2018届西城区高三 一摸理科数学试题及答案
- 格式:docx
- 大小:2.15 MB
- 文档页数:14
北京市西城区2019年4月高三理科综合 第1页(共10页)C 地球西 城 区 高 三 统 一 测 试理 科 综 合 2019.4本试卷共17页,共300分。
考试时长150分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分 (选择题 共120分)本部分共20小题,每小题6分,共120分。
在每小题列出的四个选项中,选出最符合题目要求的一项。
13.已知氡222的半衰期为3.8天。
那么的放射性物质氡222经过7.6天,还剩下没有发生衰变的质量为 A .2 g B .1gC .0.5gD .0 g14.关于热学中的一些基本概念,下列说法正确的是A .物体是由大量分子组成的,分子是不可再分的最小单元B .分子间的斥力和引力总是同时存在的,且随着分子之间的距离增大而增大C .分子做永不停息的无规则热运动,布朗运动就是分子的热运动D .宏观物体的温度是物体内大量分子的平均动能的标志15.如图所示,一颗卫星绕地球做椭圆运动,运动周期为T ,图中虚线为卫星的运行轨迹,A 、B 、C 、D 是轨迹上的四个位置,其中A 距离地球最近,C 距离地球最远。
B 和D 点是弧线ABC 和ADC 的中点,下列说法正确的是 A .卫星在C 点的速度最大 B .卫星在C 点的加速度最大C .卫星从A 经D 到C 点的运动时间为T/2 D .卫星从B 经A 到D 点的运动时间为T/216.一条绳子可以分成一个个小段,每小段都可以看做一个质点,这些质点之间存在着相互作用。
如图是某绳波形成过程的示意图。
质点1在外力作用下沿竖直方向做简谐运动,带动质点2、3、4… 各个质点依次振动,把振动从绳的左端传到右端。
t=T/2时,质点9刚要开始运动。
下列说法正确的是 A .t =T /2时,质点9开始向下运动 B .t =T /2时,质点5加速度方向向上 C .t =T /4时,质点5开始向上运动 D .t =T /4时,质点3的加速度方向向上4gt =0t =T /2北京市西城区2019年4月高三理科综合 第2页(共10页)17.如图所示,在水平面上有一个U 形金属框架和一条跨接其上的金属杆ab ,二者构成闭合回路且处于静止状态。
1 / 10北京市西城区2018年4月高三理科综合 第1页(共10页)西 城 区 高 三 统 一 测 试理 科 综 合 2018.4本试卷共17页,共300分。
考试时长150分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
13.关于两个分子之间的相互作用力,下列判断正确的是A .两分子处于平衡位置时,分子间没有引力和斥力B .两分子处于平衡位置时,分子间的引力和斥力大小相等C .两分子间距离减小时,分子间的引力增大斥力减小D .两分子间距离增大时,分子间的引力减小斥力增大14.下列核反应方程中,属于β衰变的是A .234234090911Th Pa e -→+ B .23411120H H He n +→+C .238234492902U Th He →+ D .1441717281N He O H +→+15.如图所示为某一单摆的振动图像,下列说法正确的是A .单摆的振幅为2cmB .单摆的周期为2sC .t =1s 时摆球所受的回复力最大D .t =2s 时摆球的速度为016.α粒子和质子在同一点由静止出发,经过相同的加速电场后,进入同一匀强磁场中做匀速圆周运动。
已知α粒子和质子的质量之比m α∶m H = 4∶1,电荷量之比q α∶q H = 2∶1。
则它们在磁场中做圆周运动的周期之比T α∶T H 为 A .1∶4 B .4∶1 C .2∶1 D . 1∶217.2016年9月15日,我国发射了空间实验室“天宫二号”。
它的初始轨道为椭圆轨道,近地点M 和远地点N 的高度分别为200km 和350km ,如图所示。
关于“天宫二号”在该椭圆轨道上的运行,下列说法正确的是-2 / 10北京市西城区2018年4月高三理科综合 第2页(共10页)A .在M 点的速度小于在N 点的速度B .在M 点的加速度大于在N 点的加速度C .在M 点的机械能大于在N 点的机械能D .从M 点运动到N 点的过程中引力始终做正功18.2016年9月25日,被誉为“中国天眼”的世界最大单口径射电望远镜(简称FAST )在贵州省平塘县落成启用,开始接收来自宇宙深处的电磁波。
北京西城区2018年高三(上)期末数学理科北京市西城区2017 — 2018学年度第一学期期末高三数学(理科)参考答案及评分标准2018.1一、选择题:本大题共8小题,每小题5分,共40分. 1.A 2.D 3.C4.D 5.D 6.C 7.B8.C二、填空题:本大题共6小题,每小题5分,共30分. 9.(1,1)- 10.32n -,314 111312.813.3614.1[,)4-+∞;1[,1]2 注:第10,14题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) 解:(Ⅰ)因为2π()2sin cos(2)3f x x x =-+ππ1cos2(cos2cos sin 2sin )33x x x =--⋅-⋅ [ 4分]332cos2122x x =-+[5分]π3sin(2)13x =-+,[ 7分]所以()f x 的最小正周期2ππ2T ==. [ 8分](Ⅱ)因为 π02x ≤≤, 所以ππ2π2333x --≤≤.[10分]当ππ232x -=,即5π12x =时,[11分]()f x 取得最大值为31.[13分]16.(本小题满分13分) 解:(Ⅰ)记事件A 为“从表1的日期中随机选出一天,这一天的升旗时刻早于7:00”,1分]在表1的20个日期中,有15个日期的升旗时刻早于7:00,所以153(A)204P ==.[ 3分](Ⅱ)X可能的取值为0,1,2.[ 4分]记事件B 为“从表2的日期中随机选出一天,这一天的升旗时刻早于7:00”,则 51(B)153P ==,2(B)1(B)3P P =-=.[ 5分]4(0)(B)(B)9P X P P ==⋅=; 12114(1)C ()(1)339P X ==-=; 1(2)(B)(B)9P X P P ==⋅=.[ 8分] 所以 X 的分布列为: X 0 1 2P 49 49 194412()0129993E X =⨯+⨯+⨯=.[10分]注:学生得到X ~1(2,)3B ,所以12()233E X =⨯=,同样给分.(Ⅲ)22*ss <.[13分] 17.(本小题满分14分) 解:(Ⅰ)因为AB ⊥平面11AA C C,所以1A C AB⊥. [ 1分]因为 三棱柱111ABC A B C -中,1AA AC =,所以 四边形11AA C C为菱形,所以11A C AC ⊥.[ 3分] 所以1A C ⊥平面1ABC .[ 4分](Ⅱ)因为 11//A A B B ,1A A ⊄平面11BB C C ,所以 1//A A 平面11BB C C. [ 5分]因为 平面1AA EF平面11BB C C EF=,所以1//A A EF. [ 6分]因为 平面//ABC 平面111A B C ,平面1AA EF 平面ABC AF =,平面1AA EF 平面1111A B C A E =,所以1//A E AF.[ 7分]所以 四边形1AA EF为平行四边形. [ 8分](Ⅲ)在平面11AA C C 内,过A 作Az AC ⊥.因为 AB ⊥平面11AA C C ,如图建立空间直角坐标系A xyz-. [ 9分]由题意得,(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,1(0,1,3)A ,1(0,3,3)C .因为23BF BC =,所以244(,,0)333BF BC −−→−−→==-,所以 24(,,0)33F . 由(Ⅰ)得平面1ABC 的法向量为1(0,1,3)A C −−→=-.设平面1AC F 的法向量为(,,)x y z =n ,则10,0,AC AF −−→−−→⎧⋅=⎪⎨⎪⋅=⎩n n即330,240.33y z x y ⎧+=⎪⎨+=⎪⎩ 令1y =,则2x =-,3z =-,所以(2,1,3)=--n . [11分] 所以111||2|cos ,|||||A C A C A C −−→−−→−−→⋅〈〉==n n n .[13分]由图知 二面角1B AC F --的平面角是锐角,所以 二面角1B AC F--的大小为45︒. [14分]18.(本小题满分13分) 解:(Ⅰ)当1a =时,()esin 1xf x x =⋅-,所以()e (sin cos )x f x x x '=+.[ 2分] 因为(0)1f '=,(0)1f =-,[ 4分]所以曲线()y f x =在点(0,(0))f 处的切线方程为1y x =-. [ 5分](Ⅱ)()e (sin cos )ax f x a x x '=+.[ 6分]由()0f x '=,得sin cos 0a x x +=. [ 7分]因为 0a >,所以π()02f '≠. [ 8分]当 ππ(0,)(,π)22x ∈时, 由 sin cos 0a x x +=, 得 1tan x a=-.所以 存在唯一的0π(,π)2x ∈, 使得01tan x a=-. [ 9分]()f x 与()f x '在区间(0,π)上的情况如下:x0(0,)xx 0(,π)x()f x ' +-()f x↗极大值↘所以 ()f x 在区间0(0,)x 上单调递增,在区间0(,π)x 上单调递减. [11分] 因为π020π()()e 1e 102a f x f >=->-=,[12分]且 (0)(π)10f f ==-<, 所以()f x 在区间[0,π]上恰有2个零点. [13分] 19.(本小题满分14分) 解:(Ⅰ)由题意得2a =,3c e a ==, 所以3c =. [ 2分]因为222a b c =+,[ 3分] 所以 1b =, [ 4分]所以 椭圆C 的方程为2214x y +=. [ 5分](Ⅱ)若四边形PAMN 是平行四边形, 则 //PA MN ,且 ||||PA MN =.[ 6分]所以 直线PA 的方程为(2)y k x =-, 所以 (3,)P k ,2||1PA k + [ 7分]设11(,)M x y ,22(,)N x y .由 223,44,y kx x y ⎧=⎪⎨+=⎪⎩ 得22(41)8380kx kx +++=,[ 8分]由0∆>,得 212k >.且1283k x x+=122841x x k =+. [ 9分] 所以 221212||(1)[()4]MN k x x x x ++-22226432(1)(41)k k k -=++.[10分]因为 ||||PA MN =, 所以222226432(1)1(41)k k k k -+++整理得 421656330kk -+=,[12分]解得 3k =112k =. [13分]经检验均符合0∆>,但32k =时不满足PAMN 是平行四边形,舍去.所以3k ,或112k =. [14分]20.(本小题满分13分) 解:(Ⅰ)②③.[ 3分]注:只得到 ② 或只得到 ③ 给[ 1分],有错解不给分.(Ⅱ)当3m =时,设数列nA 中1,2,3出现频数依次为123,,q q q ,由题意1(1,2,3)iq i =≥.① 假设14q <,则有12s ta aa a +<+(对任意2s t >>),与已知矛盾,所以 14q ≥.同理可证:34q ≥.[ 5分]② 假设21q =,则存在唯一的{1,2,,}k n ∈,使得2ka=.那么,对,s t ∀,有 112ks ta aa a +=+≠+(,,k s t 两两不相等),与已知矛盾,所以22q ≥. [ 7分]综上:1324,4,2q q q ≥≥≥,所以3120i i S iq ==∑≥.[ 8分](Ⅲ)设1,2,,2018出现频数依次为122018,,...,q q q .同(Ⅱ)的证明,可得120184,4q q≥≥,220172,2q q≥≥,则2026n ≥.取12018220174,2q q q q ====,1,3,4,5,,2016iq i == ,得到的数列为::1,1,1,1,2,2,3,4,,2015,2016,2017,2017,2018,2018,2018,2018n B . [10分]下面证明nB 满足题目要求.对,{1,2,,2026}i j ∀∈,不妨令ija a ≤,① 如果1ija a==或2018ija a==,由于120184,4q q==,所以符合条件;② 如果1,2ija a==或2017,2018ija a==,由于120184,4q q==,220172,2q q ==,所以也成立; ③ 如果1,2ija a=>,则可选取2,1st j aa a ==-;同样的,如果2017,2018ija a<=,则可选取1,2017si t aa a =+=,使得ijs ta aa a +=+,且,,,i j s t两两不相等; ④ 如果12018ija a<<≤,则可选取1,1si t j aa a a =-=+,注意到这种情况每个数最多被选取了一次,因此也成立.综上,对任意,i j ,总存在,s t ,使得ijs ta aa a +=+,其中,,,{1,2,,}i j s t n ∈且两两不相等.因此nB 满足题目要求,所以n 的最小值为2026. [13分]。
2018年高三数学一模试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21012A =--,,,,,()(){}130B x x x =-+<,则A B = ( ) A .{}21,0--, B .{}0,1 C .{}1,01-, D .{}0,1,2 2.已知复数21iz i=+(i 为虚数单位),则z 的共轭复数为( ) A .1i -+ B .1i -- C .1i + D .1i - 3.下列说法正确的是( )A .若命题0:p x R ∃∈,20010x x -+<,则:p x R ⌝∀∉,210x x -+≥B .已知相关变量(),x y 满足回归方程 24y x =-,若变量x 增加一个单位,则y 平均增加4个单位C .命题“若圆()()22:11C x m y m -++-=与两坐标轴都有公共点,则实数[]0,1m ∈”为真命题D .已知随机变量()22X N σ ,,若()0.32P X a <=,则()40.68P X a >-=4.如图,在边长为2的正方形ABCD 中,M 是AB 的中点,过C ,M ,D 三点的抛物线与CD 围成阴影部分,则向正方形内撒一粒黄豆落在阴影部分的概率是( )A .16 B .13 C.12 D .235.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .33cmB .35cm C. 34cm D .36cm6.已知正项等比数列{}n a 的前n 项和为n S ,若48102a a a =,则3S 的最小值为( ) A .2 B .3 C.4 D.67.20世纪70年代,流行一种游戏——角谷猜想,规则如下:任意写出一个自然数n ,按照以下的规律进行变换:如果n 是个奇数,则下一步变成31n +;如果n 是个偶数,则下一步变成2n,这种游戏的魅力在于无论你写出一个多么庞大的数字,最后必然会落在谷底,更准确地说是落入底部的4-2-1循环,而永远也跳不出这个圈子,下列程序框图就是根据这个游戏而设计的,如果输出的i 值为6,则输入的n 值为( )A .5B .16C.5或32 D .4或5或32 8.在)12nx -的二项展开式中,若第四项的系数为7-,则n =( )A .9B .8 C.7 D .69.已知等差数列{}n a 的前n 项和为n S ,且8430S S =-≠,则412S S 的值为( ) A .13-B .112- C.112 D .1310.将函数()22sin cos f x x x x =-()0t t >个单位长度,所得图象对应的函数为奇函数,则t 的最小值为( ) A .23π B .3π C. 2π D .6π 11.如图,过抛物线()220y px p =>焦点F 的直线交抛物线于A ,B 两点,交其准线l 于点C ,若2BC BF =,且3AF =,则此抛物线方程为( )A .29y x =B .26y x = C.23y x = D.2y =12.已知函数()()23xf x x e =-,设关于x 的方程()()()22120f x mf x m R e--=∈有n 个不同的实数解,则n 的所有可能的值为( )A .3B .1或3 C.4或6 D .3或4或6第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量()1,1a =- ,(),1b t =,若()()//a b a b +- ,则实数t =.14.设实数x ,y 满足不等式组70,310,350,x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩则2z x y =-的最大值为.15.已知双曲线经过点(1,,其一条渐近线方程为2y x =,则该双曲线的标准方程为. 16.已知等腰直角ABC △的斜边2BC =,沿斜边的高线AD 将ADC △折起,使二面角B ADC --的大小为3π,则四面体ABCD 的外接球的表面积为. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知在ABC △中,角A ,B ,C 的对边分别为a ,b ,c,且有cos cos cos 0a B b A C +=.(1)求角C 的大小;(2)当2c =时,求ABC S △的最大值.18. 某调查机构随机调查了20岁到70岁之间的600位网上购物者的年龄分布情况,并将所得数据按照[)20,30,[)30,40,[)40,50,[)50,60,[]60,70分成5组,绘制成频率分布直方图(如图).(1)求频率分布直方图中实数m 的值及这600位网上购物者中年龄在[)40,60内的人数; (2)现采用分层抽样的方法从参与调查的600位网上购物者中随机抽取10人,再从这10人中任选2人,设这2人中年龄在[)30,40内的人数为X ,求X 的分布列和数学期望.19. 如图,菱形ABCD 与四边形BDEF 相交于BD ,120ABC ∠=,BF ⊥平面ABCD ,//DE BF ,2BF DE =,AF FC ⊥,M 为CF 的中点,AC BD G = .(1)求证://GM 平面CDE ;(2)求直线AM 与平面ACE 成角的正弦值.20. 已知椭圆E 的两个焦点为()110F -,,()210F ,,离心率2e =(1)求椭圆E 的方程;(2)设直线():0l y x m m =+≠与椭圆E 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点T ,当m 变化时,求TAB △面积的最大值. 21. 已知函数()21axf x x e-=-(a 是常数).(1)求函数()y f x =的单调区间;(2)当()0,16x ∈时,函数()f x 有零点,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为,sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数).在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l sin 34πθ⎛⎫-= ⎪⎝⎭. (1)求曲线C 的普通方程及直线l 的直角坐标方程;(2)设P 是曲线C 上的任意一点,求点P 到直线l 的距离的最大值. 23.选修4-5:不等式选讲 已知函数()21f x x =-.(1)求不等式()1f x ≤的解集A ;(2)当,m n A ∈时,证明:1m n mn +≤+.试卷答案一、选择题1-5:ADCDB 6-10:DCBBD 11、12:CA 二、填空题13.1- 14.8 15.2214y x -= 16.73π三、解答题17.解:(1)因为cos cos cos 0a B b A C +=,由正弦定理,得sin cos sin cos cos 0A B B A C C +=,即()sin cos 0A B C C +=,即sin cos 0C C C =. 因为在ABC △中,0C π<<,所以sin 0C ≠,所以cos 2C =,解得4C π=.(2)由余弦定理,得222222cos c a b ab C a b =+-=+,即(224=2a b ab +≥,故(22ab ≤=,当且仅当a b ==.所以(11sin 221222ABC S ab C =≤⨯⨯=+△即ABC S △的最大值为118.解:(1)由频率分布直方图,可得()0.0300.0260.0140.012101m ++++⨯=,得0.018m =.则这600位网上购物者中年龄在[)40,60内的频率为()0.0180.01410=0.32+⨯, 故这600位网上购物者中年龄在[)40,60内的人数为6000.32=192⨯.(2)由频率分布直方图可知,年龄在[)30,40内的人数与其他年龄段的总人数比为0.03010310.030107⨯=-⨯,由分层抽样的知识知,抽出的10人中年龄在[)30,40内的人数为3,其他年龄段的总人数为7.所以X 的可能取值为0,1,2.()023********C C P X C ===,()11372107115C C P X C ===,()20372101215C C P X C ===所以X 的分布列为故X 的数学期望()0121515155E X =⨯+⨯+⨯=. 19.(1)证明:取BC 的中点N ,连接GN ,MN . 因为G 为菱形对角线的交点,所以G 为AC 中点.又N 为BC 中点,所以//GN CD ,又GN ⊄平面CDE ,CD ⊂平面CDE ,所以//GN 平面CDE .又因为M ,N 分别为FC ,BC 的中点.所以//MN FB ,又因为//DE BF ,所以//DE MN ,MN ⊄平面CDE ,DE ⊂平面CDE ,所以//MN 平面CDE ,又MN ,GN ⊂平面MNG ,MN GN N = ,所以平面//GMN 平面CDE .又GM ⊂平面GMN ,所以//GM平面CDE . (2)解:连接GF .设菱形的边长2AB =,则由120ABC ∠=,得1GB GD ==,GA GC ==又因为AF FC ⊥,所以FG GA ==则在直角GBF △中,BFDE =.由BF ⊥平面ABCD ,//DE BF ,得DE ⊥平面ABCD .以G 为坐标原点,分别以GA ,GD 所在直线为x 轴,y 轴,过点G 与平面ABCD 垂直的直线为z 轴,建立空间直角坐标系G xyz -,则()0,0,0G,)0A,,01E ⎛ ⎝⎭,(0F -,,1,222M ⎛-- ⎝⎭,则)0GA =,,01GE ⎛= ⎝⎭ . 设(),,m x y z =为平面ACE 的一个法向量,则0,0,m GA m GE ⎧=⎪⎨=⎪⎩即00y z =⎨+=⎪⎩.令z =1y =-,所以(0,m =-.又1,22AM ⎛=- ⎝⎭,所以11cos ,10AM mAM m AM m+=== . 设直线AM 与平面ACE 所成角为θ,则sin θ=. 所以直线AM 与平面ACE20.解:(1)由离心率2e =1c =,解得a =所以1b =.所以椭圆E 的方程是2212x y +=. (2)解:设()11,A x y ,()22,B x y ,据221,2x y y x m ⎧+=⎪⎨⎪=+⎩得2234220x mx m ++-= ∵直线l 与椭圆E 有两个不同的交点,∴()()22412220m m ∆=-->,又0m ≠,所以m <0m ≠.由根与系数的关系得1243mx x -+=,212223m x x -=设线段AB 中点为C ,点C 横坐标12223C x x m x +==-,3C C my x m =+=,∴2,33m m C ⎛⎫- ⎪⎝⎭,∴线段AB 垂直平分线方程为233m m y x ⎛⎫-=-+ ⎪⎝⎭,∴点T 坐标为,03m ⎛⎫- ⎪⎝⎭,点T 到直线AB的距离d =,又AB ==,所以123TABS =△=232m =时,三角形TAB 面积最大,且()max TAB S =△.21.解:(1)当0a =时,()21f x x =-,函数在()0+∞,上单调递增,在()0-∞,上单调递减.当0a ≠时,()()()'2222ax ax axf x xe x a e eax x ---=+-=-+,因为0ax e ->, 令()220g x ax x =-+=,解得0x =或2x a=. ①当0a >时,函数()22g x ax x =-+在20,a⎡⎤⎢⎥⎣⎦上有()0g x ≥,即()'0f x ≥,函数()y f x =单调递增;函数()22g x ax x =-+在(),0-∞,2,a ⎛⎫+∞⎪⎝⎭上有()0g x <,即()'0f x <,函数()y f x =单调递减;②当0a <时,函数()22g x ax x =-+在2a ⎛⎫-∞ ⎪⎝⎭,,()0,+∞上有()0g x >,即()'0f x >,函数()y f x =单调递增;函数()22g x ax x =-+在2,0a ⎡⎤⎢⎥⎣⎦上有()0g x ≤,即()'0f x ≤,函数()y f x =单调递减.综上所述,当0a =时,函数()y f x =的单调递增区间为()0,+∞,递减区间为(),0-∞;当0a >时,函数()y f x =的单调递增区间为20,a ⎡⎤⎢⎥⎣⎦,递减区间为(),0-∞,2,a ⎛⎫+∞ ⎪⎝⎭; 当0a <时,函数()y f x =的单调递增区间为2,a ⎛⎫-∞ ⎪⎝⎭,()0,+∞,递减区间为2,0a ⎡⎤⎢⎥⎣⎦. (2)①当0a =时,由()210f x x =-=,可得1x =±,()10,16∈,故0a =满足题意. ②当0a >时,函数()y f x =在20,a ⎡⎤⎢⎥⎣⎦上单调递增,在2,a ⎛⎫+∞ ⎪⎝⎭上单调递减,(i )若()20,16a ∈,解得18a >. 可知20,x a ⎛⎫∈ ⎪⎝⎭时,()f x 是增函数,2,16x a ⎛⎫∈ ⎪⎝⎭时,()f x 是减函数,由()010f =-<,∴在()0,16上()2max 22410f x f e a a-⎛⎫==-≥⎪⎝⎭, 解得22a e e -≤≤,所以128a e <≤; (ii )若[)216,a ∈+∞,解得108a <≤.函数()y f x =在()0,16上递增, 由()010f =-<,则()161625610af e-=->,解得1ln 22a <.由11ln 228>,所以10,8a ⎛⎤∈ ⎥⎝⎦.③当0a <时,函数()y f x =在()0,16上递增,()01f =-,()161625610af e -=->,解得1ln 22a <, ∴0a <,综上所述,实数a 的取值范围是2,e⎛⎤-∞ ⎥⎝⎦.22.解:(1)因为2222cos sin 1y θθ+=+=, 所以曲线C 的普通方程为2213x y +=.sin 34πθ⎛⎫-= ⎪⎝⎭,展开得sin cos 3ρθρθ-=,即3y x -=, 因此直线l 的直角坐标方程为30x y -+=. (2)设),sin Pθθ,则点P 到直线l的距离为d ==≤ 等号成立当且仅当sin 13πθ⎛⎫-=- ⎪⎝⎭,即()1126k k Z πθπ=+∈时等号成立,即31,22P ⎛⎫- ⎪⎝⎭, 因此点P 到直线l的距离的最大值为223.(1)解:由211x -≤,得1211x -≤-≤,即1x ≤, 解得11x -≤≤,所以[]11A =-,.(2)证明:(证法一)()()()222222221111m n mn m n m n m n +-+=+--=---因为,m n A ∈,所以11m -≤≤,11n -≤≤,210m -≤,210n -≤, 所以()()22110m n ---≤,()221m n mn +≤+,又10mn +≥,故1m n mn +≤+.(证法二)因为,m n A ∈,故11m -≤≤,11n -≤≤, 而()()()1110m n mn m n +-+=--≤()()()1110m n mn m n +--+=++≥⎡⎤⎣⎦,即()11mn m n mn -+≤+≤+,故1m n mn +≤+.。
2018北京六区高三一模数学(理)解答题分类汇编--概率统计【西城一模】16.(本小题满分13分)某企业2017年招聘员工,其中A 、B 、C 、D 、E 五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:(Ⅱ)从应聘E 岗位的6人中随机选择2人.记X 为这2人中被录用的人数,求X 的分布列和数学期望; (Ⅲ)表中A 、B 、C 、D 、E 各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论) 解:(Ⅰ)因为表中所有应聘人员总数为5334671000+=,被该企业录用的人数为264169433+=,所以从表中所有应聘人员中随机选择1人,此人被录用的概率约为4331000P =.[3分] (Ⅱ)X 可能的取值为0,1,2.[4分]因为应聘E 岗位的6人中,被录用的有4人,未被录用的有2人,[5分]所以2226C 1(0)C 15P X ===;112426C C 8(1)C 15P X ===;2426C 2(2)C 5P X ===.[8分] 所以X 的分布列为:()012151553E X =⨯+⨯+⨯=.[10分] (Ⅲ)这四种岗位是:B 、C 、D 、E .[13分] 【朝阳一模】17.(本小题满分13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率;(Ⅲ)从选考方案确定的8名男生中随机选出2名,设随机变量221,2,ξ⎧=⎨⎩名男生选考方案相同名男生选考方案不同,,求ξ的分布列及数学期望E ξ.解:(Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有1018420=1401830⨯⨯人. ……….3分(Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为21=84; 选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为310. 所以该男生和该女生的选考方案中都含有历史学科的概率为13341040⨯=.…….8分(Ⅲ)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史;有1人选择物理、化学和地理;有1人选择物理、化学和政治. 由已知得ξ的取值为1,2.2242281(1)4C C P C ξ+===, 1111422228()213(2)4C C C C P C ξ++⨯+===, 或3(2)1(1)4P P ξξ==-==. 所以ξ的分布列为所以13712444E ξ=⨯+⨯=. …….13分 【丰台一模】(17)(本小题共13分)某地区工会利用 “健步行APP”开展健步走积分奖励活动.会员每天走5千步可获积分30分(不足5千步不积分),每多走2千步再积20分(不足2千步不积分).记年龄不超过40岁的会员为A 类会员,年龄大于40岁的会员为B 类会员.为了解会员的健步走情况,工会从A ,B 两类会员中各随机抽取m 名会员,统计了某天他们健步走的步数,并将样本数据分为[3,5),[5,7),[7,9),[9,11),[11,13),[13,15),[15,17),[17,19),[19,21]九组,将抽取的A 类会员的样本数据绘制成频率分布直方图,B 类会员的样本数据绘制成频率分布表(图、表如下所示).(Ⅰ)求m 和a 的值;0.01步数(单位:千步)0.02 0.03 0.04 0.05 0.10.15(Ⅱ)从该地区A 类会员中随机抽取3名,设这3名会员中健步走的步数在13千步以上(含13千步)的人数为X ,求X 的分布列和数学期望; (Ⅲ)设该地区A 类会员和B 类会员的平均积分分别为1X 和2X ,试比较1X 和2X 的大小(只需写出结论). (17)(本小题共13分) 解:(Ⅰ)因为100.01m=,所以 1000m =. ……………………2分 因为0.2nm=,所以 200n =,所以400a =. …………………4分 所以 1000m =,400a =.(Ⅱ)由频率分布直方图可得,从该地区A 类会员中随机抽取1名会员,健步走的步数在13千步以上(含13千步)的概率为25. ……………………5分 所以2(3,)5XN ,03033227(0)()()55125P X C ==⨯⨯=;12133254(1)()()55125P X C ==⨯⨯=; 21233236(2)()()55125P X C ==⨯⨯=;3033328(3)()()55125P X C ==⨯⨯=. ………………7分 所以,X 的分布列为26()355E X =⨯=. ……………………10分(Ⅲ)12X X <. ……………………13分 【海淀一模】 ( 16)(本小题13分)流行性感冒多由病毒引起,据调查,空气月平均相对湿度过大或过小时,都有利J=-些病毒繁殖和传播,科学测定,当空气月平均相对湿度大于65010或小于40%时,有利于病毒繁殖和传播.下表记录了某年甲、乙两个城市12个月的空气月平均相对湿度(I) 和传播的概率;(Ⅱ)从上表第一季度和第二季度的6个月中随机取出2个月,记这2个月中甲、乙两地空 气月平均相对湿度都有利于病毒繁殖和传播的月份的个数为X ,求X 的分布列;(Ⅲ)若108a b +=,设乙地上表12个月的空气月平均相对湿度的中位数为M ,求M 的最大值和最小值.(只需写出结论)16.(本题满分13分)(Ⅰ)设事件A :从上表12个月中,随机取出1个月,该月甲地空气月平均相对湿度有利于病毒繁殖和传播.用i A 表示事件抽取的月份为第i 月,则123456789101112{,,,,,,,,,,,}A A A A A A A A A A A A Ω=共12个基本事件, 26891011{,,,,,}A A A A A A A =共6个基本事件,所以,61()122P A ==. ······················· 4分 (Ⅱ)在第一季度和第二季度的6个月中,甲、乙两地空气月平均相对湿度都有利于病毒繁殖和传播的月份只有2月和6月,故X 所有可能的取值为0,1,2.242662(0)155C P X C ====,1124268(1)15C C P X C ===,22261(2)15C P X C ===随机变量X 的分布列为(Ⅲ)M 【东城一模】 (16)(本小题13分)从高一年级随机选取100名学生,对他们期中考试的数学和语文成绩进行分析,成绩如图所示.(Ⅰ)从这100名学生中随机选取一人,求该生数学和语文成绩均低于60分的概率;(II )从语文成绩大于80分的学生中随机选取两人,记这两人中数学成绩高于80分的人数为ξ,求ξ的分布列和数学期望E(ξ);(Ill )试判断这100名学生数学成绩的方差a 与语文成绩的方差b 的大小.(只需写出结论) (16)(共13分)解:(I )由图知,在被选取的100名学生中,数学和语文成绩均低于60分的有9人,所以从100名学生中随机选取一人,该生数学和语文成绩均低于60分的概率为90.09100=. ……………………………………………………………………………………3分(Ⅱ)由图知,语文成绩大于80分的学生优10人,这10人中数学成绩高于80分的有4人,所以x 的所有可能取值为0,1,2.262101(0)3C P C x ===,11462108(1)15C C P C x ===,242102(2)15C P C x ===,所以x 的分布列为故x 的数学期望1()012315155E x =???. ……………………………10分 (Ⅲ)由图判断,a b >. …………………………………………13分 【石景山一模】16.(本小题共13分)抢“微信红包”已经成为中国百姓欢度春节时非常喜爱的一项活动.小明收集班内 20名同学今年春节期间抢到红包金额x (元)如下(四舍五入取整数):102 52 41 121 72 162 50 22 158 46 43 136 95 192 59 99 22 68 98 79对这20个数据进行分组,各组的频数如下:(Ⅰ)写出m ,n(Ⅱ)记C 组红包金额的平均数与方差分别为1v 、21s ,E 组红包金额的平均数与方差分别为2v 、22s ,试分别比较1v 与2v 、21s 与22s 的大小;(只需写出结论)(Ⅲ)从A ,E 两组的所有数据中任取2个数据,记这2个数据差的绝对值为ξ,求ξ的分布列和数学期望. 16.(本小题共13分)解:(Ⅰ)m =4,n =2,B ;………………… 3分(Ⅱ)1v <2v ,21s <22s ; ………………… 6分(Ⅲ)ξ的可能取值为0,30,140,170,ξ的数学期望为03014017066333E ξ=⨯+⨯+⨯+⨯=. ………………… 13分。
2018年高考理科数学模拟试卷(一)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知集合S={1,2},设S的真子集有m个,则m=()A.4 B.3 C.2 D.12.已知i为虚数单位,则的共轭复数为()A.﹣+i B. +i C.﹣﹣i D.﹣i3.已知、是平面向量,如果||=3,||=4,|+|=2,那么|﹣|=()A. B.7 C.5 D.4.在(x﹣)10的二项展开式中,x4的系数等于()A.﹣120 B.﹣60 C.60 D.1205.已知a,b,c,d都是常数,a>b,c>d,若f(x)=2017﹣(x﹣a)(x﹣b)的零点为c,d,则下列不等式正确的是()A.a>c>b>d B.a>b>c>d C.c>d>a>b D.c>a>b>d6.公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π,他从圆内接正六边形算起,令边数一倍一倍地增加,即12,24,48,…,192,…,逐个算出正六边形,正十二边形,正二十四边形,…,正一百九十二边形,…的面积,这些数值逐步地逼近圆面积,刘徽算到了正一百九十二边形,这时候π的近似值是3.141024,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无穷,这种思想及其重要,对后世产生了巨大影响,如图是利用刘徽的“割圆术”思想设计的一个程序框图,若运行改程序(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305),则输出n的值为()A.48 B.36 C.30 D.247.在平面区域内随机取一点(a,b),则函数f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数的概率为()A. B.C.D.8.已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.12 B.18 C.24 D.3010.已知常数ω>0,f(x)=﹣1+2sinωxcosωx+2cos2ωx图象的对称中心得到对称轴的距离的最小值为,若f(x0)=,≤x0≤,则cos2x0=()A.B.C.D.11.已知三棱锥P﹣ABC的所有顶点都在表面积为16π的球O的球面上,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,设二面角P﹣AB﹣C的大小为θ,则sinθ=()A. B.C.D.12.抛物线M的顶点是坐标原点O,抛物线M的焦点F在x轴正半轴上,抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,设A是抛物线M上的一点,若•=﹣4,则点A的坐标是()A.(﹣1,2)或(﹣1,﹣2)B.(1,2)或(1,﹣2)C.(1,2) D.(1,﹣2)二、填空题(共4小题,每小题5分,满分20分)13.某校1000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N(90,σ2),若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70分的人数为人.14.过双曲线﹣=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率的取值范围为.15.计算=(用数字作答)16.已知f(x)=,若f (x﹣1)<f(2x+1),则x的取值范围为.三、解答题(共5小题,满分60分)17.设数列{a n}的前n项和为S n,a1=1,当n≥2时,a n=2a n S n﹣2S n2.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.18.云南省20XX年高中数学学业水平考试的原始成绩采用百分制,发布成绩使用等级制,各登记划分标准为:85分及以上,记为A等,分数在[70,85)内,记为B等,分数在[60,70)内,记为C等,60分以下,记为D等,同时认定等级分别为A,B,C都为合格,等级为D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D的所有数据茎叶图.(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲、乙两校C等级的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中甲校的学生人数,求随机变量X的分布列和数学期望.19.如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,平面ABCD⊥平面SBC,SB=SC,M是BC的中点,AB=1,BC=2.(1)求证:AM⊥SD;(2)若二面角B﹣SA﹣M的正弦值为,求四棱锥S﹣ABCD的体积.20.已知椭圆E的中心在原点,焦点F1、F2在y轴上,离心率等于,P 是椭圆E上的点,以线段PF1为直径的圆经过F2,且9•=1.(1)求椭圆E的方程;(2)做直线l与椭圆E交于两个不同的点M、N,如果线段MN被直线2x+1=0平分,求l的倾斜角的取值范围.21.已知e是自然对数的底数,实数a是常数,函数f(x)=e x﹣ax﹣1的定义域为(0,+∞).(1)设a=e,求函数f(x)在切点(1,f(1))处的切线方程;(2)判断函数f(x)的单调性;(3)设g(x)=ln(e x+x3﹣1)﹣lnx,若∀x>0,f(g(x))<f(x),求a 的取值范围.[选修4-4:坐标系与参数方程选讲]22.已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵集合S={1,2},∴S的真子集的个数为:22﹣1=3.故选:B.2.解:∵=,∴的共轭复数为.故选:C.3.解:根据条件:==4;∴;∴=9﹣(﹣21)+16=46;∴.故选:A.==(﹣1)r x10﹣2r,4.解:通项公式T r+1令10﹣2r=4,解得r=3.∴x4的系数等于﹣=﹣120.故选:A5.解:由题意设g(x)=(x﹣a)(x﹣b),则f(x)=2017﹣g(x),所以g(x)=0的两个根是a、b,由题意知:f(x)=0 的两根c,d,也就是g(x)=2017 的两根,画出g(x)(开口向上)以及直线y=2017的大致图象,则与f(x)交点横坐标就是c,d,f(x)与x轴交点就是a,b,又a>b,c>d,则c,d在a,b外,由图得,c>a>b>d,故选D.6.解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:D.7.解:作出不等式组对应的平面区域如图:对应的图形为△OAB,其中对应面积为S=×4×4=8,若f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数,则满足a>0且对称轴x=﹣≤1,即,对应的平面区域为△OBC,由,解得,∴对应的面积为S1=××4=,∴根据几何概型的概率公式可知所求的概率为=,故选:B.8.解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.9.解:由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,切去一个三棱锥所得的组合体,其底面面积S=×3×4=6,棱柱的高为:5,棱锥的高为3,故组合体的体积V=6×5﹣×6×3=24,故选:C10.解:由f(x)=﹣1+2sinωxcosωx+2cos2ωx,化简可得:f(x)=sin2ωx+cos2ωx=2sin(2ωx+)∵对称中心得到对称轴的距离的最小值为,∴T=π.由,可得:ω=1.f(x0)=,即2sin(2x0+)=∵≤x0≤,∴≤2x0+≤∴sin(2x0+)=>0∴cos(2x0+)=.那么:cos2x0=cos(2x0+﹣)=cos(2x0+)cos+sin(2x0+)sin=故选D11.解:如图所示:由已知得球的半径为2,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,△ABC为等腰直角三角形,P在面ABC上的射影为圆心O,过圆心O作OD⊥AB于D,连结PD,则∠PDO为二面角P﹣AB﹣C的平面角,在△ABC△中,PO=2,OD=BC=,∴,sinθ=.故选:C12.解:x2+y2﹣6x+4y﹣3=0,可化为(x﹣3)2+(y+2)2=16,圆心坐标为(3,﹣2),半径为4,∵抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,∴3+=4,∴p=2.∴F(1,0),设A(,y0)则=(,y0),=(1﹣,﹣y0),由•=﹣4,∴y0=±2,∴A(1,±2)故选B.二、填空题(共4小题,每小题5分,满分20分)13.解:由X服从正态分布N(90,σ2)(σ>0),且P(70≤X≤110)=0.35,得P(X≤70)=(1﹣0.35)=.∴估计这次考试分数不超过70分的人数为1000×=325.故答案为:325.14.解:设双曲线﹣=1(a>0,b>0)的右焦点为(c,0),当x=c时代入双曲线﹣=1得y=±,则A(c,),B(c,﹣),则AB=,将x=c代入y=±x得y=±,则C(c,),D(c,﹣),则|CD|=,∵|AB|≥|CD|,∴≥•,即b≥c,则b2=c2﹣a2≥c2,即c2≥a2,则e2=≥,则e≥.故答案为:[,+∞).15.解:由===.故答案为:.16.解:∵已知f(x)=,∴满足f(﹣x)=f(x),且f(0)=0,故f(x)为偶函数,f(x)在[0,+∞)上单调递增.若f(x﹣1)<f(2x+1),则|x﹣1|<|2x+1|,∴(x﹣1)2<(2x+1)2,即x2+2x>0,∴x>0,或x<﹣2,故答案为:{x|x>0,或x<﹣2}.三、解答题(共5小题,满分60分)17.解:(1)∵当n≥2时,a n=2a n S n﹣2S n2,∴a n=,n≥2,∴(S n﹣S n﹣1)(2S n﹣1)=2S n2,∴S n﹣S n﹣1=2S n S n﹣1,∴﹣2,n≥2,∴数列{}是以=1为首项,以2为公差的等差数列,∴=1+2(n﹣1)=2n﹣1,∴S n=,∴n≥2时,a n=S n﹣S n﹣1=﹣=﹣,∵a1=S1=1,∴a n=,(2)设f(n)=,则==>1,∴f(n)在n∈N*上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,∵f(n)min=f(1)=,∴0<k≤18.解:(1)由频率分布直方图可得:(x+0.012+0.056+0.018+0.010)×10=1,解得x=0.004.甲校的合格率P1=(1﹣0.004)×10=0.96=96%,乙校的合格率P2==96%.可得:甲乙两校的合格率相同,都为96%.(2)甲乙两校的C等级的学生数分别为:0.012×10×50=6,4人.X=0,1,2,3.则P(X=k)=,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.∴X的分布列为:X0123PE(X)=0+1×+2×+3×=.19.证明:(1)∵SB=SC,M是BC的中点,∴SM⊥BC,∵平面ABCD⊥平面SBC,平面ABCD∩平面SBC=BC,∴SM⊥平面ABCD,∵AM⊂平面ABCD,∴SM⊥AM,∵底面ABCD是矩形,M是BC的中点,AB=1,BC=2,∴AM2=BM2==,AD=2,∴AM2+BM2=AD2,∴AM⊥DM,∵SM∩DM=M,∴AM⊥平面DMS,∵SD⊂平面DMS,∴AM⊥SD.解:(2)∵SM⊥平面ABCD,∴以M为原点,MC为x轴,MS为y轴,过M作平面BCS的垂线为z轴,建立空间直角坐标系,设SM=t,则M(0,0,0),B(﹣1,0,0),S(0,t,0),A(﹣1,0,1),=(0,0,1),=(1,t,0),=(﹣1,0,1),=(0,t,0),设平面ABS的法向量=(x,y,z),则,取x=1,得=(1,﹣,0),设平面MAS的法向量=(a,b,c),则,取a=1,得=(1,0,1),设二面角B﹣SA﹣M的平面角为θ,∵二面角B﹣SA﹣M的正弦值为,∴sinθ=,cosθ==,∴cosθ===,解得t=,∵SM⊥平面ABCD,SM=,∴四棱锥S﹣ABCD的体积:V S﹣=== ABCD.20.解:(1)由题意可知:设题意的方程:(a>b>0),e==,则c=a,设丨PF1丨=m,丨PF2丨=n,则m+n=2a,线段PF1为直径的圆经过F2,则PF2⊥F1F2,则n2+(2c)2=m2,9m•n×cos∠F1PF2=1,由9n2=1,n=,解得:a=3,c=,则b==1,∴椭圆标准方程:;(2)假设存在直线l,依题意l交椭圆所得弦MN被x=﹣平分,∴直线l的斜率存在.设直线l:y=kx+m,则由消去y,整理得(k2+9)x2+2kmx+m2﹣9=0∵l与椭圆交于不同的两点M,N,∴△=4k2m2﹣4(k2+9)(m2﹣9)>0,即m2﹣k2﹣9<0①设M(x1,y1),N(x2,y2),则x1+x2=﹣∴=﹣=﹣,∴m=②把②代入①式中得()2﹣(k2+9)<0∴k>或k<﹣,∴直线l倾斜角α∈(,)∪(,).21.解:(1)a=e时,f(x)=e x﹣ex﹣1,f(1)=﹣1,f′(x)=e x﹣e,可得f′(1)=0,故a=e时,函数f(x)在切点(1,f(1))处的切线方程是y=﹣1;(2)f(x)=e x﹣ax﹣1,f′(x)=e x﹣a,当a≤0时,f′(x)>0,则f(x)在R上单调递增;当a>0时,令f′(x)=e x﹣a=0,得x=lna,则f(x)在(﹣∞,lna]上单调递减,在(lna,+∞)上单调递增.(3)设F(x)=e x﹣x﹣1,则F′(x)=e x﹣1,∵x=0时,F′(x)=0,x>0时,F′(x)>0,∴F(x)在[0,+∞)递增,∴x>0时,F(x)>F(0),化简得:e x﹣1>x,∴x>0时,e x+x3﹣1>x,设h(x)=xe x﹣e x﹣x3+1,则h′(x)=x(e x﹣ex),设H(x)=e x﹣ex,H′(x)=e x﹣e,由H′(x)=0,得x=1时,H′(x)>0,x<1时,H′(x)<0,∴x>0时,H(x)的最小值是H(1),x>0时,H(x)≥H(1),即H(x)≥0,∴h′(x)≥0,可知函数h(x)在(0,+∞)递增,∴h(x)>h(0)=0,化简得e x+x3﹣1<xe x,∴x>0时,x<e x+x3﹣1<xe x,∴x>0时,lnx<ln(e x+x3﹣1)<lnx+x,即0<ln(e x+x3﹣1)﹣lnx<x,即x>0时,0<g(x)<x,当a≤1时,由(2)得f(x)在(0,+∞)递增,得f(g(x))<f(x)满足条件,当a>1时,由(2)得f(x)在(0,lna)递减,∴0<x≤lna时,f(g(x))>f(x),与已知∀x>0,f(g(x))<f(x)矛盾,综上,a的范围是(﹣∞,1].[选修4-4:坐标系与参数方程选讲]22.解:(Ⅰ)直线L的参数方程为(t为参数),普通方程为2x+y﹣6=0,极坐标方程为2ρcosθ+ρsinθ﹣6=0,曲线C的极坐标方程为ρ=,即ρ2+3ρ2cos2θ=4,曲线C 的普通方程为=1;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,当sin(θ+45°)=﹣1时,|PA|取得最大值,最大值为.[选修4-5:不等式选讲]23.解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得x>3.综上可得,原不等式的解集为{x|x<﹣6,或x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].2018年高考理科数学模拟试卷(二)(考试时间120分钟满分150分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.复数z满足方程=﹣i(i为虚数单位),则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|x2+x﹣2<0},集合B={x|(x+2)(3﹣x)>0},则(∁R A)∩B 等于()A.{x|1≤x<3}B.{x|2≤x<3}C.{x|﹣2<x<1}D.{x|﹣2<x≤﹣1或2≤x<3}3.下列函数中,在其定义域内,既是奇函数又是减函数的是()A.f(x)=B.f(x)=C.f(x)=2﹣x﹣2x D.f(x)=﹣tanx 4.已知“x>2”是“x2>a(a∈R)”的充分不必要条件,则a的取值范围是()A.(﹣∞,4)B.(4,+∞)C.(0,4]D.(﹣∞,4]5.已知角α是第二象限角,直线2x+(t anα)y+1=0的斜率为,则cosα等于()A. B.﹣C.D.﹣6.执行如图所示的程序框图,若输入n的值为8,则输出s的值为()A.16 B.8 C.4 D.27.(﹣)8的展开式中,x的系数为()A.﹣112 B.112 C.56 D.﹣568.在△ABC中,∠A=60°,AC=3,面积为,那么BC的长度为()A.B.3 C.2D.9.记曲线y=与x轴所围成的区域为D,若曲线y=ax(x ﹣2)(a<0)把D的面积均分为两等份,则a的值为()A.﹣B.﹣C.﹣D.﹣10.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e,众数为m0,平均值为,则()A.m e=m0=B.m e=m0<C.m e<m0<D.m0<m e<11.已知矩形ABCD的顶点都在半径为5的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的侧面积为()A.20+8B.44 C.20 D.4612.函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后关于y轴对称,则以下判断不正确的是()A.是奇函数 B.为f(x)的一个对称中心C.f(x)在上单调递增D.f(x)在(0,)上单调递减二、填空题:本大题共4小题,每小题5分,共20分.13.若变量x,y满足约束条件,则z=2x﹣y的最大值为.14.如图所示是一个几何体的三视图,则这个几何体的体积为.15.已知抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,点P是抛物线y2=8x上的一动点,P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,则该双曲线的方程为.16.已知向量,的夹角为θ,|+|=2,|﹣|=2则θ的取值范围为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知S n为等差数列{a n}的前n项和,S6=51,a5=13.(1)求数列{a n}的通项公式;(2)数列{b n}的通项公式是b n=,求数列{b n}的前n项和S n.18.袋中有大小相同的四个球,编号分别为1、2、3、4,从袋中每次任取一个球,记下其编号.若所取球的编号为偶数,则把该球编号改为3后放同袋中继续取球;若所取球的编号为奇数,则停止取球.(1)求“第二次取球后才停止取球”的概率;(2)若第一次取到偶数,记第二次和第一次取球的编号之和为X,求X的分布列和数学期望.19.在三棱椎A﹣BCD中,AB=BC=4,AD=BD=CD=2,在底面BCD内作CE ⊥CD,且CE=.(1)求证:CE∥平面ABD;(2)如果二面角A﹣BD﹣C的大小为90°,求二面角B﹣AC﹣E的余弦值.20.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1).(1)求椭圆C的方徎;(2)若动点P在直线l:x=﹣2上,过P作直线交椭圆C于M,N两点,使得PM=PN,再过P作直线l′⊥MN,直线l′是否恒过定点,若是,请求出该定点的坐标;若否,请说明理由.21.已知函数f(x)=m(x﹣1)2﹣2x+3+lnx(m≥1).(1)求证:函数f(x)在定义域内存在单调递减区间[a,b];(2)是否存在实数m,使得曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.[选修4-1:几何证明选讲]22.选修4﹣1:几何证明选讲如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC 的中点,连接AD并延长交⊙O于点E,若PA=2,∠APB=30°.(Ⅰ)求∠AEC的大小;(Ⅱ)求AE的长.[选修4-4:极坐标与参数方程]23.选修4﹣4:坐标系与参数方程在平面直角坐标系x0y中,动点A的坐标为(2﹣3sinα,3cosα﹣2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos (θ﹣)=a.(Ⅰ)判断动点A的轨迹的形状;(Ⅱ)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣a|.(1)若a=2,解不等式f(x)≥2;(2)若a>1,∀x∈R,f(x)+|x﹣1|≥1,求实数a的取值范围.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.解:由=﹣i,得,即z=1+i.则复数z在复平面内对应的点的坐标为(1,1).位于第一象限.故选:A.2.解:∵集合A={x|x2+x﹣2<0}={x|﹣2<x<1},集合B={x|(x+2)(3﹣x)>0}={x|﹣2<x<3},∴(C R A)∩B={x|x≤﹣2或x≥1}∩{x|﹣2<x<3}={x|1≤x<3}.故选:A.3.解:A中,f(x)=是奇函数,但在定义域内不单调;B中,f(x)=是减函数,但不具备奇偶性;C中,f(x)2﹣x﹣2x既是奇函数又是减函数;D中,f(x)=﹣tanx是奇函数,但在定义域内不单调;故选C.4.解:由题意知:由x>2能得到x2>a;而由x2>a得不出x>2;∵x>2,∴x2>4;∴a≤4;∴a的取值范围是(﹣∞,4].故选:D.5.解:由题意得:k=﹣=,故tanα=﹣,故cosα=﹣,故选:D.6.解:开始条件i=2,k=1,s=1,i<8,开始循环,s=1×(1×2)=2,i=2+2=4,k=1+1=2,i<8,继续循环,s=×(2×4)=4,i=6,k=3,i<8,继续循环;s=×(4×6)=8,i=8,k=4,8≥8,循环停止,输出s=8;故选B:=(﹣2)r C8r x4﹣r,7.解:(﹣)8的展开式的通项为T r+1令4﹣r=1,解得r=2,∴展开式中x的系数为(﹣2)2C82=112,故选:B.8.解:在图形中,过B作BD⊥ACS△ABC=丨AB丨•丨AC丨sinA,即×丨AB丨×3×sin60°=,解得:丨AB丨=2,∴cosA=,丨AD丨=丨AB丨cosA=2×=1,sinA=,则丨BD丨=丨AB丨sinA=2×=,丨CD丨=丨AC丨﹣丨AD丨=3﹣1=2,在△BDC中利用勾股定理得:丨BC丨2=丨BD丨2+丨CD丨2=7,则丨BC丨=,故选A.9.解:由y=得(x﹣1)2+y2=1,(y≥0),则区域D表示(1,0)为圆心,1为半径的上半圆,而曲线y=ax(x﹣2)(a<0)把D的面积均分为两等份,∴=,∴(﹣ax2)=,∴a=﹣,故选:B.10.解:根据题意,由题目所给的统计图可知:30个得分中,按大小排序,中间的两个得分为5、6,故中位数m e=5.5,得分为5的最多,故众数m0=5,其平均数=≈5.97;则有m0<m e<,故选:D.11.解:由题意可知四棱锥O﹣ABCD的侧棱长为:5.所以侧面中底面边长为6和2,它们的斜高为:4和2,所以棱锥O﹣ABCD的侧面积为:S=4×6+2=44.故选B.12.解:把函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后,得到y=2sin(2x++φ+π)=﹣2sin(2x++φ)的图象,再根据所得关于y轴对称,可得+φ=kπ+,k∈Z,∴φ=,∴f(x)=2sin(2x++φ)=2cos2x.由于f(x+)=2cos(2x+)=﹣sin2x是奇函数,故A正确;当x=时,f(x)=0,故(,0)是f(x)的图象的一个对称中心,故B正确;在上,2x∈(﹣,﹣),f(x)没有单调性,故C不正确;在(0,)上,2x∈(0,π),f(x)单调递减,故D正确,故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.解:由约束条件作出可行域如图,联立,解得A(4,2),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过点A时,直线在y 轴上的截距最小,z有最大值为6.故答案为:6.14.解:由三视图得到几何体如图:其体积为;故答案为:15.解:抛物线y2=8x的焦点F(2,0),双曲线C:﹣=1(a>0,b >0)一条渐近线的方程为ax﹣by=0,∵抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,∴,∴2b=a,∵P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,∴FF1=3,∴c2+4=9,∴c=,∵c2=a2+b2,a=2b,∴a=2,b=1,∴双曲线的方程为﹣x2=1.故答案为:﹣x2=1.16.解:由|+|=2,|﹣|=2,可得:+2=12,﹣2=4,∴=8≥2,=2,∴cosθ=≥.∴θ∈.故答案为:.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.解:(1)设等差数列{a n}的公差为d,则∵S6=51,∴×(a1+a6)=51,∴a1+a6=17,∴a2+a5=17,∵a5=13,∴a2=4,∴d=3,∴a n=a2+3(n﹣2)=3n﹣2;(2)b n==﹣2•8n﹣1,∴数列{b n}的前n项和S n==(8n﹣1).18.解:(1)记“第二次取球后才停止取球”为事件A.∴第一次取到偶数球的概率为=,第二次取球时袋中有三个奇数,∴第二次取到奇数球的概率为,而这两次取球相互独立,∴P(A)=×=.(2)若第一次取到2时,第二次取球时袋中有编号为1,3,3,4的四个球;若第一次取到4时,第二次取球时袋中有编号为1,2,3,3的四个球.∴X的可能取值为3,5,6,7,∴P(X=3)=×=,P(X=5)=×+×=,P(X=6)=×+×=,P(X=7)=×=,∴X的分布列为:X3567P数学期望EX=3×+5×+6×+7×=.19.(1)证明:∵BD=CD=2,BC=4,∴BD2+CD2=BC2,∴BD⊥CD,∵CE⊥CD,∴CE∥BD,又CE⊄平面ABD,BD⊂平面ABD,∴CE∥平面ABD;(2)解:如果二面角A﹣BD﹣C的大小为90°,由AD⊥BD得AD⊥平面BDC,∴AD⊥CE,又CE⊥CD,∴CE⊥平面ACD,从而CE⊥AC,由题意AD=DC=2,∴Rt△ADC中,AC=4,设AC的中点为F,∵AB=BC=4,∴BF⊥AC,且BF=2,设AE中点为G,则FG∥CE,由CE⊥AC得FG⊥AC,∴∠BFG为二面角B﹣AC﹣E的平面角,连接BG,在△BCE中,∵BC=4,CE=,∠BCE=135°,∴BE=,在Rt△DCE中,DE==,于是在Rt△ADE中,AE==3,在△ABE中,BG2=AB2+BE2﹣AE2=,∴在△BFG中,cos∠BFG==﹣,∴二面角B﹣AC﹣E的余弦值为﹣.20.解:(1)∵椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1),∴,解得a2=12,b2=4,∴椭圆C的方程为.(2)∵直线l的方程为x=﹣2,设P(﹣2,y0),,当y0≠0时,设M(x1,y1),N(x2,y2),由题意知x1≠x2,联立,∴,∴,又∵PM=PN,∴P为线段MN的中点,∴直线MN的斜率为,又l′⊥MN,∴l′的方程为,即,∴l′恒过定点.当y0=0时,直线MN为,此时l′为x轴,也过点,综上,l′恒过定点.21.(1)证明:令f′(x)=0,得mx2﹣(m+2)x+1=0.(*)因为△=(m+2)2﹣4m=m2+4>0,所以方程(*)存在两个不等实根,记为a,b (a<b).因为m≥1,所以a+b=>0,ab=>0,所以a>0,b>0,即方程(*)有两个不等的正根,因此f′(x)≤0的解为[a,b].故函数f(x)存在单调递减区间;(2)解:因为f′(1)=﹣1,所以曲线C:y=f(x)在点P(1,1)处的切线l为y=﹣x+2.若切线l与曲线C只有一个公共点,则方程m(x﹣1)2﹣2x+3+lnx=﹣x+2有且只有一个实根.显然x=1是该方程的一个根.令g(x)=m(x﹣1)2﹣x+1+lnx,则g′(x)=.当m=1时,有g′(x)≥0恒成立,所以g(x)在(0,+∞)上单调递增,所以x=1是方程的唯一解,m=1符合题意.当m>1时,令g′(x)=0,得x1=1,x2=,则x2∈(0,1),易得g(x)在x1处取到极小值,在x2处取到极大值.所以g(x2)>g(x1)=0,又当x→0时,g(x)→﹣∞,所以函数g(x)在(0,)内也有一个解,即当m>1时,不合题意.综上,存在实数m,当m=1时,曲线C:y=f(x)在点P(1,1)处的切线l与C 有且只有一个公共点.[选修4-1:几何证明选讲]22.解:(Ⅰ)连接AB,因为:∠APO=30°,且PA是⊙O的切线,所以:∠AOB=60°;∵OA=OB∴∠AB0=60°;∵∠ABC=∠AEC∴∠AEC=60°.(Ⅱ)由条件知AO=2,过A作AH⊥BC于H,则AH=,在RT△AHD中,HD=2,∴AD==.∵BD•DC=AD•DE,∴DE=.∴AE=DE+AD=.[选修4-4:极坐标与参数方程]23.解:(Ⅰ)设动点A的直角坐标为(x,y),则,利用同角三角函数的基本关系消去参数α可得,(x﹣2)2+(y+2)2=9,点A的轨迹为半径等于3的圆.(Ⅱ)把直线C方程为ρcos(θ﹣)=a化为直角坐标方程为+=2a,由题意可得直线C与圆相切,故有=3,解得a=3 或a=﹣3.[选修4-5:不等式选讲]24.解:(1)当a=2时,,由于f(x)≥2,则①当x<1时,﹣2x+3≥2,∴x≤;②当1≤x≤1时,1≥2,无解;③当x>2时,2x﹣3≥2,∴x≥.综上所述,不等式f(x)≥2的解集为:(﹣∞,]∪[,+∞);(2)令F(x)=f(x)+|x﹣1|,则,所以当x=1时,F(x)有最小值F(1)=a﹣1,只需a﹣1≥1,解得a≥2,所以实数a的取值范围为[2,+∞).2018年高考理科数学模拟试卷(三)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知复数z满足z(1﹣i)2=1+i(i为虚数单位),则z=()A. +i B.﹣i C.﹣+i D.﹣﹣i2.已知集合A={x|(x﹣1)2≤3x﹣3,x∈R},B={y|y=3x+2,x∈R},则A∩B=()A.(2,+∞)B.(4,+∞)C.[2,4]D.(2,4]3.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ12)及N(μ2,σ22),其正态分布的密度曲线如图所示,则下列说法错误的是()A.乙类水果的质量服从的正态分布的参数σ2=1.99B.甲类水果的质量比乙类水果的质量更集中C.甲类水果的平均质量μ1=0.4kgD.甲类水果的平均质量比乙类水果的平均质量小4.已知数列{a n}的前n项和S n满足S n+S m=S n(n,m∈N*)且a1=5,则a8=()+mA.40 B.35 C.12 D.55.设a=(),b=(),c=ln,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b6.执行如图所示的程序框图,则输出b的值为()A.2 B.4 C.8 D.167.若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,则k的值为()A.﹣1 B.﹣C.﹣D.﹣38.某同学在运动场所发现一实心椅子,其三视图如图所示(俯视图是圆的一部分及该圆的两条互相垂直的半径,有关尺寸如图,单位:m),经了解,建造该类椅子的平均成本为240元/m3,那么该椅子的建造成本约为(π≈3.14)()A.94.20元 B.240.00元C.282.60元D.376.80元9.当函数f(x)=sinx+cosx﹣t(t∈R)在闭区间[0,2π]上,恰好有三个零点时,这三个零点之和为()A.B. C. D.2π10.有5位同学排成前后两排拍照,若前排站2人,则甲不站后排两端且甲、乙左右相邻的概率为()A.B.C.D.11.某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.甲产品所需工时乙产品所需工时A设备23B设备41若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为()A.40万元B.45万元C.50万元D.55万元12.若函数g(x)满足g(g(x))=n(n∈N)有n+3个解,则称函数g(x)为“复合n+3解”函数.已知函数f(x)=(其中e是自然对数的底数,e=2.71828…,k∈R),且函数f(x)为“复合5解”函数,则k的取值范围是()A.(﹣∞,0)B.(﹣e,e)C.(﹣1,1)D.(0,+∞)二、填空题(共4小题,每小题5分,满分20分)13.在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,则•=.14.有下列四个命题:①垂直于同一条直线的两条直线平行;②垂直于同一条直线的两个平面平行;③垂直于同一平面的两个平面平行;④垂直于同一平面的两条直线平行.其中正确的命题有(填写所有正确命题的编号).15.若等比数列{a n}的公比为2,且a3﹣a1=2,则++…+=.16.设抛物线C:y2=2px(p>0)的焦点为F,点A在C上,若|AF|=,以线段AF为直径的圆经过点B(0,1),则p=.三、解答题(共5小题,满分60分)17.在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin(A﹣)﹣cos(A+)=.(1)求角A的大小;(2)若a=,sin2B+cos2C=1,求△ABC的面积.18.某大学有甲、乙两个图书馆,对其借书、还书的等待时间进行调查,得到下表:甲图书馆12345借(还)书等待时间T1(分钟)频数1500 1000 500 500 1500乙图书馆12345借(还)书等待时间T2(分钟)频数100050020001250250以表中等待时间的学生人数的频率为概率.(1)分别求在甲、乙两图书馆借书的平均等待时间;(2)学校规定借书、还书必须在同一图书馆,某学生需要借一本数学参考书,并希望借、还书的等待时间之和不超过4分钟,在哪个图书馆借、还书更能满足他的要求?19.如图所示,在Rt△ABC中,AC⊥BC,过点C的直线VC垂直于平面ABC,D、E分别为线段VA、VC上异于端点的点.(1)当DE⊥平面VBC时,判断直线DE与平面ABC的位置关系,并说明理由;(2)当D、E、F分别为线段VA、VC、AB上的中点,且VC=2BC时,求二面角B ﹣DE﹣F的余弦值.20.已知椭圆+=1(a>b>0)过点P(2,1),且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足=,直线PM、PN分别交椭圆于A,B.(i)求证:直线AB过定点,并求出定点的坐标;(ii)求△OAB面积的最大值.21.已知函数f(x)=lnx﹣2ax(其中a∈R).(Ⅰ)当a=1时,求函数f(x)的图象在x=1处的切线方程;(Ⅱ)若f(x)≤1恒成立,求a的取值范围;(Ⅲ)设g(x)=f(x)+x2,且函数g(x)有极大值点x0,求证:x0f(x0)+1+ax02>0.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,双曲线E的参数方程为(θ为参数),设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求直线l的极坐标方程;(2)设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|﹣2a,其中a∈R.(1)当a=﹣2时,求不等式f(x)≤2x+1的解集;(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵z(1﹣i)2=1+i,∴,故选:C.2.解:集合A={x|(x﹣1)2≤3x﹣3,x∈R}={x|(x﹣1)(x﹣4)≤0}={x|1≤x ≤4}=[1,4];B={y|y=3x+2,x∈R}={y|y>2}=(2,+∞),则A∩B=(2,4].故选:D.3.解:由图象可知,甲类水果的平均质量μ1=0.4kg,乙类水果的平均质量μ2=0.8kg,故B,C,D正确;乙类水果的质量服从的正态分布的参数σ2=,故A 不正确.故选:A.4.解:数列{a n}的前n项和S n满足S n+S m=S n+m(n,m∈N*)且a1=5,令m=1,则S n+1=S n+S1=S n+5.可得a n+1=5.则a8=5.故选:D.5.解:b=()=>()=a>1,c=ln<1,∴b>a>c.故选:B.6.解:第一次循环,a=1≤3,b=2,a=2,第二次循环,a=2≤3,b=4,a=3,第三次循环,a=3≤3,b=16,a=4,第四次循环,a=4>3,输出b=16,故选:D.7.解:圆C:x2+y2﹣2x+4y=0的圆心(1,﹣2),若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,可知直线经过圆的圆心,可得﹣2=k﹣1,解得k=﹣1.故选:A.8.解:由三视图可知:该几何体为圆柱的.∴体积V=.∴该椅子的建造成本约为=×240≈282.60元.故选:C.9.解:f(x)=2sin(x+)﹣t,令f(x)=0得sin(x+)=,做出y=sin(x+)在[0,2π]上的函数图象如图所示:∵f(x)在[0,2π]上恰好有3个零点,∴=sin=,解方程sin(x+)=得x=0或x=2π或x=.∴三个零点之和为0+2π+=.故选:B.10.解:由题意得:p===,故选:B.11.C解:设甲、乙两种产品月的产量分别为x,y件,约束条件是目标函数是z=0.4x+0.3y由约束条件画出可行域,如图所示的阴影部分由z=0.4x+0.3y,结合图象可知,z=0.4x+0.3y在A处取得最大值,由可得A(50,100),此时z=0.4×50+0.3×100=50万元,故选:C.12.解:函数f(x)为“复合5解“,∴f(f(x))=2,有5个解,设t=f(x),∴f(t)=2,∵当x>0时,f(x)=,∴f(x)=,当0<x<1时,f′(x)<0,函数f(x)单调递减,当x>1时,f′(x)>0,函数f(x)单调递增,∴f(x)min=f(1)=1,∴t≥1,∴f(t)=2在[1,+∞)有2个解,当x≤0时,f(x)=kx+3,函数f(x)恒过点(0,3),当k≤0时,f(x)≥f(0)=3,∴t≥3∵f(3)=>2,∴f(t)=2在[3,+∞)上无解,当k>0时,f(x)≤f(0)=3,∴f(t)=2,在(0,3]上有2个解,在(∞,0]上有1个解,综上所述f(f(x))=2在k>0时,有5个解,故选:D二、填空题(共4小题,每小题5分,满分20分)13.解:在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,可得AD=BD=5,即AB=10,由勾股定理可得AC==8,则•=﹣•=﹣||•||•cosA=﹣5×8×=﹣32.14.解:如图在正方体ABCD﹣A′B′C′D′中,对于①,AB⊥BB′,BC⊥BB′,AB、BC不平行,故错;对于②,两底面垂直于同一条侧棱,两个底面平面平行,故正确;对于③,相邻两个侧面同垂直底面,这两个平面不平行,故错;对于④,平行的侧棱垂直底面,侧棱平行,故正确.故答案为:②④15.解:∵等比数列{a n}的公比为2,且a3﹣a1=2,∴=2,解得a1=.∴a n==.∴=.则++…+=3×==1﹣.故答案为:1﹣.16.解:由题意,可得A(,),AB⊥BF,∴(,﹣1)•(,﹣1)=0,∴﹣+1=0,∴p(5﹣p)=4,∴p=1或4.三、解答题(共5小题,满分60分)17.解:(1)sin(A﹣)﹣cos(A+)=sin(A﹣)﹣cos(2π﹣A)=sin(A﹣)﹣cos(A+)=sinA﹣cosA﹣cosA﹣sinA=即cosA=,∵0<A<π,∴A=.(2)由sin2B+cos2C=1,可得sin2B=2sin2C,由正弦定理,得b2=2c2,即.a=,cosA==,解得:c=1,b=∴△ABC的面积S=bcsinA=.18.解:(1)根据已知可得T1的分布列:T1(分钟)12345P0.30.20.10.10.3T1的数学期望为:E(T1)=1×0.3+2×0.2+3×0.1+4×0.1+5×0.3=2.9.T2(分钟)12345P0.20.10.4 0.250.05T2的数学期望为:E(T1)=1×0.2+2×0.1+3×0.4+4×0.25+5×0.05=2.85.因此:该同学甲、乙两图书馆借书的平均等待时间分别为:2.9分钟,2.85分钟.(2)设T11,T12分别表示在甲图书馆借、还书所需等待时间,设事件A为“在甲图书馆借、还书的等待时间之和不超过4分钟”.T11+T12≤4的取值分别为:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).。
北京市西城区高三统一测试数学(理科) 2019.4第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设全集U =R ,集合{|02}A x x =<<,{3,1,1,3}B =--,则集合()U A B =ð(A ){3,1}-- (B ){3,1,3}-- (C ){1,3} (D ){1,1}-2.若复数1i2iz -=-,则在复平面内z 对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限3. 执行如图所示的程序框图,则输出的k 值为 (A )4 (B )5(C )7 (D )94.下列直线中,与曲线C :12,()24x t t y t =+⎧⎨=-+⎩为参数没有公共点的是 (A )20x y += (B )240x y +-= (C )20x y -=(D )240x y --=5. 设 ,,a b m 均为正数,则“b a >”是“a m ab m b+>+”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件6.如图,阴影表示的平面区域W 是由曲线0x y -=,222x y +=所围成的. 若点(,)P x y 在W 内(含边界),则43z x y =+的最大值和最小值分别为(A)7-(B)-(C )7,-(D )7,7-7. 团体购买公园门票,票价如下表:现某单位要组织其市场部和生产部的员工游览该公园,若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元,那么这两个部门的人数之差为(A )20 (B )30 (C )35 (D )408. 如果把一个平面区域内两点间的距离的最大值称为此区域的直径,那么曲线422x y +=围成的平面区域的直径为 (A(B )3(C )(D )4第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 在等比数列{}n a 中,21a =,58a =,则数列{}n a 的前n 项和n S =____.10.设1F ,2F 为双曲线2222 1(0,0)x y C a b a b-=>>:的两个焦点,若双曲线C 的两个顶点恰好将线段12F F 三等分,则双曲线C 的离心率为____.11.函数()sin 2cos2f x x x =+的最小正周期T =____;如果对于任意的x ∈R 都有()f x a ≤,那么实数a 的取值范围是____.12.某四棱锥的三视图如图所示,那么此四棱锥的体积为____.13. 能说明“若sin cos αβ=,则36090k αβ+=⋅+,其中k ∈Z ”为假命题的一组α,β的值是___.14.如图所示,玩具计数算盘的三档上各有7个算珠,现将每档算珠分为左右两部分,左侧的每个算珠表示数2,右侧的每个算珠表示数1(允许一侧无珠),记上、中、下三档的数字和分别为a ,b ,c . 例如,图中上档的数字和9a =. 若a ,b ,c 成等差数列,则不同的分珠计数法有____种.侧(左)视图 正(主)视图俯视图2三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 中,已知222a c b mac +-=,其中m ∈R . (Ⅰ)判断m 能否等于3,并说明理由; (Ⅱ)若1m =-,b =4c =,求sin A .16.(本小题满分14分)如图,在多面体ABCDEF 中,梯形ADEF 与平行四边形ABCD 所在平面互相垂直, //AF DE ,DE AD ⊥,AD BE ⊥,112AF AD DE ===,AB(Ⅰ)求证://BF 平面CDE ;(Ⅱ)求二面角B EF D --的余弦值; (Ⅲ)判断线段BE 上是否存在点Q ,使得 平面CDQ ⊥平面BEF ?若存在,求 出BQBE的值,若不存在,说明理由.17.(本小题满分13分)为培养学生的阅读习惯,某校开展了为期一年的“弘扬传统文化,阅读经典名著”活动. 活动后,为了解阅读情况,学校统计了甲、乙两组各10名学生的阅读量(单位:本),统计结果用茎叶图记录如下,乙组记录中有一个数据模糊,无法确认,在图中以a 表示.(Ⅰ)若甲组阅读量的平均值大于乙组阅读量的平均值, 求图中a 的所有可能取值;(Ⅱ)将甲、乙两组中阅读量超过..15本的学生称为“阅读达人”. 设3a =,现从所有“阅读达人”里任取3人,求其中乙组的人数X 的分布列和数学期望.(Ⅲ)记甲组阅读量的方差为20s . 在甲组中增加一名学生A 得到新的甲组,若A 的阅读量为10,则记新甲组阅读量的方差为21s ;若A 的阅读量为20,则记新甲组阅读量的方差为22s ,试比较20s ,21s ,22s 的大小.(结论不要求证明)DABCE F18.(本小题满分13分)设函数2()e 3x f x m x =-+,其中∈m R .(Ⅰ)当()f x 为偶函数时,求函数()()h x xf x =的极值;(Ⅱ)若函数()f x 在区间[2,4]-上有两个零点,求m 的取值范围.19.(本小题满分14分)已知椭圆W : 2214x y m m+=的长轴长为4,左、右顶点分别为,A B ,经过点(,0)P n 的直线与椭圆W 相交于不同的两点,C D (不与点,A B 重合).(Ⅰ)当0n =,且直线CD ⊥x 轴时, 求四边形ACBD 的面积;(Ⅱ)设1n =,直线CB 与直线4x =相交于点M ,求证:,,A D M 三点共线.20.(本小题满分13分)如图,设A 是由n n ⨯(2)n ≥个实数组成的n 行n 列的数表,其中ij a (,1,2,,)i j n =表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.定义1122st s t s t sn tn p a a =s 行与第t 行的积. 若对于任意,s t(s t ¹),都有0st p =,则称数表A 为完美数表.(Ⅰ)当2n =时,试写出一个符合条件的完美数表; (Ⅱ)证明:不存在10行10列的完美数表;(Ⅲ)设A 为n 行n 列的完美数表,且对于任意的1,2,,i l =L 和1,2,,j k =L ,都有1ij a =,证明:kl n ≤.北京市西城区高三统一测试数学(理科)参考答案及评分标准 2019.4一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.D 3.D 4.C 5.C 6.A 7.B 8.B 二、填空题:本大题共6小题,每小题5分,共30分.9.1122n --10.311. π;a 12.4313.答案不唯一,如110α=,20β= 14.32注:第11题第一问3分,第二问2分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)当3m =时,由题可知 2223a c b ac +-=,由余弦定理2222cos b a c ac B =+-, (3)分得2223cos 22a cb B ac +-==. ……………… 4分这与cos [1,1]B ∈-矛盾,所以m 不可能等于 3 . ……………… 6分(Ⅱ)由(Ⅰ),得 1cos 22m B ==-,所以2π3B =. ……………… 7分因为b =4c =,222a c b ac +-=-, 所以216284a a +-=-,解得6a =-(舍)或2a =. ……………… 9分在△ABC中,由正弦定理sin sina bA B=, (11)分得sinsin14a BAb===. (13)分16.(本小题满分14分)解:(Ⅰ)由底面ABCD为平行四边形,知//AB CD,又因为AB⊄平面CDE,CD⊂平面CDE,所以//AB平面CDE. ………………2分同理//AF平面CDE,又因为AB AF A=,所以平面//ABF平面CDE. ………………3分又因为BF⊂平面ABF,所以//BF平面CDE. ………………4分(Ⅱ)连接BD,因为平面ADEF⊥平面ABCD,平面ADEF平面ABCD AD=,D E AD⊥,所以DE⊥平面ABCD. 则D E D B⊥.又因为D E AD⊥,AD BE⊥,DE BE E=,所以AD⊥平面BDE,则AD BD⊥.故,,DA DB DE两两垂直,所以以,,DA DB DE所在的直线分别为x轴、y轴和z轴,如图建立空间直角坐标系,………………6分则(0,0,0)D,(1,0,0)A,(0,1,0)B,(1,1,0)C-,(0,0,2)E,(1,0,1)F,所以(0,1,2)BE=-,(1,0,1)EF=-,(0,1,0)=n为平面DEF的一个法向量.设平面BEF的一个法向量为(,,)x y z=m,由0BE⋅=m,0EF⋅=m,得20,0,y zx z-+=⎧⎨-=⎩令1z=,得(1,2,1)=m. ………………8分所以cos ,||||⋅<>==m n m n m n .如图可得二面角B EF D --为锐角,所以二面角B EF D --………………10分 (Ⅲ)结论:线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF . ………………11分证明如下:设(0,,2)([0,1])BQ BE λλλλ==-∈,所以(0,1,2)DQ DB BQ λλ=+=-.设平面CDQ 的法向量为(,,)a b c =u ,又因为(1,1,0)DC =-,所以0DQ ⋅=u ,0DC ⋅=u ,即(1)20,0,b c a b λλ-+=⎧⎨-+=⎩ (12)分若平面CDQ ⊥平面BEF ,则0⋅=m u ,即20a b c ++=, (13)分解得1[0,1]7λ=∈.所以线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF ,且此时17BQ BE =. …… 14分17.(本小题满分13分)解:(Ⅰ)甲组10名学生阅读量的平均值为12681011121217211010+++++++++=,乙组10名学生阅读量的平均值为124412131616(10)20981010a a+++++++++++=. (2)分由题意,得981010a+>,即2a <. ……………… 3分 故图中a 的取值为0或1. ……………… 4分(Ⅱ)由图可知,甲组“阅读达人”有2人,乙组“阅读达人”有3人.由题意,随机变量X 的所有可能取值为:1,2,3. (5)分且212335C C 3(1)C 10P X ⋅===,122335C C 3(2)C 5P X ⋅===, 3335C 1(3)C 10P X ===. …… 8分所以随机变量的分布列为:……………… 9分所以3319()123105105E X =⨯+⨯+⨯=. ………………10分 (Ⅲ)222102s s s <<. ……………… 13分18.(本小题满分13分)解:(Ⅰ)由函数()f x 是偶函数,得()()f x f x -=,即22e ()3e 3x x m x m x ---+=-+对于任意实数x 都成立,所以0m =. ……………… 2分 此时3()()3h x xf x x x ==-+,则2()33h x x '=-+.由()0h x '=,解得1x =±. ……………… 3分 当x 变化时,()h x '与()h x 的变化情况如下表所示:所以()h x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-上单调递增. …………… 5分 所以()h x 有极小值(1)2h -=-,()h x 有极大值(1)2h =. ……………… 6分(Ⅱ)由2()e 30xf x m x =-+=,得23ex x m -=.所以“()f x 在区间[2,4]-上有两个零点”等价于“直线y m =与曲线23()ex x g x -=,[2,4]x ∈-有且只有两个公共点”. ……………… 8分X对函数()g x 求导,得223()e xx x g x -++'=. ……………… 9分由()0g x '=,解得11x =-,23x =. ……………… 10分 当x 变化时,()g x '与()g x 的变化情况如下表所示:所以()g x 在(2,1)--,(3,4)上单调递减,在(1,3)-上单调递增. …………… 11分 又因为2(2)e g -=,(1)2e g -=-,36(3)(2)e g g =<-,413(4)(1)e g g =>-, 所以当4132e em -<<或36e m =时,直线y m =与曲线23()e x x g x -=,[2,4]x ∈-有且只有两个公共点. 即当4132e em -<<或36e m =时,函数()f x 在区间[2,4]-上有两个零点. ……… 13分19.(本小题满分14分)解:(Ⅰ)由题意,得244a m ==, 解得1m =. ……………… 2分所以椭圆W 方程为2214x y +=. ……………… 3分 当0n =,及直线CD ⊥x 轴时,易得(0,1)C ,(0,1)D -. 且(2,0)A -,(2,0)B . 所以||4AB =,||2CD =,显然此时四边形ACBD 为菱形,所以四边形ACBD 的面积为14242⨯⨯=. …… 5分(Ⅱ)当直线CD 的斜率k 不存在时,由题意,得CD 的方程为1x =,代入椭圆W 的方程,得C ,(1,D ,易得CB 的方程为2)y x =-.则(4,M ,(6,AM =,(3,AD =, 所以2AM AD =,即,,A D M 三点共线. ……………… 7分当直线CD 的斜率k 存在时,设CD 的方程为(1)(0)y k x k =-≠,11(,)C x y ,22(,)D x y , 联立方程22(1),1,4y k x x y =-⎧⎪⎨+=⎪⎩ 消去y ,得2222(41)8440k x k x k +-+-=. ……… 9分由题意,得0∆>恒成立,故2122841k x x k +=+,21224441k x x k -=+. …………… 10分 直线CB 的方程为11(2)2y y x x =--. 令4x =,得112(4,)2y M x -. ……………… 11分又因为(2,0)A -,22(,)D x y , 则直线AD ,AM 的斜率分别为222AD y k x =+,113(2)AM y k x =-, …………… 12分 所以21211221123(2)(2)23(2)3(2)(2)AD AM y y y x y x k k x x x x --+-=-=+--+. 上式中的分子 211221123(2)(2)3(1)(2)(1)(2)y x y x k x x k x x --+=----+ 121225()8kx x k x x k =-++22224482584141k k k k k k k -=⨯-⨯+++ 0=, 所以0AD AM k k -=.所以,,A D M 三点共线. ……………… 14分20.(本小题满分13分) 解:(Ⅰ)答案不唯一. 如:……………… 3分(Ⅱ)假设存在10行10列的完美数表A .根据完美数表的定义,可以得到以下两个结论:(1)把完美数表的任何一列的数变为其相反数(即1+均变为1-,而1-均变为1+),得到的新数表是完美数表;(2)交换完美数表的任意两列,得到的新数表也是完美数表. ……………… 5分 完美数表A 反复经过上述两个结论的变换,前三行可以为如下形式:x 共列y 共列z 共列w 共列在这个新数表中,设前三行中的数均为1的有x 列,前三行中“第1, 2行中的数为1,且第3行中的数为-1”的有y 列,前三行中“第1, 3行中的数为1,且第2行中的数为-1”的有z 列,前三行中“第1行中的数为1,且第2, 3行中的数为-1”的有w 列(如上表所示),则10x y z w +++= ○1由120p =,得x y z w +=+; ○2 由130p =,得x z y w +=+; ○3 由230p =,得x w y z +=+. ○4 解方程组○1,○2,○3,○4,得52x y z w ====. 这与,,,x y z w ∈N 矛盾,所以不存在10行10列的完美数表. ……………… 8分 (Ⅲ)记第1列前l 行中的数的和112111l a a a X +++=,第2列前l 行中的数的和12222la a a X +++= ,……,第n 列前l 行中的数的和12n n ln n a a a X +++=,因为对于任意的1,2,,i l =L 和1,2,,j k =L ,都有1ij a =, 所以12k X X X l ====. (9)分又因为对于任意,s t (s t ¹),都有0st p =,所以22212n X X X ln +++=. (11)分又因为22222221212n k X X X X X X l k ++++++=≥,所以2ln l k ≥,即kl n ≤. ……………… 13分。
2018届北京市西城区高三第一次模拟考试卷数学(理)附答案第Ⅰ卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.若集合,,则()A.B.C.D.2.执行如图所示的程序框图,输出的值为()A.2 B.3 C.4 D.53.已知圆的方程为.以原点为极点,轴正半轴为极轴建立极坐标系,该圆的极坐标方程为()A.B.C.D.4.正三棱柱的三视图如图所示,该正三棱柱的表面积是( )A .B .C .D .5.已知是正方形的中心.若,其中,,则( )A .B .C .D .6.设函数.则“有两个不同的零点”是“,使”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.函数,则的图象上关于原点对称的点共有( )A .0对B .1对C .2对D .3对8.某计算机系统在同一时间只能执行一项任务,且该任务完成后才能执行下一项任务.现有三项任务,,,计算机系统执行这三项任务的时间(单位:)依次为,,,其中.一项任务的“相对等待时间”定义为从开始执行第一项任务到完成该任务的时间与计算机系统执行该任务的时间之比.下列四种执行顺序中,使三项任务“相对等待时间”之和最小的是( ) A .B .C .D .U V W s U V W →→V W U →→W U V →→U W V→→第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.若复数的实部与虚部相等,则实数____.10.设等差数列的前项和为,若,,则____;____.11.已知抛物线的焦点与双曲线的一个焦点重合,则____;双曲线的渐近线方程是____________.12.设,若函数的最小正周期为,则____.13.安排甲、乙、丙、丁4人参加3个运动项目,每人只参加一个项目,每个项目都有人参加.若甲、乙2人不能参加同一个项目,则不同的安排方案的种数为____.(用数字作答)14.如图,在长方体中,,,点在侧面上.若点到直线和的距离相等,则的最小值是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)在△中,已知.(1)求的大小;(2)若,,求△的面积.16.(13分)某企业2017年招聘员工,其中、、、、五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:(1 (2)从应聘岗位的6人中随机选择2人.记为这2人中被录用的人数,求的分布列和数学期望;(3)表中、、、、各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)A B C D E E A B C D E17.(14分)如图1,在△中,,分别为,的中点,为的中点,,.将△沿折起到△的位置,使得平面平面,如图2.(1)求证:;(2)求直线和平面所成角的正弦值;(3)线段上是否存在点,使得直线和所成角的余弦值为?若存在,求出的值;若不存在,说明理由.图1 图218.(13分)已知函数,其中.(1)若曲线在处的切线与直线垂直,求的值;(2)当时,证明:存在极小值.19.(14分)已知圆和椭圆,是椭圆的左焦点.(1)求椭圆的离心率和点的坐标;(2)点在椭圆上,过作轴的垂线,交圆于点(不重合),是过点的圆的切线.圆的圆心为点,半径长为.试判断直线与圆的位置关系,并证明你的结论.20.(13分)数列:满足:.记的前项和为,并规定.定义集合.(1)对数列:,,,,,求集合;(2)若集合,证明:;(3)给定正整数.对所有满足的数列,求集合的元素个数的最小值.2018届北京市西城区高三第一次模拟考试卷数学(理)答案一、选择题:本大题共8小题,每小题5分,共40分.1-5.DCBDB 6-8.CCA二、填空题:本大题共6小题,每小题5分,共30分.9.10.6,11.,12.213.30 14.注:第10,11题第一空3分,第二空2分.三、解答题:本大题共6小题,共80分.其他正确解答过程,请参照评分标准给分.15.【答案】(1);(2)见解析.【解析】(1)因为,所以.在△中,由正弦定理得,所以.因为,所以.(2)在△中,由余弦定理得,所以,整理得,解得,或,均适合题意.当时,△的面积为.当时,△的面积为.16.【答案】(1);(2)分布列见解析,;(3)、、、. 【解析】(1)因为表中所有应聘人员总数为,被该企业录用的人数为,所以从表中所有应聘人员中随机选择1人,此人被录用的概率约为.(2)X 可能的取值为0,1,2.因为应聘E 岗位的6人中,被录用的有4人,未被录用的有2人,所以;;.所以X 的分布列为:.(3)这四种岗位是:、、、.17.【答案】(1)见解析;(2);(3)存在,.【解析】(1)因为在△中,,分别为,的中点,()43E X =B C DE B C D E所以,.所以,又为的中点,所以.因为平面平面,且平面,所以平面,所以.(2)取的中点,连接,所以.由(1)得,.如图建立空间直角坐标系.由题意得,,,,.所以,,.设平面的法向量为,则,即,令,则,,所以.设直线和平面所成的角为,则.所以直线和平面所成角的正弦值为.(3)线段上存在点适合题意.设,其中.设,则有,所以,从而,所以,又,所以.令,整理得.解得,舍去.所以线段上存在点适合题意,且.18.【答案】(1);(2)见解析.【解析】(1)的导函数为.依题意,有,解得.(2)由及知,与同号.令,则.所以对任意,有,故在单调递增.因为,所以,,故存在,使得.与在区间上的情况如下:↘极小值↗所以在区间上单调递减,在区间上单调递增.所以存在极小值.19.【答案】(1),;(2)相切,证明见解析. 【解析】(1)由题意,椭圆的标准方程为.所以,,从而.因此,.故椭圆的离心率,椭圆的左焦点的坐标为.(2)直线与圆相切.证明如下:设,其中,则,依题意可设,则.直线的方程为,整理为.所以圆的圆心到直线的距离.因为.所以,e =()F即,所以直线与圆相切.20.【答案】(1);(2)见解析;(3).【解析】(1)因为,,,,,,所以.(2)由集合的定义知,且是使得成立的最小的k,所以.又因为,所以,所以.(3)因为,所以非空.设集合,不妨设,则由(2)可知,同理,且.所以.因为,所以的元素个数.取常数数列:,并令,则,适合题意,且,其元素个数恰为.综上,的元素个数的最小值为.。
北京市西城区抽样测试高三数学(文科)答案及评分标准2001 .5一、ACDCBCBACC DD 二、(13)1010-;(14)22;(15)1:10;(16)①②⑤. 三、解答题:其它解法仿此给分.(17)解:∵q =1时122na S n =,1na S =偶数项又01>a 显然11112na na ≠q ≠1 ………………………………………………2分 ∴2212121)1(1)1(q q q a S q q a S n n n --==--=偶数项 …………………………………4分 依题意221211)1(111)1(qq q a q q a n n --⋅=-- 解之101=q ……………………………………………………………………6分 又421422143),1(q a a a q q a a a =+=+, ………………………………………8分依题意4212111)1(q a q q a =+,将101=q 代入得101=a …………………10分 n n n a --=⋅=2110)101(10………………………………………………………12分 (18)解:由题设知20,πβαβ<<<==且x b tg x a tga …………………………………4分 ∴xabx a b tg tg tg tg tg +-=+-=-βααβαβ1)( …………………………………………6分 ∵ab xab x x ab x =⋅>>且0,0为定值…………………………………………9分 所以,当且仅当x ab x =即ab x =时,xab x +取得最小值ab 2………11分 此时)(αβ-tg 取最大值ab a b 2- ……………………………………………12分 (19)解:(Ⅰ)证明;已知C C F A E B B E A 1111,⊥⊥于于 F ,∵B B 1∥C C 1,∴F A B B 11⊥ ……………………………………………1分 又A F A E A =⋂11.∴EF A B B 11平面⊥所以,平面111BCC B EF A 平面⊥ ………………………………………3分(Ⅱ)因为1111111111,45C A B A C C A AC A AB A B B A =︒=∠==∠=∠,又2.90111111=︒=∠=∠B A FC A EB A∴E B A Rt 11∆≌F C A Rt 11∆,∴211==F A E A∴E B1F C 1,∴EF =211=C B∴22121EF F A E A =+∴EF A 1∆为等腰直角三角形……5分取EF 的中点N ,连N A 1,则EF N A ⊥1,所以111BCC B N A 平面⊥ ………………………………………………………………6分 所以N A 1为点1A 到平面11BCC B 的距离。
西城区高三统一测试
数学(理科)参考答案及评分标准
2018.4一、选择题:本大题共8小题,每小题5分,共40分.
1.D 2.C 3.B 4.D
5.B 6.C 7.C 8.A
二、填空题:本大题共6小题,每小题5分,共30分.
+11
9.7-10.6,2n n
12.213.3014
三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)
解:(Ⅰ)因为
所以 [ 1分]
在△ABC中,由正弦定理得 [ 3分]
所以 [ 4分]
因为 0πA <<, [ 5分]
所以
[ 6分]
(Ⅱ)在△ABC 中,由余弦定理得 222
2cos a b c bc A =+-,
所以
[ 8分]
整理得 2
650c c -+=, [ 9分]
解得 1c =,或5c =,均适合题意. [11分]
当1c =时,△ABC 的面积为
[12分] 当5c =时,△ABC 的面积为
[13分]
16.(本小题满分13分)
解:(Ⅰ)因为 表中所有应聘人员总数为 5334671000+=,
被该企业录用的人数为 264169433+=,
所以 从表中所有应聘人员中随机选择1
[ 3分]
(Ⅱ)X 可能的取值为0,1,2. [ 4分] 因为应聘E 岗位的6人中,被录用的有4人,未被录用的有2人, [ 5分]
所以
[ 8分]
所以 X 的分布列为:
[10分]
(Ⅲ)这四种岗位是:B 、C 、D 、E . [13分]
17.(本小题满分14分)
解:(Ⅰ)因为 在△ABC 中,D ,E 分别为AB ,AC 的中点,
所以 //DE BC ,AD AE =.所以 11A D A E =,又O 为DE 的中点,
所以 1AO
DE ⊥. [ 1分] 因为 平面1A DE ⊥平面BCED ,且1AO
⊂平面1A DE , 所以 1AO
⊥平面BCED , [ 3分] 所以 1AO BD ⊥. [ 4分] (Ⅱ)取BC 的中点G ,连接OG ,所以 OE OG ⊥. 由(Ⅰ)得 1A O OE ⊥,1A O OG ⊥.
如图建立空间直角坐标系O xyz -. [ 5分]
由题意得,1(0,0,2)A ,(2,2,0)B -,(2,2,0)C ,
(0,1,0)
D -.
所以
1(2,2,2)A B −−→
=--,1(0,1,2)A D −−→
=--,1(2,2,2)A C −−→
=-.
设平面1A BD 的法向量为(,,)x y z =n ,
则
11
0,0,A B A D −−
→−−
→
⎧⋅=⎪⎨⎪⋅=⎩n n
即 2220,
20.
x y z y z --=⎧⎨
--=⎩ 令1x =,则2y =,1z =-,所以 (1,2,1)=-
n . [ 7分]
设直线1A C 和平面1A BD 所成的角为θ,
则
所以 直线1A C 和平面1A BD 所成角的正弦值为 [ 9分]
(Ⅲ)线段1A C 上存在点F 适合题意.
设 11A F A C λ−−→−−→
=,其中[0,1]λ∈. [10分] 设 111(,,)F x y z ,则有111(,,2)(2,2,2)x y z λλλ-=-, 所以 1112,2,22x y z λλλ===-,从而 (2,2,22)F λλλ-, 所以
(2,21,22)DF λλλ−−→=+-,又(0,4,0)BC −−→
=,
所以
[12分]
令
整理得 2
3720λλ-+=. [13分]
解得,舍去2λ=.
所以 线段1A C 上存在点F 适合题意,且
[14分]
18.(本小题满分13分)解:(Ⅰ)()f x 的导函数为
[ 2分]
依题意,有 (1)e (1)e f a '
=⋅+=, [ 4分] 解得 0a =. [ 5分]
及e 0x >知,()f x '与
令 [ 6分]
则 [ 8分]
所以 对任意(0,)x ∈+∞,有()0g x '
>,故()g x 在(0,)+∞单调递增. [ 9分] 因为 (0,ln 2)a ∈,所以 (1)10g a =+>,
故 0()0g x =. [11分]
()f x 与()f x '在区间
所以 ()f x 存在极小值0()f x .
[13分]
19.(本小题满分14分)
解:(Ⅰ)由题意,椭圆C 的标准方程为 [ 1分]
所以 24a =,2
2b =,从而 2222c a b =-=.
因此 2a =,
故椭圆C 的离心率 [ 3分]
椭圆C 的左焦点F 的坐标为 [ 4分]
(Ⅱ)直线l 与圆F 相切.证明如下:
[ 5分]
设00(,)P x y ,其中022x -<<,则
22
0024x y +=, [ 6分] 依题意可设01(,)Q x y ,则
22
014x y
+=. [ 7分] 直线l 的方程为
整理为 0140x x y y +-=. [ 9分]
所以圆F 的圆心F 到直线l 的距离 [11分]
因为 [13分]
所以 22
||PF d =,
即 ||PF d =,
所以 直线l 与圆F 相切. [14分]
20.(本小题满分13分)
解:(Ⅰ)因为 00S =,10.3S =-,20.4S =,30.3S =,4 1.2S =,5 1.3S =, [ 2分]
所以
5{2,4,5}E =. [ 3分]
(Ⅱ)由集合
n E 的定义知 1i i k k S S +>,且1i k +是使得i k k S S >成立的最小的k ,
所以
11i i
k k S S +-≤.
[ 5分]
又因为
11
i k a +<, 所以
111
1i i i k k k S S a +++-=+ [ 6分]
1.i k S <+所以
11
i i k k S S +-<. [ 8分]
(Ⅲ)因为0n S S >,所以n E 非空.
设集合
12{,,,}n m E k k k =,不妨设12m k k k <<
<,
则由(Ⅱ)可知 11(1,2,,1)
i i k k S S i m +-<=-, 同理
101
k S S -<,且
m
n k S S ≤.
所以
12110()()()()
m m m n n k k k k k k S S S S S S S S S -=-+-+
+-+-
1
01111m m
<+++
++=个.
因为 n S C >,所以n E 的元素个数 1m C +≥.
[11分]
取常数数列n A :
,2,,1)
C +,并令1n C =+,
则
且 {1,2,,1}n
E C =+,其元素个数恰为1C +.综上,n E 的元素个数的最小值为
1C +. [13分]。