【答案版】2015年中考数学函数综合与应用题专项训练(四)
- 格式:doc
- 大小:48.00 KB
- 文档页数:2
中考数学函数综合与应用题专项训练(一)三、解答题19.(9分)如图,海中有一小岛PA 处测得小岛P 位于北偏东45°的方向上,且A ,P 之间的距离为48海里,若轮船继续向正东方向航行,有无触礁的危险?请通过计算加以说明.如果有危险,轮船自A 处开始至少沿东偏南多少度的方向航行,才能安全通过这一海域?20.(9分)甲船从A 港出发顺流匀速驶向B 港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B 港.乙船从B 港出发逆流匀速驶向A 港.已知救生圈漂流的速度和水流速度相同,甲、乙两船在静水中的速度相同,甲、乙两船到A 港的距离y 1,y 2(km )与行驶时间x (h )之间的函数图象如图所示.(1)乙船在逆流中行驶的速度为_____________;(2)求甲船在逆流中行驶的路程;(3)求甲船到A 港的距离y 1与行驶时间x 之间的函数关系式;(4)救生圈落入水中时,甲船到A 港的距离是多少?21.(10分)某工厂计划为某校生产A ,B 两种型号的学生桌椅500套,以解决1 250名学生的学习问题.已知一套A 型桌椅(一桌两椅)需木料0.5m 3,一套B 型桌椅(一桌三椅)需木料0.7m 3,工厂现有库存木料302m 3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往该校,已知每套A 型桌椅的生产成本为100元,运费为2元,每套B 型桌椅的生产成本为120元,运费为4元,求总费用y (元)与生产A 型桌椅x (套)之间的函数关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.M 45°北东P A 乙甲43.52.5224y/ km x/ h O中考数学函数综合与应用题专项训练(一)参考答案19.有触礁的危险;至少沿东偏南15度的方向航行,才能安全通过这一海域.20.(1)6km/h ;(2)3km ;(3)19026302 2.597.5 2.5 3.5x x y x x x x ⎧⎪=-+<⎨⎪-<⎩≤≤≤≤()()();(4)13.5km . 21.(1)11种.(2)2262 000y x =-+;总费用最少的方案是:A 型桌椅250套,B 型桌椅250套;最少的总费用为56 500元.(3)有剩余木料,最多还可以为8名学生提供桌椅.。
一次函数的应用一.选择题(共10小题)1.(2015•哈尔滨)小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用时间t(单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车②公交车的速度为400米/分钟③小明下公交车后跑向学校的速度为100米/分钟④小明上课没有迟到其中正确的个数是( ) A.1个B.2个C.3个D.4个考点:一次函数的应用.分析:根据图象可以确定他家与学校的距离,公交车时间是多少,他步行的时间和公交车的速度和小明从家出发到学校所用的时间.解答:解:①小明从家出发乘上公交车的时间为7﹣(1200﹣400)÷400=5分钟,①正确;②公交车的速度为(3200﹣1200)÷(12﹣7)=400米/分钟,②正确;③小明下公交车后跑向学校的速度为(3500﹣3200)÷3=100米/分钟,③正确;④上公交车的时间为12﹣5=7分钟,跑步的时间为10﹣7=3分钟,因为3<4,小明上课没有迟到,④正确;故选:D.点评:本题考查利用函数的图象解决实际问题,正确理解函数图象横、纵坐标表示的意义是解题的关键,注意,在解答时,单位要统一.2.(2015•聊城)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是( ) A.小亮骑自行车的平均速度是12km/h B.妈妈比小亮提前0.5小时到达姥姥家 C.妈妈在距家12km处追上小亮 D.9:30妈妈追上小亮考点:一次函数的应用.分析:根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.解答:解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选:D.点评:本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息.3.(2015•连云港)如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( ) A.第24天的销售量为200件 B.第10天销售一件产品的利润是15元 C.第12天与第30天这两天的日销售利润相等 D.第30天的日销售利润是750元考点:一次函数的应用.分析:根据函数图象分别求出设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=﹣x+25,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=,根据日销售利润=日销售量×一件产品的销售利润,即可进行判断.解答:解:A、根据图①可得第24天的销售量为200件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=,当t=12时,y=150,z=﹣12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),750≠1950,故C错误;D、第30天的日销售利润为;150×5=750(元),故正确.点评:本题考查了一次函数的应用,解决本题的关键是利用待定系数法求函数解析式.4.(2015•重庆)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是( ) A.小明中途休息用了20分钟 B.小明休息前爬山的平均速度为每分钟70米 C.小明在上述过程中所走的路程为6600米 D.小明休息前爬山的平均速度大于休息后爬山的平均速度考点:一次函数的应用.分析:根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800﹣2800)米,爬山的总路程为3800米,根据路程、速度、时间的关系进行解答即可.解答:解:A、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;B、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;C、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25,小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;故选:C.点评:本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进行解决问题.5.(2015•南通)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有( ) A.1个B.2个C.3个D.4个考点:一次函数的应用.分析:根据题目所给的图示可得,两人在1小时时相遇,行程均为10km,出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,乙比甲先到达终点.解答:解:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④错误.故选C.点评:本题考查了一次函数的应用,行程问题的数量关系速度=路程后÷时间的运用,解答时理解函数的图象的含义是关键.6.(2015•烟台)A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是( ) A. 1 B. 2 C. 3 D.4考点:一次函数的应用.分析:观察函数图象,从图象中获取信息,根据速度,路程,时间三者之间的关系求得结果.解答:解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发3﹣1=2小时后追上甲,故②错误;甲的速度为:12÷3=4(千米/小时),故③正确;乙的速度为:12÷(3﹣1)=6(千米/小时),则甲到达B地用的时间为:20÷4=5(小时),乙到达B地用的时间为:20÷6=(小时),1+3,∴乙先到达B地,故④正确;正确的有3个.故选:C.点评:本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息.7.(2015•随州)甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s 与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是( ) A. 4 B. 3 C. 2 D.1考点:一次函数的应用.分析:根据题意结合横纵坐标的意义得出辆摩托车的速度进而分别分析得出答案.解答:解:由图象可得:出发1小时,甲、乙在途中相遇,故①正确;甲骑摩托车的速度为:120÷3=40(千米/小时),设乙开汽车的速度为a千米/小时,则,解得:a=80,∴乙开汽车的速度为80千米/小时,∴甲的速度是乙速度的一半,故④正确;∴出发1.5小时,乙比甲多行驶了:1.5×(80﹣40)=60(千米),故②正确;乙到达终点所用的时间为1.5小时,甲得到终点所用的时间为3小时,故③错误;∴正确的有3个,故选:B.点评:此题主要考查了一次函数的应用,读函数的图象时首先要理解横纵坐标表示的含义是解题关键.8.(2015•鄂州)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A 城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有( ) A.1个B.2个C.3个D.4个考点:一次函数的应用.分析:观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.解答:解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,∴④正确;综上可知正确的有①②④共三个,故选C.点评:本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.9.(2015•荆门)在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t (秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是( ) A.甲的速度随时间的增加而增大 B.乙的平均速度比甲的平均速度大 C.在起跑后第180秒时,两人相遇 D.在起跑后第50秒时,乙在甲的前面考点:一次函数的应用.分析:A、由于线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定乙是否在甲的前面.解答:解:A、∵线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴甲的速度是没有变化的,故选项错误;B、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴乙是在甲的前面,故选项正确.故选D.点评:本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.10.(2015•北京)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A 类50 25B 类200 20C 类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为( ) A.购买A类会员年卡B.购买B类会员年卡 C.购买C类会员年卡D.不购买会员年卡考点:一次函数的应用.分析:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当45≤x≤50时,确定y的范围,进行比较即可解答.解答:解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当45≤x≤50时,1175≤y A≤1300;1100≤y B≤1200;1075≤y C≤1150;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.点评:本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式,并确定函数值的范围.二.填空题(共6小题)11.(2015•广州)某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为 y=6+0.3x .考点:根据实际问题列一次函数关系式.分析:根据高度等于速度乘以时间列出关系式解答即可.解答:解:根据题意可得:y=6+0.3x(0≤x≤5),故答案为:y=6+0.3x.点评:此题考查函数关系式,关键是根据题中水位以每小时0.3米的速度匀速上升列出关系式. 12.(2015•沈阳)如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要 5 s能把小水杯注满.考点:一次函数的应用.分析:一次函数的首先设解析式为:y=kx+b,然后利用待定系数法即可求得其解析式,再由y=11,即可求得答案.解答:解:设一次函数的首先设解析式为:y=kx+b,将(0,1),(2,5)代入得:,解得:,∴解析式为:y=2x+1,当y=11时,2x+1=11,解得:x=5,∴至少需要5s能把小水杯注满.故答案为:5.点评:此题考查了一次函数的实际应用问题.注意求得一次函数的解析式是关键.13.(2015•武汉)如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省 2 元.考点:一次函数的应用.分析:根据函数图象,分别求出线段OA和射线AB的函数解析式,即可解答.解答:解:由线段OA的图象可知,当0<x<2时,y=10x,1千克苹果的价钱为:y=10,设射线AB的解析式为y=kx+b(x≥2),把(2,20),(4,36)代入得:,解得:,∴y=8x+4,当x=3时,y=8×3+4=28.当购买3千克这种苹果分三次分别购买1千克时,所花钱为:10×3=30(元),30﹣28=2(元).则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.点评:本题考查了一次函数的应用,解决本题的关键是分别求出线段OA和射线AB的函数解析式.14.(2015•黄石)一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则购买盒子所需要最少费用为 29 元.型号 A B单个盒子容量(升) 2 3单价(元) 5 6考点:一次函数的应用.分析:设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子的个数为个,分两种情况讨论:①当0≤x<3时;②当3≤x时,利用一次函数的性质即可解答.解答:解:设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子的个数为个,①当0≤x<3时,y=5x+=x+30,∵k=1>0,∴y随x的增大而增大,∴当x=0时,y有最小值,最小值为30元;②当3≤x时,y=5x+﹣4=26+x,∵k=1>0,∴y随x的增大而增大,∴当x=3时,y有最小值,最小值为29元;综合①②可得,购买盒子所需要最少费用为29元.故答案为:29.点评:本题考查了一次函数的应用,解决本题的关键是根据题意列出函数解析式,利用一次函数的性质解决最小值的问题,注意分类讨论思想的应用.15.(2015•阜新)小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的关系如图所示,那么在这个超市买10本以上的练习本优惠折扣是 七 折.考点:一次函数的应用.分析:根据函数图象求出打折前后的单价,然后解答即可.解答:解:打折前,每本练习本价格:20÷10=2元,打折后,每本练习本价格:(27﹣20)÷(15﹣10)=1.4元,=0.7,所以,在这个超市买10本以上的练习本优惠折扣是七折.故答案为:七.点评:本题考查了一次函数的应用,比较简单,准确识图并求出打折前后每本练习本的价格是解题的关键.16.(2015•威海)如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B 关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为 () .考点:一次函数综合题.分析:先用待定系数法求出直线AB的解析式,由对称的性质得出AP⊥AB,求出直线AP的解析式,然后求出直线AP与x轴的交点即可.解答:解:设直线AB的解析式为:y=kx+b,把A(0,2),B(3,4)代入得:,解得:k=,b=2,∴直线AB的解析式为:y=x+2;∵点B与B′关于直线AP对称,∴AP⊥AB,∴设直线AP的解析式为:y=﹣x+c,把点A(0,2)代入得:c=2,∴直线AP的解析式为:y=﹣x+2,当y=0时,﹣x+2=0,解得:x=,∴点P的坐标为:();故答案为:().点评:本题是一次函数综合题目,考查了用待定系数法确定一次函数的解析式、轴对称的性质、垂线的关系等知识;本题有一定难度,综合性强,由直线AB的解析式进一步求出直线AP的解析式是解决问题的关键.三.解答题(共14小题)17.(2015•甘南州)某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元.(1)请写出y关于x的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?A B成本(元/瓶)50 35利润(元/瓶)20 15考点:一次函数的应用.专题:图表型.分析:(1)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶;利润=A种品牌白酒瓶数×A种品牌白酒一瓶的利润+B种品牌白酒瓶数×B种品牌白酒一瓶的利润,列出函数关系式;(2)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶;成本=A种品牌白酒瓶数×A种品牌白酒一瓶的成本+B种品牌白酒瓶数×B种品牌白酒一瓶的成本,列出方程,求x的值,再代入(1)求利润.解答:解:(1)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得y=20x+15(600﹣x)=5x+9000;(2)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得50x+35(600﹣x)=26400,解得x=360,∴每天至少获利y=5x+9000=10800.点评:根据题意,列出利润的函数关系式及成本的关系式,固定成本,可求A种品牌酒的瓶数,再求利润.18.(2015•黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?考点:一次函数的应用.分析:(1)设每吨水的政府补贴优惠价为a元,市场调节价为b元,根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y与x之间的函数关系,注意自变量的取值范围;(3)根据小英家的用水量判断其再哪个范围内,代入相应的函数关系式求值即可.解答:解:(1)设每吨水的政府补贴优惠价为a元,市场调节价为b元.根据题意得,解得:.答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.(2)∵当0≤x≤12时,y=x;当x>12时,y=12+(x﹣12)×2.5=2.5x﹣18,∴所求函数关系式为:y=.(3)∵x=26>12,∴把x=26代入y=2.5x﹣18,得:y=2.5×26﹣18=47(元).答:小英家三月份应交水费47元.点评:本题考查了一次函数的应用,题目还考查了二元一次方程组的解法,特别是在求一次函数的解析式时,此函数是一个分段函数,同时应注意自变量的取值范围.19.(2015•义乌市)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?考点:一次函数的应用.分析:(1)根据观察横坐标,可得去超市的时间,根据观察纵坐标,可得去超市的路程,根据路程与时间的关系,可得答案;在超市逗留的时间即路程不变化所对应的时间段;(2)求出返回家时的函数解析式,当y=0时,求出x的值,即可解答.解答:解:(1)小敏去超市途中的速度是:3000÷10=300,在超市逗留了的时间为:40﹣10=30(分).(2)设返回家时,y与x的函数解析式为y=kx+b,把(40,3000),(45,2000)代入得:,解得:,∴函数解析式为y=﹣200x+11000,当y=0时,x=55,∴返回到家的时间为:8:55.点评:本题考查了一次函数的应用,观察函数图象获取信息是解题关键.20.(2015•济宁)小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件??(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?考点:一次函数的应用;一元一次不等式组的应用.分析:(1)设甲种服装购进x件,则乙种服装购进(100﹣x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;(2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.解答:解:(1)设甲种服装购进x件,则乙种服装购进(100﹣x)件,根据题意得:,解得:65≤x≤75,∴甲种服装最多购进75件;(2)设总利润为W元,W=(120﹣80﹣a)x+(90﹣60)(100﹣x)即w=(10﹣a)x+3000.①当0<a<10时,10﹣a>0,W随x增大而增大,∴当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;②当a=10时,所以按哪种方案进货都可以;③当10<a<20时,10﹣a<0,W随x增大而减小.当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件.点评:本题考查了一元一次方程的应用,不等式组的应用,以及一次函数的性质,正确利用x表示出利润是关键.21.(2015•日照)如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.(1)填空:甲、丙两地距离 1050 千米.(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.考点:一次函数的应用.分析:(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米);(2)分两种情况:当0≤x≤3时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,把(0,900),(3,0)代入得到方程组,即可解答;根据确定高速列出的速度为300(千米/小时),从而确定点A的坐标为(3.5,150),当3<x≤3.5时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=k1x+b1,把(3,0),(3.5,150)代入得到方程组,即可解答.解答:解:(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米),故答案为:1050.(2)当0≤x≤3时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=kx+b,把(0,900),(3,0)代入得:,解得:,∴y=﹣300x+900,高速列出的速度为:900÷3=300(千米/小时),150÷300=0.5(小时),3+0.5=3.5(小时)如图2,点A的坐标为(3.5,150)当3<x≤3.5时,设高速列车离乙地的路程y与行驶时间x之间的函数关系式为:y=k1x+b1,把(3,0),(3.5,150)代入得:,解得:,∴y=300x﹣900,∴y=.点评:本题考查了一次函数的应用,解决本题的关键是读懂图象,获取相关信息,用待定系数法求函数解析式.22.(2015•资阳)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.考点:一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.分析:(1)设一个篮球x元,则一个足球(x﹣30)元,根据“买两个篮球和三个足球一共需要510元”列出方程,即可解答;(2)设购买篮球x个,足球(100﹣x)个,根据“篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元”,列出不等式组,求出x的取值范围,由x为正整数,即可解答;(3)表示出总费用y,利用一次函数的性质,即可确定x的取值,即可确定最小值.解答:解:(1)设一个篮球x元,则一个足球(x﹣30)元,由题意得:2x+3(x﹣30)=510,解得:x=120,∴一个篮球120元,一个足球90元.。
一次函数一.选择题(共18小题)1.(2015•上海)下列y关于x的函数中,是正比例函数的为()A.y=x2 B.y=C.y=D.y=故选C.2.(2015•北海)正比例函数y=kx的图象如图所示,则k的取值范围是()A.k>0 B.k<0 C.k>1 D.k<13.(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣44.(2015•成都)一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.(2015•潍坊)若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.6.(2015•常德)一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.分析:根据一次函数y=﹣x+1中k=﹣<0,b=1>0,判断出函数图象经过的象限,即可判断出一次函数y=﹣x+1的图象不经过的象限是哪个.解答:解:∵一次函数y=﹣x+1中k=﹣<0,b=1>0,∴此函数的图象经过第一、二、四象限,∴一次函数y=﹣x+1的图象不经过的象限是第三象限.故选:C.7.(2015•长沙)一次函数y=﹣2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.(2015•怀化)一次函数y=kx+b(k≠0)在平面直角坐标系内的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k<0,b<0 C.k<0,b>0 D.k>0,b<09.(2015•宿迁)在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.(2015•眉山)关于一次函数y=2x﹣l的图象,下列说法正确的是()A.图象经过第一、二、三象限B.图象经过第一、三、四象限C.图象经过第一、二、四象限D.图象经过第二、三、四象限11.(2015•湘西州)已知k>0,b<0,则一次函数y=kx﹣b的大致图象为()A.B.C.D.12.(2015•枣庄)已知直线y=kx+b,若k+b=﹣5,kb=5,那该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限13.(2015•葫芦岛)已知k、b是一元二次方程(2x+1)(3x﹣1)=0的两个根,且k>b,则函数y=kx+b 的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限14.(2015•丽水)在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线l上,则下列判断正确的是()A.a<b B.a<3 C.b<3 D.c<﹣215.(2015•遂宁)直线y=2x﹣4与y轴的交点坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)考点:一次函数图象上点的坐标特征.分析:令x=0,求出y的值,即可求出与y轴的交点坐标.解答:解:当x=0时,y=﹣4,则函数与y轴的交点为(0,﹣4).故选D.点评:本题考查了一次函数图象上点的坐标特征,要知道,y轴上的点的横坐标为0.16.(2015•长春)如图,在平面直角坐标系中,点A(﹣1,m)在直线y=2x+3上,连结OA,将线段OA绕点O顺时针旋转90°,点A的对应点B恰好落在直线y=﹣x+b上,则b的值为()A.﹣2 B.1 C.D.217.(2015•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度18.(2015•南平)直线y=2x+2沿y轴向下平移6个单位后与x轴的交点坐标是()A.(﹣4,0)B.(﹣1,0)C.(0,2)D.(2,0)二.填空题(共12小题)19.(2015•连云港)已知一个函数,当x>0时,函数值y随着x的增大而减小,请写出这个函数关系式(写出一个即可).20.(2015•福建)在一次函数y=kx+3中,y的值随着x值的增大而增大,请你写出符合条件的k的一个值:.21.(2015•广元)从3,0,﹣1,﹣2,﹣3这五个数中抽取一个数,作为函数y=(5﹣m2)x和关于x 的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是.22.(2015•菏泽)直线y=﹣3x+5不经过的象限为.23.(2015•钦州)一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第象限.24.(2015•锦州)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(27,9),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则第4个正方形的边长是,S3的值为.26.(2015•宿迁)如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.27.(2015•咸宁)如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为.28.(2015•株洲)已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是.29.(2015•内江)在平面直角坐标系xOy中,过点P(0,2)作直线l:y=x+b(b为常数且b<2)的垂线,垂足为点Q,则tan∠OPQ= .30.(2015•衡阳)如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1、A2、…、A n在x轴上,点B1、B2、…、B n在直线y=x上,已知OA2=1,则OA2015的长为22013.考点:一次函数图象上点的坐标特征;等腰直角三角形.专题:规律型.分析:根据规律得出OA1=,OA2=1,OA3=2,OA4=4,OA5=8,所以可得OA n=2n﹣2,进而解答即可.解答:解:因为OA2=1,所以可得:OA1=,进而得出OA3=2,OA4=4,OA5=8,由此得出OA n=2n﹣2,所以OA2015=22013,故答案为:220131.(2015•达州)在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左导游依次记为S1、S2、S3、…S n,则S n的值为22n﹣3(用含n的代数式表示,n为正整数).考点:一次函数图象上点的坐标特征;正方形的性质.专题:规律型.分析:根据直线解析式先求出OA1=1,得出第一个正方形的边长为1,求得A2B1=A1B1=1,再求出第一个正方形的边长为2,求得A3B2=A2B2=2,第三个正方形的边长为22,求得A4B3=A3B3=22,得出规律,根据三角形的面积公式即可求出S n的值.解答:解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴S1=×1×1=,∵A2B1=A1B1=1,∴A2C1=2=21,∴S2=×(21)2=21同理得:A3C2=4=22,…,S3=×(22)2=23∴S n=×(2n﹣1)2=22n﹣3故答案为:22n﹣3.2.(2015•宁夏)如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为.3.(2015•六盘水)正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为.4.(2015•东营)如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在直线l上,则点A2015的坐标是(,)..解答:解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(0,1),AO∥A1B1,∠B1OC=30°,∴CB1=OB1cos30°=,∴B1的横坐标为:,则B1的纵坐标为:,∴点B1,B2,B3,…都在直线y=x上,∴B1(,),同理可得出:A的横坐标为:1,∴y=,∴A2(,),…A n(1+,).∴A2015(,).故答案为(,).5.(2015•天津)若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为.6.(2015•海南)点(﹣1,y1)、(2,y2〕是直线y=2x+1上的两点,则y1y2(填“>”或“=”或“<”)7.(2015•北海)如图,直线y=﹣2x+2与两坐标轴分别交于A、B两点,将线段OA分成n等份,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则当n=2015时,S1+S2+S3+…+S n﹣1=.考点:一次函数图象上点的坐标特征.专题:规律型.分析:根据图象上点的坐标性质得出点T1,T2,T3,…,T n﹣1各点纵坐标,进而利用三角形的面积得出S1、S2、S3、…、S n﹣1,进而得出答案.解答:解:∵P1,P2,P3,…,P n﹣1是x轴上的点,且OP1=P1P2=P2P3=…=P n﹣2P n﹣1=,分别过点p1、p2、p3、…、p n﹣2、p n﹣1作x轴的垂线交直线y=﹣2x+2于点T1,T2,T3,…,T n﹣1,∴T1的横坐标为:,纵坐标为:2﹣,∴S1=×(2﹣)=(1﹣)同理可得:T2的横坐标为:,纵坐标为:2﹣,∴S2=(1﹣),T3的横坐标为:,纵坐标为:2﹣,S3=(1﹣)…S n﹣1=(1﹣)∴S1+S2+S3+…+S n﹣1=[n﹣1﹣(n﹣1)]=×(n﹣1)=,∵n=2015,∴S1+S2+S3+…+S2014=××2014=.故答案为:.8.(2015•柳州)直线y=2x+1经过点(0,a),则a=.10.(2015•庆阳)如图,定点A(﹣2,0),动点B在直线y=x上运动,当线段AB最短时,点B的坐标为.11.(2015•滨州)把直线y=﹣x﹣1沿x轴向右平移2个单位,所得直线的函数解析式为.12.(2015•湖州)已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式------------13.(2015•永州)已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当时,y≤0.14.(2014•自贡)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是.15.(2014•张家界)已知一次函数y=(1﹣m)x+m﹣2,当m时,y随x的增大而增大.16.(2014•赤峰)直线l过点M(﹣2,0),该直线的解析式可以写为.(只写出一个即可)三.解答题(共7小题)17.(2015•益阳)如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.18.(2015•武汉)已知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x的不等式kx+3≤6的解集.19.(2015•淄博)在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.20.(2014•佛山)函数y=Kx+b的图象经过哪几个象限?21.(2014•钦州)某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是元;(2)当x>2时,求y与x之间的函数关系式;(3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?22.(2014•怀化)设一次函数y=kx+b(k≠0)的图象经过A(1,3)、B(0,﹣2)两点,试求k,b的值.23.(2013•太原)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.。
2015年中考数学压轴题预测及答案详解函数应用4-A周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.4-A 【答案】解:(1)由图象,得:小明骑车速度:10÷0.5=20(km/ h )。
在甲地游玩的时间是1﹣0.5=0.5(h )。
(2)妈妈驾车速度:20×3=60(km/h )如图,设直线BC 解析式为y=20x+b 1, 把点B (1,10)代入得b 1=﹣10。
∴直线BC 解析式为y=20x ﹣10 ①。
设直线DE 解析式为y=60x+b 2, 把点D (43,0)代入得b 2=﹣80。
∴直线DE 解析式为y=60x ﹣80②。
联立①②,得x=1.75,y=25。
∴交点F (1.75,25)。
答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km 。
(3)设从家到乙地的路程为m km ,则点E (x 1,m ),点C (x 2,m ),分别代入y=60x ﹣80,y=20x ﹣10,得:12m+80m+10x =x =6020,。
∵21101x x ==606-,∴m+10m+801=20606-,解得:m=30。
∴从家到乙地的路程为30 km 。
【考点】一次函数的图象和应用,直线上点的坐标与方程的关系。
【分析】(1)用路程除以时间即可得到速度;在甲地游玩的时间是1-0.5=0.5小时。
(2)求得线段BC 所在直线的解析式和DE 所在直线的解析式后求得交点坐标即可求得北妈妈追上的时间。
精品2015年全国中考数学真题函数题汇总1.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明离家后他到学校剩下的路程S关于时间t的函数图象,那么符合小明行驶情况的图象大致是( )2.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()3.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟),所走的路程为S(米),S与t之间的函数关系如图,下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬上的速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度4.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是( )A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲的前面5.已知一个函数图像经过(1,-4),(2,-2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是( )A.正比例函数B.一次函数C.反比例函数D.二次函数6.下列函数解析式中,一定为二次函数的是( )A.13-=x yB.c bx ax y ++=2C.1222+-=t t sD.xx y 12+= 7.已知直线y=kx+b ,若k+b=﹣5,kb=5,那该直线不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限8.平面直角坐标系中,过点(-2,3)的直线l 经过一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( )A.b a <B.3<aC.3<bD.2-<c9.在反比例函数x m y 31-=图象上有两点A(x 1,y 1)、B(x 2,y 2),x 1<0<y 1,y 1<y 2,则m 的取值范围是( ) A.m >31 B.m <31 C.m ≥31 D.m ≤31 10.下列关于二次函数y=ax 2﹣2ax+1(a >1)的图象与x 轴交点的判断,正确的是( )A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧11.若函数y=kx-b 的图象如图,则关于x 的不等式k(x-3)-b >0的解集为( )A.x <2B.x >2C.x <5D.x >5第11题图 第12题图 第13题图12.如图,直线y kx b =+与y 轴交于点(0,3)、与x 轴交于点(a ,0),当a 满足30a -≤<时,k 的取值范围是( )A.10k -≤<B.13k ≤≤C.1k ≥D.3k ≥13.如图,在平面直角坐标系中,点(1)A m-,在直线23y x =+上.连结OA ,将线段OA 绕点O 顺时针旋转90︒,点A 的对应点B 恰好落在直线y x b =-+上,则b 的值为( )(A )2- (B )1 (C )32(D )2 14.若抛物线2()(1)y x m m =-++的顶点在第一象限,则m 的取值范围为( )A.1m >B.0m >C.1m ->D.10m -<<15.设二次函数y 1=a(x −x 1)(x −x 2)(a ≠0,x 1≠x 2)的图象与一次函数y 2=dx+e(d ≠0)的图象交于点(x 1,0),若函数y=y 2+y 1的图象与x 轴仅有一个交点,则( )A.a(x 1−x 2)=dB.a(x 2−x 1)=dC.a(x 1−x 2)2=dD.a(x 1+x 2)2=d 16.如图是二次函数y=ax 2+bx+c (a ≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc <0;②a+b=0;③4a+2b+c <0;④若(0,y 1),(1,y 2)是抛物线上的两点,则y 1=y 2.上述说法正确的是( )A.①②④B.③④C.①③④D.①②第16题图 第17题图 第18题图17.如图,观察二次函数y=ax 2+bx+c 的图象,下列结论:①a+b+c >0,②2a+b >0,③b 2﹣4ac >0,④ac >0.其中正确的是( )A.①②B.①④C.②③D.③④18.二次函数c bx ax y ++=2的图象如图,点C 在y 轴的正半轴上,且OA=OC ,则( )A. b ac =+1B. c ab =+1C. a bc =+1D. 以上都不是19.在同一直角坐标系中,一次函数k kx y -=与反比例函数)0(≠=k xk y 的图象大致是( )20.如图,在平面直角坐标系xOy 中,直线y=3x 经过点A,作AB ⊥x 轴于点B ,将⊿ABO 绕点B 逆时针旋转60°得到△CBD ,若点B 的坐标为(2,0),则点C 的坐标为( )21.二次函数c x x y ++=2的图象与x 轴有两个交点A (1x ,0),B (2x ,0),且21x x <,点P (m ,n )是图象上一点,那么下列判断正确的是( )A.当0<n 时,0<mB.当0>n 时,2x m >C.当0<n 时,21x m x <<D.当0>n 时,1x m <22.已知抛物线y=ax 2+bx +c(a>0)过(-2,0),(2,3)两点,那么抛物线的对称轴( )A.只能是x=-1B.可能是y 轴C.在y 轴右侧且在直线x=2的左侧D.在y 轴左侧且在直线x=-2的右侧23.对于二次函数x x y 22+-=.有下列四个结论:①它的对称轴是直线1=x ;②设12112x x y +-=,22222x x y +-=,则当12x x >时,有12y y >;③它的图象与x 轴的两个交点是(0,0)和(2,0); ④当20<<x 时,0>y .其中正确的结论的个数为( )A .1B .2C .3D .424.已知二次函数y=x 2+(m-1)x+1,当x >1时,y 随x 的增大而增大,而m 的取值范围是( )A.m=﹣1B.m=3C.m ≤﹣1D.m ≥﹣1 25.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A.2 B.4 C.22 D.42第25题图 第26题图 第27题图26.如图,在平面直角坐标系xOy 中,直线y=x 经过点A ,作AB ⊥x 轴于点B ,将△ABO 绕点B 逆时针旋转60°得到△CBD .若点B 的坐标为(2,0),则点C 的坐标为( ) A . (﹣1,) B . (﹣2,) C . (﹣,1) D . (﹣,2)27.在平面直角坐标系中,直线y =-x +2与反比例函数1y x =的图象有唯一公共点. 若直线y x b =-+与反比例函数1y x=的图象有2个公共点,则b 的取值范围是( ) (A) b ﹥2.(B) -2﹤b ﹤2. (C) b ﹥2或b ﹤-2. (D) b ﹤-2.28.如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点A 是函数y= (x<0)图象上一点,AO 的延长线交函数y= (x>0,k 是不等于0的常数)的图象于点C ,点A 关于y 轴的对称点为A ′,点C 关于x 轴的对称点为C ′,连接CC ′,交x 轴于点B ,连结AB ,AA ′,A ′C ′,若△ABC 的面积等于6,则由线段AC ,CC ′,C ′A ′,A ′A 所围成的图形的面积等于( )A. 8B. 10C. 3D. 429.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2个单位长度,则第2015秒时,点P 的坐标是( ) A.(2014,0) B.(2015,-1) C. (2015,1) D. (2016,0)30.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成。
12015年中考数学专题复习二次函数实际应用题专项一、典型例题例1.某企业为计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格1y (元)与月份x (19x ≤≤,且x 取整数)之间的函数关系如下表:月份x 1 2 3 4 5 6 7 8 9 价格y 1(元/件) 560580600620640660680700720随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格2y (元)与月份x (1012x ≤≤,且x 取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出1y 与x 之间的函数关系式.根据如图所示的变化趋势,直接写出2y 与x 之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量1p (万件)与月份x 满足函数关系式10.1 1.1p x =+ (19x ≤≤,且x 取整数),10至12月的销售量2p (万件)与月份x 满足函数关系式20.1 2.9p x =-+ (1012x ≤≤,且x 取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高%a ,与此同时每月销售量均在去年12月的基础上减少0.1%a .这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a 的整数值.(参考数据:2999801=,2989604=,2979409=,2969216=,2959025=)y 2(元/件)x (月)750 740 73010 11 12O2例2.星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围; (2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x 的取值范围.例3.如图是二次函数2122y x =-+的图象在x 轴上方的一部分,若这段图象与x 轴所围成的阴影部分面积为S ,试求出S 取值的一个范围. 例4. 新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y (万元)与销售时间第x (月)之间的函数关系式(即前x 个月的利润总和y 与x 之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA 、曲线AB 和曲线BC ,其中曲线AB 为抛物线的一部分,点A 为该抛物线的顶点,曲线BC 为另一抛物线252051230y x x =-+-的一部分,且点A ,B ,C 的横坐标分别为4,10,12(1)求该公司累积获得的利润y (万元)与时间第x (月)之间的函数关系式;(2)直接写出第x 个月所获利润s (万元)与时间x (月)之间的函数关系式(不需要写出计算过程);(3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元?y (万元) (月) xAB C440- 10 12 0 (图)3例5. 某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD .已知木栏总长为120米,设AB 边的长为x 米,长方形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围).当x 为何值时,S 取得最值(请指出是最大值还是最小值)?并求出这个最值;(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为1O 和2O ,且1O 到AB BC AD 、、的距离与2O 到CD BC AD 、、的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(1)中S 取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.三、能力训练1. 如图,A 、B 、C 、D 为⊙O 的四等分点,动点P 从圆心O 出发,沿O — C — D — O 路线作匀速运动.设运动时间为t (s ),∠APB=y (°),则下列图象中表示y 与t 之间函数关系最恰当的是( )2. 如图,夜晚,小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间函数关系的图象大致为( )3. 如图,点C D 、是以线段AB 为公共弦的两条圆弧的中点,4AB ,点E F 、OPDCBA y t9045y t9045y t 0904545900t y A B C D围墙A BC D O 1O 2CABxyOB .x yO C . xyO A .xyO D .4分别是线段CD AB 、上的动点,设22AF x AE FE y =-=,,则能表示y 与x 的函数关系的图象是( )4. 某公园草坪的防护栏是由100段形状相同的抛物线形组成的.为了牢固起见,每段护栏需要间距0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( ) A .50m B .100 m C .160 m D .200 m5. 农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房如图所示,则需要塑料布y (m 2)与半径R (m )的函数关系式是(不考虑塑料埋在土里的部分) .6. 如图,ABC △是一块锐角三角形材料,边6cm BC =,高4cm AD =.要把它加工成一个矩形零件,使矩形的一边在BC 上,其余两 个顶点分别在AB AC ,上,要使矩形EGHF 的面积最大,EG 的长 应为 cm .7. 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.20.50.4单位:mAB C D E M F G H 2米2.5米 1米0.5米2R 米30米58. 我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量1y (万件)与时间t (t 为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量2y (万件)与时间t (t 为整数,单位:天)的关系如右图所示. 时间t (天) 051015202530日销售量1y (万件)0 25 40 45 40 25 0(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示1y 与t 的变化规律,写出1y 与t 的函数关系式及自变量t 的取值范围;(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量2y 与时间t 所符合的函数关系式,并写出自变量t 的取值范围;(3)设国内、外市场的日销售总量为y 万件,写出y 与时间t 的函数关系式,并判断上市第几天国内、外市场的日销售总量y 最大,并求出此时的最大值.9. 连接上海市区到浦东国际机场的磁悬浮轨道全长约为30km ,列车走完全程包含启动加速、匀速运行、制动减速三个阶段.已知磁悬浮列车从启动加速到稳定匀速动行共需200秒,在这段时间内记录下下列数据:时间t (秒) 0 50 100 150 200 速度υ(米/秒) 0 30 60 90 120 路程s (米)7503000675012000(1)请你在一次函数、二次函数和反比例函数中选择合适的函数来分别表示在加速阶段(0200t ≤≤)速度υ与时间t 的函数关系、路程s 与时间t 的函数关系.(2)最新研究表明,此种列车的稳定动行速度可达180米/秒,为了检测稳定运行时各项指标,在列车达到这一速度后至少要运行100秒,才能收集全相关数据.若在加速过程中路程、速度随时间的变化关系仍然满足(1)中的函数关系式,并且制动减速所需路程与启动加速的路程相同.根据以上要求,至少还.要再建...多长轨道就能满足试验检测要求? (3)若减速过程与加速过程完全相反.根据对问题(2)的研究,直接写出列车在试验检测过程中从启动到停车这段时间内,列车离开起点的距离y (米)与时间t (秒)的函数关系式(不需要写出过程)0 5 10 15 20 25 30 304020 102()y 万件()t 天610. 红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m (件)与时间t (天)的关系如下表: 时间t (天) 1 3 5 10 36 … 日销售量m (件)9490847624…未来40天内,前20天每天的价格1y (元/件)与时间t (天)的函数关系式为11254y t =-(120t ≤≤且t 为整数),后20天每天的价格2y (元/件)与时间t (天)的函数关系式为21402y t =-+(2140t ≤≤且t 为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m (件)与t (天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a 元利润(4a <)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求a 的取值范围.四、思维拓展11. 如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.12. 某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上7市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P (件)与销售时间x (天)之间有如下关系:280P x =-+(130x ≤≤,且x 为整数);又知前20天的销售价格1Q (元/件)与销售时间x (天)之间有如下关系:11302Q x =+(120x ≤≤,且x 为整数),后10天的销售价格2Q (元/件)与销售时间x (天)之间有如下关系:145Q =(2130x ≤≤,且x 为整数). (1)试写出该商店前20天的日销售利润1R (元)与后10天的日销售利润2R (元)分别与销售时间x (天)之间的函数关系式;(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润. 注:销售利润=销售收入-购进成本.13. 某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =1001-x +150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳1001x 2元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费). (1)当x = 1000时,y = 元/件,w 内 = 元;(2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围);(3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?14. 某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时..开始销售.这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销售量,且在同一天卖完;甲级干果从开始销售至销售的第x 天的总销售量..1y (千克)与x 的关系为82140y x x =-+;乙级干果从开始销售至销售的第t 天的总销售量..2y (千克)与t 的关系为221y at bt =+,且乙级干果的前三天的销售量的情况见下表:t 1 2 3 2y214469(1)求a b 、的值;(2)若甲级干果与乙级干果分别以8元/千克和6元/千克的零售价出售,则卖完这批干果获得的毛利润为多少元?(3)问:从第几天起乙级干果每天的销售量比甲级干果每天的销售量至少多6千克?(说明:毛利润=销售总金额-进货总金额.这批干果进货至卖完的过程中的损耗忽略不计.)15. 某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件. (1)写出销售量y (件)与销售单价x (元)之间的函数关系式;(2)写出销售该品牌童装获得的利润w (元)与销售单价x (元)之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少元?一、例题精选答案例1. 解:(1)154020(19)y x x x =+≤≤,且取整数.263010(1012)y x x x =+≤≤,且取整数.(2)设去年第x 月的利润为W 万元. 当19x ≤≤,且x 取整数时,1122(10005030)(0.1 1.1)(1000503054020)2164182(4)450W p y x x x x x =∙---=+----=-++=--+.19x ≤≤,∴当4x =时,450W =最大.当1012x ≤≤,且x 取整数时.9222(10005030)(0.1 2.9)(1000503063010)(29)W p y x x x =∙---=-+----=-.1012x ≤≤时,W 随x 的增大而减小.当10x =时,361W =最大.450361>,∴去年4月销售该配件的利润最大,最大利润为450万元.(3)去年12月销售量为:0.112 2.9 1.7-⨯+=(万件). 今年原材料价格为:750+60=810(元). 今年人力成本为:50(120%)60⨯+=(元). 由题意,得[]51000(1%)8106030 1.7(10.1%)1700a a ⨯+---⨯-=.设%t a =,整理,得21099100t t -+=.解得99940120t ±=.2979409=,2969216=,而9401更接近9409. 9401∴=97.10.1t ∴≈或29.8t ≈.110a ∴≈或2980a ≈. 21.7(10.1%)1980a a -∴≥,≈舍去.10a ∴≈.答:a 的整数值为10.例2. 解:(1)()302615.y x x =-<≤(2)设矩形苗圃园的面积为.S 则()2302230Sxy x x x x ==-=-+∴()227.5112.5,S x =--+ 由(1)知,615.x <≤ ∴当7.5x =时,112.5.S =最大值即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面积最大,最大值为112.5. (3)611.x ≤≤10例3. 解:方法一:由题意,可知这段图象与x 轴的交点为A (-2,0)、B (2,0),与y 轴的交点为C (0,2).显然,S 在ABC ∆面积与过A 、B 、C 三点的⊙O 半圆面积之间. ∵ ABC S △=4, 12O S =2π,∴ 4<S <2π.说明:关于半圆⊙O 的面积大于图示阴影部分面积的证明,如下(对学生不要求): 设P (x ,y )在图示抛物线上,则 OP 2=x 2+y 2=(4-2y )+y 2=(y -1)2+3. ∵ 0≤y ≤2, ∴ 3≤OP 2≤4.∴ 点P 在半圆x 2+y 2=3、x 2+y 2=4所夹的圆环内, 以及点P 为内圆周点(2±,1)与外圆周点A 、B 、C .∴ 半圆⊙O 的面积大于图示阴影部分的面积. 由于内半圆的面积为12O S -3π2, ∴3π2<S <2π. 如果学生能得出此结论,可在上面结论基础上,加4分.方法二:由题意,可知这段图象与x 轴的交点为A (-2,0)、B (2,0),与y 轴的交点为C (0,2).显然,这段图象在图示半径为3、2的两个半圆所夹的圆环内,以及过内半圆上点 P (2±,1)与半外圆上点A 、B 、C . ∴ S 在图示两个半圆面积之间.即21π(3)2⋅<S <2122π⋅.∴ 3π2<S <2π.例4. (1)设直线OA 的方程为y kx =,则由()()00440-,,,在该直线上,404k -=,得10k =-. 10y x ∴=-.设曲线AB 所在的抛物线方程为()2440y a x =--,由于点B 在抛物线252051230y x x =-+-上,设()10B m ,,则320m =. 由于()10320B ,在抛物线上,故()23201040a=--·4. 40a ∴=.即()22104401080120y x x x =--=-+.BC A OxyP P A BCOxy()()()22101234:0123410801205678952051230101112x x x y x x x x x x -==⎧⎪∴=-+=⎨⎪-+-=⎩,,,注写成,,,,亦可,,,,,, (4x =可归为第2段,10x =亦可归为第2段)(2)()()()1012340420905678959102101011121012x x x x s x x x x x x x x ⎧-=⎪⎪∴=-=⎨⎪-+=⎪⎩,,,或≤≤且为整数,,,,或≤≤且为整数,,或≤≤且为整数(注:解析式每对1个给1分,取值范围全正确给1分,共4分)(3)由(2)知,1234x =,,,时,s 均为-10;56789x =,,,,时,2090s x =-,s 有最大值90,而在101112x =,,时,10210s x =-+,在10x =时,s 有最大值110,故在10x =时,s 有最大值110.即第10个月公司所获利润最大,它是110万元.例5. 解:(1)据题意,得1202BC x =-.()212022120S x x x x ∴=-=-+.20-<, ∴当()1203022x =-=⨯-时,()2120180042S -==⨯-最大值(平方米). (2)由(1),当S 取得最大值时,有30AB =,60BC =. 设1O ⊙的半径为r 米,圆心1O 到AB 的距离为y 米.据题意,得2302260y y r =⎧⎨+=⎩,.解得1515y r =⎧⎨=⎩,.00.5y r -=<,∴这个设计不可行.二、能力训练答案围墙A BC D O 1O 2r1. C2. A3. C4. C5. 230ππy R R =+6. 27.128. 解:(1)21165y t t =-+(030t ≤≤,t 为整数) 3分(2)从图中可知,当020t <≤时,2y 是t 的正比例函数,且图象过点(2040),, 设2y kt =,把点(2040),代入2y kt =,得2k =.∴当020t <≤时,22y t =.4分当2030t ≤≤时,2y 是t 的一次函数,且它的图象过点(2040),,(300),, 设2y =k 't+b ,把(20,40),(30,0)代入2y =k '+b ,得2040300.k b k b '+=⎧⎨'+=⎩, 解得4120.k b '=-⎧⎨=⎩,24120y t ∴=-+. 5分22(020)4120(2030).t t t y t t t <⎧∴=⎨-+⎩且为整数且为整数 ≤, ≤≤, 6分(3)由12y y y =+,得2218(020)512120(2030)5t t t t y t t t t ⎧-+<⎪⎪=⎨⎪-++⎪⎩且为整数且为整数 ≤, ≤≤,7分当020t <≤时,22118(20)8055y t t t =-+=--+.t 为整数,∴当19t =时,y 最大值为79.8万件.8分当2030t ≤≤时,22112120(5)12555y t t t =-++=--+.y 随t 的增大而减小,∴当20t =时,y 最大值为80万件.9分综上所述,上市后第20天国内外市场日销售总量y 值最大,最大值为80万件. 10分9. (1)通过描点或找规律,确定v 与t 是一次函数,35v t =s 与t 是二次函数,2310s t =. (2)由35v t =得当180v =时,300t =秒,则232700010s t ==米27=千米. 180********⨯=米18=千米因为减速所需路程和启动加速路程相同,所以总路程为2721872⨯+= 所以还需建723042-=千米.(3)当0300t <≤时,2310s t = 当300400t <≤时,18027000s t =-当400700t <≤时,23(700)7200010s t =--+(一般式为234207500010s t t =-+-).10. 解:(1)将194t m =⎧⎨=⎩,和390t m =⎧⎨=⎩,代入一次函数m kt b =+中,有94903k b k b=+⎧⎨=+⎩,.296k b =-⎧∴⎨=⎩,. 296m t ∴=-+. 经检验,其它点的坐标均适合以上解析式, 故所求函数解析式为296m t =-+.(2)设前20天日销售利润为1p 元,后20天日销售利润为2p 元. 由221111(296)514480(14)578422p t t t t t ⎛⎫=-++=-++=--+ ⎪⎝⎭, 120t ≤≤,∴当14t =时,1p 有最大值578(元).由2221(296)20881920(44)162p t t t t t ⎛⎫=-+-+=-+=-- ⎪⎝⎭.2140t ≤≤且对称轴为44t =,∴函数2p 在2140t ≤≤上随t 的增大而减小.∴当21t =时,2p 有最大值为2(2144)1652916513--=-=(元). 578513>,故第14天时,销售利润最大,为578元.(3)2111(296)5(142)4809642p t t a t a t a ⎛⎫=-++-=-+++- ⎪⎝⎭对称轴为(142)142122a t a -+==+⎛⎫⨯- ⎪⎝⎭.120t ≤≤,∴当14220a +≥即3a ≥时,1p 随t 的增大而增大.又4a <,34a ∴<≤.三、思维拓展答案11. 解:(1)设正方形的边长为x cm ,则(102)(82)48x x --=.1分即2980x x -+=.解得18x =(不合题意,舍去),21x =.∴剪去的正方形的边长为1cm .3分(注:通过观察、验证直接写出正确结果给3分) (2)有侧面积最大的情况.设正方形的边长为x cm ,盒子的侧面积为y cm 2, 则y 与x 的函数关系式为:2(102)2(82)y x x x x =-+-.即2836y x x =-+.5分改写为2981842y x ⎛⎫=--+ ⎪⎝⎭.∴当 2.25x =时,40.5y =最大.即当剪去的正方形的边长为2.25cm 时,长方体盒子的侧面积最大为40.5cm 2.7分(3)有侧面积最大的情况.设正方形的边长为x cm ,盒子的侧面积为y cm 2.若按图1所示的方法剪折,则y 与x 的函数关系式为:1022(82)22xy x x x -=-+. 即213169666y x ⎛⎫=--+ ⎪⎝⎭.∴当136x =时,1696y =最大. 9分 若按图2所示的方法剪折,则y 与x 的函数关系式为:822(102)22xy x x x -=-+.即2798633y x ⎛⎫=--+ ⎪⎝⎭.∴当73x =时,983y =最大. 11分比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为73cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为983cm 2.图1图212. 解:(1)根据题意,得111(20)(280)[(30)20]2R P Q x x =-=-++-=220800(120)x x x x -++≤≤,且为整数22(20)(280)(4520)502000(2130.)R P Q x x x x =-=-+-=-+≤≤且为整数(2)在120x ≤≤,且x 为整数时, ∵21(10)900R x =--+∴当10x =时,1R 的最大值为900. 在2130x ≤≤,且x 为整数时,∵在2502000R x =-+中,2R 的值随x 值的增大而减小, ∴当21x =时,2R 的最大值是950.∵950>900.∴当21x =即在第21天时,日销售利润最大,最大值为950元.13. 解:(1)140 57500;(2)w 内 = x (y -20)- 62500 = 1001-x 2+130 x 62500-, w 外 = 1001-x 2+(150a -)x . (3)当x = )1001(2130-⨯-= 6500时,w 内最大;分由题意得2214()(62500)1300(150)100114()4()100100a ⨯-⨯----=⨯-⨯-,解得a 1 = 30,a 2 = 270(不合题意,舍去).所以 a = 30. (4)当x = 5000时,w 内 = 337500, w 外 =5000500000a -+. 若w 内 < w 外,则a <32.5; 若w 内 = w 外,则a = 32.5; 若w 内 > w 外,则a >32.5.所以,当10≤ a <32.5时,选择在国外销售; 当a = 32.5时,在国外和国内销售都一样;当32.5< a ≤40时,选择在国内销售.14. 解:(1)选取表中两组数据,求得120a b ==,; (2)甲级干果与乙级干果n 天销完这批货. 则224201140n n n n -+++=. 即601140n =.解之得19n =. 当19n =时,1399y =,2741y =.毛利润=3998741611406798⨯+⨯-⨯=(元); (3)第n 天甲级干果的销售量为241n -+. 第n 天乙级干果的销售量为219n +.(219)(241)6n n +--+≥.解之得 7n ≥. 答:(略)15. 解:(1)由题意,得:()2008020v x =+-⨯=201800x -+.答:y 与x 之间的函数关系式是2201800y x =-+.(2)由题意,得:()()60201800w x x =--+=2203000108000x x -+-.答:w 与x 之间的函数关系式是203000108000y x x =-+-.(3)由题意,得:20180024076x x -+⎧⎨⎩,.≥≥解得7678x ≤≤.2203000108000w x x =-+-,对称轴为()300075220x =-=⨯-,又0a <,∴当7678x ≤≤时,w 随x 增大而减小. ∴当76x =时,()()7660207618004480w =-⨯-⨯+=最大.答:这段时间商场最多获利4480元.。
2015版武汉中考二次函数综合题讲练(2015武汉中考)24.(本题12分)已知抛物线y=x2+c与x轴交于A(-1,0),B两点,交y 轴于点C(1) 求抛物线的解析式(2) 点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,若∠CEF=∠CFG,求n的值并直接写出m的取值范围(利用图1完成你的探究)(3) 如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ的周长解:(1)把A(﹣1,0)代入得c=﹣,∴抛物线解析式为(2)如图1,过点C作CH⊥EF于点H,∵∠CEF=∠CFG,FG⊥y轴于点G∴△EHC∽△FGC∵E(m,n)∴F(m,)又∵C(0,)∴EH=n+,CH=﹣m,FG=﹣m,CG=m2又∵,则∴n+=2∴n=(﹣2<m<0)(3)由题意可知P(t,0),M(t,)∵PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,∴△OPM∽△QPB.∴.其中OP=t,PM=,PB=1﹣t,∴PQ=.BQ=∴PQ+BQ+PB=.∴△PBQ的周长为2.yQ FEO xO MDCB Axy6、如图1,抛物线23y ax bx =++经过点A (-3,0),B (-1,0)两点, (1)求抛物线的解析式;(2)设抛物线的顶点为M ,直线y=-2x+9与y 轴交于点C ,与直线OM 交于点D ,现将抛物线平移,保持顶点在直线OD 上,若平移的抛物线与射线CD (含端点C )只有一个公共点,求它的顶点横坐标的值或者取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过点Q (0,3)作不平行于x 轴的直线交抛物线于E 、F 两点,问在y 轴的负半轴上是否存在点P ,使△PEF 的内心在y 轴上。
若存在,求出点P 的坐标;若不存在,请说明理由。
图 1图2答案:(1)抛物线32++=bx ax y 经过A(-3,0),B(-1,0)⎩⎨⎧=+-=+-∴030339b a b a ,解得⎩⎨⎧==41b a ∴抛物线的解析式:342++=x x y 。
中考试题分类汇编--函数综合题1. 如图,已知点A 〔tan α,0〕,B 〔tan β,0〕在x 轴正半轴上,点A 在点B 的左边,α、β 是以线段AB 为 斜边、顶点C 在x 轴上方的Rt △ABC 的两个锐角.〔1〕假设二次函数y =-x 2-25kx +〔2+2k -k 2〕的图象经过A 、B 两点,求它的解析式;〔2〕点C 在〔1〕中求出的二次函数的图象上吗?请说明理由. 解:〔1〕∵ α,β是Rt △ABC 的两个锐角,∴ tan α·tan β=1.tan α>0,tan β>0. 由题知tan α,tan β是方程 x 2+25kx -〔2+2k -k 2〕=0的两个根, ∴ tanx ·tan β=〔2=2k -k 2〕=k 2-2k -2,∴ k 2-2k -2=1.解得,k =3或k =-1. 而tan α+tan β=-25k >0, ∴ k <0.∴ k =3应舍去,k =-1. 故所求二次函数的解析式为y =-x 2+25x -1. 〔2〕不在. 过C 作CD ⊥AB 于D . 令y =0,得-x 2+25x -1=0, 解得x 1=21,x 2=2. ∴ A 〔21,0〕,B 〔2,0〕,AB =23. ∴ tan α=21,tan β=2.设CD =m .则有CD =AD ·tan α=21AD .∴ AD =2CD .又CD =BD ·tan β=2BD ,∴ BD =21CD . ∴ 2m +21m =23.∴ m =53.∴ AD =56.∴ C 〔1017,53〕.当x =1017时,y =259≠53∴ 点C 不在〔1〕中求出的二次函数的图象上.2.已知抛物线2y x kx b =++经过点(23)(10)P Q --,,,. 〔1〕求抛物线的解析式.〔2〕设抛物线顶点为N ,与y 轴交点为A .求sin AON ∠的值. 〔3〕设抛物线与x 轴的另一个交点为M ,求四边形OANM解:〔1〕解方程组01342k bk b =-+⎧⎨-=++⎩得23k b =-⎧⎨=-⎩,223y x x ∴=--.〔2〕顶点(14)sin N ON AON -==,,∠ 〔3〕在223y x x =--中,令0x =得3y =-,(03)A ∴-,, 令0y =得1x =-或3,(30)M ∴,. S 四边形367.52OAN ONM S S =+=+=△△〔面积单位〕3.如图9,抛物线y=ax 2+8ax+12a 与x 轴交于A 、B 两点〔点A 在点B 的左侧〕,抛物线上另有一点C 在第一象限,满足∠ ACB 为直角,且恰使△OCA ∽△OBC. (1) 求线段OC 的长.(2) 求该抛物线的函数关系式.(3) 在x 轴上是否存在点P ,使△BCP 为等腰三角形?假设存在,求出所有符合条件的P 点的坐标;假设不存在, 请说明理由.解:〔1〕32;〔2〕34338332-+-=x x y ;〔3〕4个点:)0,4(),0,0(),0,326)(0,326(+-4.已知函数y=x2和y=kx+l(k≠O). (1)假设这两个函数的图象都经过点(1,a),求a 和k 的值; (2)当k 取何值时,这两个函数的图象总有公共点?解;(1) ∵两函数的图象都经过点(1,a),∴⎪⎩⎪⎨⎧+==112k a a ∴⎩⎨⎧==12k a (2)将y =x2代人y=kx+l ,消去y .得kx 2+x 一2=0.∵k≠O,∴要使得两函数的图象总有公共点,只要△≥0即可. ∵△=1+8k , ∴1+8k≥0,解得k≥一81∴k≥一81且k≠0.5.已知如图,矩形OABC 的长3OC=1,将△AOC 沿AC 翻折得△APC 。
2015湖南中考复习二次函数的综合题及应用考点一:确定二次函数关系式例1 (1)如图,已知二次函数y=x 2+bx+c 过点A (1,0),C (0,-3) (1)求此二次函数的解析式;(2)在抛物线上存在一点P 使△ABP 的面积为10,请直接写出点P 的坐标.思路分析:(1)利用待定系数法把A (1,0),C (0,-3)代入)二次函数y=x 2+bx+c 中,即可算出b 、c的值,进而得到函数解析式是y=x 2+2x-3;(2)首先求出A 、B 两点坐标,再算出AB 的长,再设P (m ,n ),根据△ABP 的面积为10可以计算出n 的值,然后再利用二次函数解析式计算出m 的值即可得到P 点坐标.解:(1)∵二次函数y=x 2+bx+c 过点A (1,0),C (0,-3),∴103b c c ++=⎧⎨=⎩,解得23b c =⎧⎨=⎩,∴二次函数的解析式为y=x 2+2x-3;(2)∵当y=0时,x 2+2x-3=0,解得:x 1=-3,x 2=1;∴A (1,0),B (-3,0), ∴AB=4,设P (m ,n ),∵△ABP 的面积为10, ∴12AB •|n|=10, 解得:n=±5,当n=5时,m 2+2m-3=5, 解得:m=-4或2,∴P (-4,5)(2,5);当n=-5时,m 2+2m-3=-5, 方程无解,故P (-4,5)(2,5);点评:此题主要考查了待定系数法求二次函数解析式,以及求点的坐标,关键是掌握凡是函数图象经过的点必能满足解析式.(2)在直角坐标平面中,O 为坐标原点,二次函数2y x bx c =++的图象与x 轴的负半轴相交于点C ,如图3-3,点C 的坐标为(0,-3),且BO =CO (1) 求这个二次函数的解析式;(2) 设这个二次函数的图象的顶点为M ,求AM 的长.【考点要求】本题考查二次函数解析式的确定。
【思路点拨】由题目条件,可用待定系数法求解析式(1)(0,3),|3|3,3C OC c -=-=∴=-Q ,OC BO =Q 又,,9330,630,2b b b +-=+==-。
一次函数和反比例函数一.选择题(共10小题)1.(2015•上海)下列y关于x的函数中,是正比例函数的为()2.(2015•甘孜州)函数y=x﹣2的图象不经过()3.(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()4.(2015•北海)正比例函数y=kx的图象如图所示,则k的取值范围是()5.(2015•牡丹江)在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()B=6.(2015•柳州)下列图象中是反比例函数y=﹣图象的是().B..﹣7.(2015•兰州)在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()B8.(2015•黑龙江)关于反比例函数y=﹣,下列说法正确的是()(9.(2015•天津)己知反比例函数y=,当1<x<3时,y的取值范围是()10.(2015•厦门)反比例函数y=的图象是()=二.填空题(共15小题)11.(2015•凉山州)已知函数y=2x2a+b+a+2b是正比例函数,则a=,b=﹣..故答案为:;﹣.12.(2015•连云港)已知一个函数,当x>0时,函数值y随着x的增大而减小,请写出这个函数关系式y=﹣x+2(写出一个即可).,13.(2015•福建)在一次函数y=kx+3中,y的值随着x值的增大而增大,请你写出符合条件的k的一个值:2.14.(2015•菏泽)直线y=﹣3x+5不经过的象限为第三象限.15.(2015•无锡)一次函数y=2x﹣6的图象与x轴的交点坐标为(3,0).16.(2015•柳州)直线y=2x+1经过点(0,a),则a=1.17.(2015•六盘水)正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为(3,2).18.(2015•滨州)把直线y=﹣x﹣1沿x轴向右平移2个单位,所得直线的函数解析式为y=﹣x+1.19.(2015•沈阳)如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要5s能把小水杯注满.,解得:,20.(2015•大连)在平面直角坐标系中,点A,B的坐标分别为(m,3),(3m﹣1,3),若线段AB与直线y=2x+1相交,则m的取值范围为≤m≤1.,解得≤的取值范围为21.(2015•永州)已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x≥2时,y≤0.,解得:x解不等式﹣x22.(2015•湖州)已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.代入得:,解得:23.(2015•武汉)如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.)代入得:,解得:24.(2015•威海)如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为().=x﹣﹣时,﹣x,∴点()25.(2015•广州)某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为y=6+0.3x.三.解答题(共5小题)26.(2015•孝感)某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W 元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?由题意得:,解得:…≥27.(2015•新疆)某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A中T恤x件,且所购进的良好总T恤全部卖出,获得的总利润为W元.(1)求W关于x的函数关系式;(2)如果购进两种T恤的总费用不超过9500元,那么超市如何进货才能获得最大利润?并求出最大利润.(提示:利润=售价﹣进价)28.(2015•威海)为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:y=﹣20x+1890;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.29.(2015•乌鲁木齐)一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整后提速行驶至乙地.货车的路程y1(km),小轿车的路程y2(km)与时间x (h)的对应关系如图所示.(1)甲乙两地相距多远?小轿车中途停留了多长时间?(2)①写出y1与x的函数关系式;②当x≥5时,求y2与x的函数解析式;(3)货车出发多长时间与小轿车首次相遇?相遇时与甲地的距离是多少?,解得:,∴30.(2015•徐州)为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费y(元)与用水量xm3之间的函数关系.其中线段AB 表示第二级阶梯时y与x之间的函数关系(1)写出点B的实际意义;(2)求线段AB所在直线的表达式;(3)某户5月份按照阶梯水价应缴水费102元,其相应用水量为多少立方米?,则解得,,解得﹣。
中考数学函数综合与应用题专项训练(四)
三、解答题
19.(9分)星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气,注完气之后,
一位工作人员以每车20米3的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y (米3)与时间x (小时)之间的函数关系如图所示.
(1)8:00~8:30,燃气公司向储气罐注入了_________米3的天然气;
(2)当x ≥8.5时,求储气罐中的储气量y (米3)与时间x (小时)之间的函数关系式;
(3)正在排队等候的20辆车加完气后,储气罐内还有天然气多少立方米?这20辆车在当天9:00之前能加完气吗?请说明理由.
20.(9分)在修建楼梯时,设计者要考虑楼梯的安全程度.如图1,虚线为楼梯的斜度线,
斜度线与地面的夹角为倾角θ,一般情况下,倾角θ越小,楼梯的安全程度越高.如图2,设计者为提高楼梯的安全程度,要把楼梯的倾角由θ1减至θ2,这样楼梯占用地板的长度由d 1增加到d 2,已知d 1=4m ,θ1=40°,θ2=36°,楼梯占用地板的长度增加了多少米? (结果精确到0.01m .参考数据:sin36°≈0.588,cos36°≈0.809,ta n36°≈0.727,sin40°≈0.643,cos40°≈0.766,tan40°≈0.839)
图1 图2 21.(10分)义洁中学计划从荣威公司购买A ,B 两种型号的小黑板.经洽谈,购买一块A
型小黑板比购买一块B 型小黑板多用20元,且购买5块A 型小黑板和4块B 型小黑板共需820元.
(1)求购买一块A 型小黑板、一块B 型小黑板各需多少元.
(2)根据义洁中学实际情况,需从荣威公司购买A ,B 两种型号的小黑板共60块,要求购买A ,B 两种型号小黑板的总费用不超过5 240元.并且购买A 型小黑板的数量x/ 小时
2 0008 00010 00010.58.58y/ 米3
O θ1地板地板θ2A
D C B d 2d 1地板地板θ
不小于购买B A ,B 两种型号的小黑
中考数学函数综合与应用题专项训练(四)
参考答案 19.(1)8 000;(2) 1 00018 500y x =-+;(3)9 600米3,能加完气,理由略. 20.0.62米.
21.(1)购买一块A 型小黑板需100元,购买一块B 型小黑板需80元;
(2)方案①购买A 型20块,B 型40块;
方案②购买A 型21块,B 型39块;
方案③购买A 型22块,B 型38块.
方案①的总费用最低.。