率C.计费数据管理与维护D.计费数据采集E.计费政策制定F.计费政策比较与决策支持G.计费数据分析与费用计算H.计费数据查询I.计费费用分摊J.计费控制3、配置管理配置管理具有初始化网络和配置网络的功能,配置管理的目的就是为了实现网络中的某个特定功能或者使网络性能达到最优。
配置管理通过对网络设备的配置数据提供快速的访问,它能使网络管理员可以将正在使用的配置数据与储存的数据进行比较,并且可以根据需要方便地修改配置,从而增强了网络管理员对网络配置的控制能力。
配置管理的主要功能A.自动获取配置信息B.写入配置信息C.配置一致性检查D.用户操作记录功能4、性能管理性能管理是采集、分析网络以及网络设备的性能数据,以便发现和矫正网络或网络设备的性能是否产生偏差或下降,同时,统计网络运行状态信息,对网络的服务质量作出评测、估计,为网络进一步规划与调整提供依据.性能管理包括两大类基本功能,分别是监测(监测功能主要是收集并分析性能数据)和调整(调整功能就是改变性能参数来改善网络的性能)。
计算机网络的基本原理与体系结构计算机网络是现代社会中基础设施的重要组成部分,它通过通信链路将各种终端设备连接起来,实现信息的传输和共享。
计算机网络的基本原理和体系结构是我们理解和应用计算机网络的关键。
本文将介绍计算机网络的基本原理与体系结构,并分析其在现实生活中的应用。
一、计算机网络的基本原理计算机网络的基本原理包括数据传输、数据交换、网络拓扑结构和网络协议等几个方面。
首先,数据传输是指通过物理媒介将数据从发送端传输到接收端的过程。
数据传输可以通过有线或无线的方式进行,其中常见的有线传输方式包括以太网和光纤传输,无线传输方式包括无线局域网和蓝牙等。
其次,数据交换是指计算机网络中数据的传输方式。
常见的数据交换方式有电路交换、报文交换和分组交换。
电路交换是在通信建立时为通信双方专用分配一条通路,直到通信结束。
报文交换是将数据分成较小的报文进行交换,每个报文带有地址信息,可以独立传输和交换。
分组交换是将数据分成固定大小的数据包进行交换,每个数据包称为分组,通过网络中的路由器进行转发。
再次,网络拓扑结构是指计算机网络中各个节点之间的连接方式。
常见的网络拓扑结构有星型结构、总线结构、环形结构和网状结构。
星型结构是以一个中央节点为核心,其他节点通过物理链路与中央节点相连。
总线结构是将所有节点连接到同一个总线上,数据传输通过总线进行。
环形结构是在每两个相邻节点之间建立一条连接,形成一个环形结构。
网状结构是多个节点之间相互连接形成的任意结构。
最后,网络协议是计算机网络中数据传输和交换的规则和约定。
常见的网络协议有TCP/IP协议和OSI参考模型。
TCP/IP协议是互联网上应用最广泛的协议,它将数据分成多个数据包,通过IP地址确定数据包的传输路径,并通过TCP协议实现可靠传输。
OSI参考模型是一个理论框架,将网络协议分成七层,分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
二、计算机网络的体系结构计算机网络的体系结构是指计算机网络按照功能划分成不同的层次或模块,并规定每个模块的功能和接口。
计算机网络体系结构计算机网络体系结构是指计算机网络中各个组件和层次之间的关系和组织方式。
它提供了一种方法来组织和管理计算机网络中的各个部分,以确保网络的可靠性和性能。
计算机网络体系结构的设计和选择对于网络的正常运行和扩展能力具有重要影响。
计算机网络体系结构通常分为两种主要类型:集中式和分布式。
集中式体系结构是指网络中的所有资源和控制都集中在一个中心节点或服务器上。
在这种体系结构中,所有的计算机终端都通过中心节点进行通信和数据交换。
这种体系结构的优点是管理和维护相对简单,因为只需要关注中心节点的运行和管理。
然而,集中式体系结构的缺点是中心节点的故障会导致整个网络的瘫痪,而且随着网络规模的扩大,中心节点的负载也会越来越大。
分布式体系结构是指网络中的资源和控制在多个节点上分布。
在这种体系结构中,每个节点都可以相互通信和交换数据,而不需要通过中心节点。
这种体系结构的优点是具有很高的容错性和可扩展性,因为网络中的节点可以相互协作,即使某个节点发生故障,其他节点仍然可以继续工作。
然而,分布式体系结构的缺点是管理和维护相对复杂,因为需要管理多个节点和相互之间的通信。
除了集中式和分布式体系结构之外,还有一些其他的计算机网络体系结构,如主从体系结构、对等体系结构和混合体系结构等。
每种体系结构都有自己的特点和适用场景,可以根据实际需求和网络规模选择合适的体系结构。
总结起来,计算机网络体系结构是计算机网络中各个组件和层次之间的关系和组织方式。
它对于网络的正常运行和扩展能力具有重要影响。
常见的体系结构包括集中式体系结构和分布式体系结构,每种体系结构都有自己的优点和缺点。
选择适合的体系结构可以提高网络的可靠性和性能。
【后续分析】:在计算机网络体系结构的深入分析中,我们将对集中式体系结构和分布式体系结构进行详细讨论,并介绍一些实际的例子。
首先,集中式体系结构的主要优点是管理和维护相对简单。
由于所有的资源和控制都集中在一个中心节点或服务器上,网络管理员只需要关注中心节点的运行和管理,从而简化了管理过程。
网络体系结构与协议随着互联网的迅猛发展,网络体系结构和协议成为了支撑互联网运行的重要基础。
网络体系结构是指互联网中各种计算机网络之间的组织结构和关系,而协议则是指计算机网络中数据传输和通信所遵循的规则和标准。
本文将详细介绍网络体系结构和协议的概念、类型以及其在互联网中的重要性。
一、网络体系结构的概念和类型1.1 网络体系结构的概念网络体系结构是指不同计算机网络之间的组织结构和关系。
它定义了互联网中信息的传输路径、计算机之间的连接方式以及数据传输的工作方式。
网络体系结构主要包括两个关键要素:网络拓扑结构和网络协议。
1.2 网络体系结构的类型根据互联网中各种计算机网络的组织方式和关系不同,网络体系结构可以分为以下几种类型:1.2.1 集线式体系结构(Bus Architecture)集线式体系结构是最简单的一种网络结构,所有计算机都通过一条集线器连接在一根中央线上。
数据传输时,需要将数据从源计算机发送到中央线上,然后被所有计算机接收。
集线式体系结构简单易建设,但存在传输冲突和容错能力较差的问题。
1.2.2 星型体系结构(Star Architecture)星型体系结构是一种中央控制的网络结构,所有计算机都与一个中央交换机相连。
数据传输时,通过中央交换机进行路由选择,将数据从源计算机传输到目标计算机。
星型体系结构具有高容错性和灵活性,但对于中央交换机的性能要求较高。
1.2.3 环型体系结构(Ring Architecture)环型体系结构是一种将计算机连接成一个闭环的网络结构。
数据传输时,通过环上的节点依次传递,直到达到目标计算机。
环型体系结构具有较好的容错性和可扩展性,但对于节点故障会对整个网络产生影响。
1.2.4 树型体系结构(Tree Architecture)树型体系结构是一种层次结构的网络结构,类似于自然界中的树。
数据传输时,通过根节点到达目标节点的路径是唯一的。
树型体系结构具有良好的路由选择和扩展性,但对于根节点的性能要求较高。