偏航系统的作用
- 格式:docx
- 大小:42.25 KB
- 文档页数:3
【摘要】偏航系统是风电机组的核心系统之一,对控制机组稳定和保证机组发电量起着重要作用。
本文针对云南某风场1.5MW机组,增加偏航软启动系统后出现的偏航系统故障,进行故障录波和逻辑分析,有效地降低了故障发生率,以此提高偏航系统的稳定性,保证机组平稳可靠运行。
【关键词】 1.5MW机组偏航软启动故障分析运行维护1.偏航系统概述风力发电机组偏航系统是风电机组重要的组成部分,主要作用为当风速矢量的方向变化时,风力发电机组通过偏航使机组跟踪风向的变化,保证机组始终正对风向,以获得最大风能,提高发电效率。
偏航系统由偏航检测机构(风速仪、风向标、偏航编码器)、偏航控制机构(PLC、电控系统)和偏航执行机构(偏航驱动电机、偏航减速器、偏航小齿轮、偏航轴承齿盘、偏航轴承、润滑系统、偏航制动系统等)三大部分组成。
偏航检测机构将当前机组的风速、风向信号传递给PLC,PLC计算出机组当前对风角度,由PLC内部控制逻辑判断机组是否启动偏航。
当达到偏航启动条件时,PLC发出控制指令,偏航电机电子刹车打开、偏航刹车系统液压站泄压,随后PLC发出偏航软启使能信号及偏航动作信号(左偏、右偏),继而偏航电机开始运行,经过偏航减速机齿轮带动机舱在偏航齿盘上旋转,完成偏航动作。
图1:偏航控制系统框架图2.偏航软启系统云南省某风电场1.5MW机组存在偏航电气回路断路器跳闸、机组晃动大等问题。
在偏航回路增加变频器,基于变频器驱动的柔性自学习偏航系统,是对原偏航系统的有效技术改造,目的是实现偏航系统的软启动、软停止,使风机运行平稳,减少振动和机械冲击对风机带来的损害;同时减少启动电流对电机的冲击,延长电机寿命,提升机组可利用率和发电量,实现风电场提质增效。
图2:偏航软起原理图3.偏航系统问题说明系统投运半年后频繁出现由偏航相关的故障引发的机组停机现象。
通过对现场出现的故障统计分类,偏航故障主要有两类:一类是变频器自身故障,主要为电机过速、供电电源欠压、供电电源过压、电机过载、母线电压高等,此类故障发生频率很高,为普遍性故障;一类是机组偏航系统相关故障,主要为偏航传感器方向错误、偏航传感器故障,此类故障为偶发性故障,集中发生在个别几台风机组。
风力发电机组偏航系统详细介绍2012-12-15资讯频道偏航系统的主要作用有两偏航系统是水平轴式风力发电机组必不可少的组成系统之一。
使风力发电机组的风轮始终处于迎风状态,其一是与风力发电机组的控制系统相互配合,个。
以保障风力发其二是提供必要的锁紧力矩,充分利用风能,提高风力发电机组的发电效率;被动风力发电机组的偏航系统一般分为主动偏航系统和被动偏航系统。
电机组的安全运行。
舵轮常见的有尾舵、偏航指的是依靠风力通过相关机构完成机组风轮对风动作的偏航方式,常见的有主动偏航指的是采用电力或液压拖动来完成对风动作的偏航方式,和下风向三种;通常都采用主动偏航的齿轮驱动对于并网型风力发电机组来说,齿轮驱动和滑动两种形式。
形式。
1.偏航系统的技术要求1.1. 环境条件在进行偏航系统的设计时,必须考虑的环境条件如下:1). 温度;2). 湿度;3). 阳光辐射;雨、冰雹、雪和冰;4).5). 化学活性物质;机械活动微粒;6).盐雾。
风电材料设备7).近海环境需要考虑附加特殊条件。
8).应根据典型值或可变条件的限制,确定设计用的气候条件。
选择设计值时,应考虑几气候条件的变化应在与年轮周期相对应的正常限制范围内,种气候条件同时出现的可能性。
不影响所设计的风力发电机组偏航系统的正常运行。
1.2. 电缆必须使电缆有足够为保证机组悬垂部分电缆不至于产生过度的纽绞而使电缆断裂失效,电缆悬垂量的多少是根据电缆所允许的扭转角度确定的悬垂量,在设计上要采用冗余设计。
的。
阻尼1.3.偏航系统在机组为避免风力发电机组在偏航过程中产生过大的振动而造成整机的共振,阻尼力矩的大小要根据机舱和风轮质量总和的惯性力矩来偏航时必须具有合适的阻尼力矩。
只有在其基本的确定原则为确保风力发电机组在偏航时应动作平稳顺畅不产生振动。
确定。
阻尼力矩的作用下,机组的风轮才能够定位准确,充分利用风能进行发电。
1.4. 解缆和纽缆保护偏航系统的偏航动解缆和纽缆保护是风力发电机组的偏航系统所必须具有的主要功能。
4.3 偏航系统偏航系统是风力发电机组特有的伺服系统,是风力发电机组电控系统必不可少的重要组成部分。
它的功能有两个:一是要控制风轮跟踪变化稳定的风向;二是当风力发电机组由于偏航作用,机舱内引出的电缆发生缠绕时,自动解除缠绕。
风力机偏航的原理是通过风传感器检测风向、风速,并将检测到的风向信号送到微处理器,微处理器计算出风向信号与机舱位置的夹角,从而确定是否需要调整机舱方向以及朝哪个方向调整能尽快对准风向。
当需要调整方向时,微处理器发出一定的信号给偏航驱动机构,以调整机舱的方向,达到对准风向的目的。
风力机发电机组的偏航系统是否动作,受到风向信号的影响,而偏航系统及其部件的运行工况和受力情况也受到地形状况影响。
本章主要阐述偏航控制系统的功能、原理、以及影响偏航系统工作的一些确定的和不确定的因素。
4.3.1 偏航系统的工作原理偏航系统的原理框图如图4-11 所示,工作原理为:通过风传感器将风向的变化传递到偏航电机控制回路的处理器里,判断后决定偏航方向和偏航角度,最终达到对风目的。
为减少偏航时的陀螺力矩,电机转速将通过同轴联接的减速器减速后,将偏航力矩作用在回转体大齿轮上,带动风轮偏航对风。
当对风结束后,风传感器失去电信号,电机停止工作,偏航过程结束。
图4-11 偏航系统硬件设计框图4.3.1 偏航控制系统的功能偏航控制系统主要具备以下几个功能:(1)风向标控制的自动偏航;(2)人工偏航,按其优先级别由高到低依次为:顶部机舱控制偏航、面板控制偏航、远程控制偏航;(3)风向标控制的90°侧风;(4)自动解缆;4.3.2 偏航系统控制原理风能普密度函数为:432222||1K i W i W S S V ωφωππφ=⎡⎤⎛⎫⎢⎥+ ⎪⎢⎥⎝⎭⎣⎦(1) 其中,1()2i i ωω=-⋅∆,风波动频率;ω∆—积分步长;K S —表面张力因数; φ—风波动范围因数;W V —平均风速。
平均风速W V 附近的瞬时风速()Wv t 为:1()2co s()n W i i i v t t ωφ==⋅+∑(2)对于时变量i 而言,i φ为自由独立变量,0<i φ<2π,n 为积分步长数量。
大型风力发电机组偏航系统介绍及故障分析X王晓东(中广核风力发电有限公司内蒙古分公司,内蒙古呼和浩特 010010) 摘 要:阐述了风力发电机组偏航系统的作用、结构和工作原理;分析了偏航系统常见故障,提出了解决方法。
关键词:风电机组;偏航;故障分析 中图分类号:T M614 文献标识码:A 文章编号:1006—7981(2012)03—0075—01 偏航系统是风力发电机组特有的控制系统。
对于水平轴风力发电机组,为了能达到最佳的风能利用效率,应使叶轮跟踪变化稳定的风向,因此需要一个系统装置使叶轮正面对风,这套装置通常称为“偏航系统”。
1 偏航系统作用风力发电机组的偏航系统一般分为主动偏航系统和被动偏航系统。
被动偏航指的是依靠风力通过相关机构完成机组风轮对风动作的偏航方式,常见的有尾舵、舵轮和下风向三种;主动偏航指的是采用电力或液压拖动来完成对风动作的偏航方式,常见的有齿轮驱动和滑动两种方式。
对于并网型风力发电机组来说,通常都采用主动偏航的齿轮驱动形式。
大型风力发电机组常采用电动的偏航系统来调整机组并使其对准风向,风力发电机的偏航系统作用主要有两个:一是当风的方向变化时,能够快速平稳地对准风向,这样可以使叶轮跟踪变化稳定的风向,以得到最大的风能利用率;二是由于风力发电机组可能持续一个方向偏航,为了保证机组悬垂部分的电缆不至于产生过度的纽绞而使电缆断裂、失效,在电缆达到设计缠绕值时能够自动解缆。
由此可见偏航系统在风力发电机组中的作用非常大。
2 偏航系统的组成及工作原理偏航系统是由偏航控制机构和偏航驱动机构两大部分组成。
图1为风电机组的偏航系统结构图。
偏航控制机构包括风向传感器、偏航控制器、解缆传感器等几部分。
偏航驱动机构一般由驱动电机、偏航行星齿轮减速器、传动齿轮、偏航轴承、回转体大齿轮、偏航制动器等几部分组成。
偏航驱动机构在正常的运行情况下,应启动平稳,转速均匀无振动现象。
偏航轴承的轴承内外环分别与机组的机舱和塔架连接器用螺栓连接,轮齿可采用外齿或内齿形式。
偏航系统的作用偏航系统是风力发电机组特有的伺服系统。
它主要有两个功能:一是使风轮跟踪变化稳定的风向;二是当风力发电机组由于偏航作用,机舱内引出的电缆发生缠绕时,自动解缆。
偏航控制系统偏航系统是一个随动系统,风向仪将采集的信号传送给机舱柜的PLC的I/O板,计算10分钟平均风向,与偏航角度绝对值编码器比较,输出指令驱动四台偏航电机(带失电制动),将机头朝正对风的方向调整,并记录当前调整的角度,调整完毕电机停转并启动偏航制动。
偏航控制系统框图如下图所示:下文将对偏航控制系统的各机构进行分析:1、风速仪风力发电机组应有两个可加热式风速计。
在正常运行或风速大于最小极限风速时,风速计程序连续检查和监视所有风速计的同步运行。
计算机每秒采集一次来自于风速仪的风速数据;每10min计算一次平均值,用于判别起动风速和停机风速。
测量数据的差值应在差值极限1.5m/s以内。
如果所有风速计发送的都是合理信号,控制系统将取一个平均值。
2、风向标风向标安装在机舱顶部两侧,主要测量风向与机舱中心线的偏差角。
一般采用两个风向标,以便互相校验,排除可能产生的误信号。
控制器根据风向信号,起动偏航系统。
当两个风向标不一致时,偏航会自动中断。
当风速低于3m/s时,偏航系统不会起动。
3、扭揽开关扭缆开关是通过齿轮咬合机械装置将信号传递PLC进行处理和发出指令进行工作的。
除了在控制软件上编入调向记数程序外,一般在电缆处安装行程开关,当其触点与电缆束连接,当电缆束随机舱转动到一定程度即启动开关。
以国内某知名公司生产的1.5MW风机为例,当机身在同一方向己旋转2转(720度),且风力机不处在工作区域(即10分钟平均风速低于切入风速) 系统进入解缆程序。
解缆过程中,当风力机回到工作区域(即10分钟平均风速高于切入风速),系统停止解缆程序,进入发电程序,但当机身在同一方向己旋转2.5转(900度)偏航限位动作扭缆保护,系统强行进入解缆程序,此时系统停止全部工作,直至解缆完成。
偏航系统的作用
偏航系统是风力发电机组特有的伺服系统。
它主要有两个功能:一是使风轮跟踪变化稳定的风向;二是当风力发电机组由于偏航作用,机舱内引出的电缆发生缠绕时,自动解缆。
偏航控制系统
偏航系统是一个随动系统,风向仪将采集的信号传送给机舱柜的PLC的I/O板,计算10分钟平均风向,与偏航角度绝对值编码器比较,输出指令驱动四台偏航电机(带失电制动),将机头朝正对风的方向调整,并记录当前调整的角度,调整完毕电机停转并启动偏航制动。
偏航控制系统框图如下图所示:
下文将对偏航控制系统的各机构进行分析:
1、风速仪
风力发电机组应有两个可加热式风速计。
在正常运行或风速大于最小极限风速时,风速计程序连续检查和监视所有风速计的同步运行。
计算机每秒采集一次来自于风速仪的风速数据;每10min计算一次平均值,用于判别起动风速和停机风速。
测量数据的差值应在差值极限1.5m/s以内。
如果所有风速计发送的都是合理信号,控制系统将取一个平均值。
2、风向标
风向标安装在机舱顶部两侧,主要测量风向与机舱中心线的偏差角。
一般采用两个风向标,以便互相校验,排除可能产生的误信号。
控制器根据风向信号,起动偏航系统。
当两个风向标不一致时,偏航会自动中断。
当风速低于3m/s时,偏航系统不会起动。
3、扭揽开关
扭缆开关是通过齿轮咬合机械装置将信号传递PLC进行处理和发出指令进行工作的。
除了在控制软件上编入调向记数程序外,一般在电缆处安装行程开关,当其触点与电缆束连接,当电缆束随机舱转动到一定程度即启动开关。
以国内某知名公司生产的1.5MW风机为例,当机身在同一方向己旋转2转(720度),且风力机不处在工作区域(即10分钟平均风速低于切入风速) 系统进入解缆程序。
解缆过程中,当风力机回到工作区域(即10分钟平均风速高于切入风速),系统停止解缆程序,进入发电程序,但当机身在同一方向己旋转2.5转(900度)偏航限位动作扭缆保护,系统强行进入解缆程序,此时系统停止全部工作,直至解缆完成。
当风速超过25 m/s时,自动解缆停止。
自动解除电缆缠绕可以通过人工调向来检验是否正常。
当调向停止触点由常闭进入常开状态时,风机自动解除电缆缠绕,此时风力发电机应不处于维修状态,因此自动调向功能在维修状态时无法使用。
4、偏航编码器
偏航编码器是一个绝对值编码器,可以准确记录偏航位置。
因为绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。
这样,编码器的抗干扰特性、数据的可靠性大大提高了。
5、软启动器
软启动器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。
这种电路如三相全控桥式整流电路,使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。
待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波污染。
软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车引起的转矩冲击。
图1 软启动器控制电机的主电路图。