三角形中考总复习专题训练(精华)
- 格式:doc
- 大小:543.50 KB
- 文档页数:5
中考数学总复习《三角形的综合题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,在平面直角坐标系中直线y=−x与双曲线y=kx交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.−12B.−32C.−2D.−142.如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=()A.10°B.20°C.30°D.40°3.如图,在Rt△ABC中AD是∠BAC的平分线,DE⊥AB垂足为E.若BC=8cm,BD=5cm则DE的长为()A.2√3cm B.3cm C.4cm D.5cm4.如图,矩形纸片ABCD中AD=8cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=10cm,则AB的长为()A.12cm B.14cm C.16cm D.18cm5.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.15°6.如图,锐角∠ABC的两条高BD,CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°7.下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,28.如图,在∠ABC中AB=AC,BE=CD,BD=CF,若∠A=40°,则∠EDF等于()A.40°B.50°C.60°D.70°9.若点O是等腰∠ABC的外心,且∠BOC=60°,底边BC=2,则∠ABC的面积为() A.2+√3B.2√3C.2+√3或2-√3D.4+2√3或2-√3310.如图,等边ΔABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°11.如图,在△ABC中∠A=30°,∠ABC=100°,观察尺规作图的痕迹,则∠BFC的度数为()A.130°B.120°C.110°D.100°12.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=6厘米,圆形容器的壁厚是()A.5厘米B.6厘米C.2厘米D.12厘米二、填空题13.如图,要测量河两岸相对的两点A、B的距离,在AB的垂线段BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,若测得DE的长为20米,则河宽AB长为米.14.如图1,点P从△ABC的项点A出发,以每秒2个单位长度的速度沿A→B→C→A的方向匀速运动到点A.图2是点P运动时线段AP的长度y随时间t(s)变化的关系图象,其中点M为曲线部分的最低点,则△ABC的面积是.15.如图,在正方形ABCD中AC为对角线,E为AC上一点,连接EB,ED,BE的延长线交AD于点F,∠BED=120∘,则∠EFD的度数为.16.如图,△ABC中∠A=40°,D、E是AC边上的点,把△ABD沿BD对折得到△A′BD,再把△BCE沿BE对折得到△BC′E,若C′恰好落在BD上,且此时∠C′EB=80°,则∠ABC=.17.如图,测量三角形中线段AB的长度为cm.判断大小关系:AB+AC BC(填“ >”,“ =”或“ <”).18.如图,已知AB是∠O的弦,AB=8,C是∠O上的一个动点,且∠ACB=45°.若M,N分别是AB,BC的中点,则线段MN长度的最大值是三、综合题19.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为∠ABC三边的长.(1)如果x=﹣1是方程的根,试判断∠ABC的形状,并说明理由;(2)如果∠ABC是等边三角形,试求这个一元二次方程的根.20.如图,在Rt∠OAB中∠OAB=90°,OA=AB=6,将∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1.(1)线段OA1的长是,∠AOB1的度数是;(2)连接AA1,求证:四边形OAA1B1是平行四边形.21.已知一次函数y=2x−2的图像为l1,函数y=12x−1的图像为l2.按要求完成下列问题:(1)求直线l1与y轴交点A的坐标;求直线l2与y轴的交点B的坐标;(2)求一次函数y=2x−2的图象l1与y=12x−1的图象l2的交点P的坐标;(3)求由三点P、A、B围成的三角形的面积.22.在图中利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)图中AC与A′C′的关系怎样?(3)记网格的边长为1,则△A′B′C′的面积为多少?23.如图,在∠ABC中点D在AB上,且CD=CB,E为BD的中点,F为AC的中点,连接EF交CD 于点M,连接AM.(1)求证:EF= 12AC;(2)若EF∠AC,求证:AM+DM=CB.24.如图①,Rt△ABC中∠C=90°,AC=6cm.动点P以acm/s的速度由B出发沿线段BA 向A运动,动点Q以1cm/s的速度由A出发沿射线AC运动.当点Q运动2s时,点P开始运动;P点到达终点时,P、Q一起停止.设点P运动的时间为ts,△APQ的面积为ycm2,y与t的函数关系图像如图②所示.(1)点P运动的速度a=cm/s,AB=cm;(2)当t为何值时,△APQ的面积为12cm2;(3)是否存在t,使得直线PQ将Rt△ABC的周长与面积同时平分?若存在,求出t的值;若不存在,请说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】D9.【答案】C10.【答案】C11.【答案】C12.【答案】D13.【答案】2014.【答案】1215.【答案】105º16.【答案】60°17.【答案】2.0;>18.【答案】4√219.【答案】(1)解:ΔABC是等腰三角形;理由:把x=−1代入方程得a+c−2b+a−c=0,则a=b,所以ΔABC为等腰三角形(2)解:∵ΔABC为等边三角形∴a=b=c∴方程化为x2+x=0解得x1=0,x2=−1.20.【答案】(1)6;135°(2)证明:∵∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1∴∠AOA1=90°,∠OA1B1=90°,OA1=A1 B1=OA=6∴∠AO A1=∠O A1B1∴OA∠A1B1∵A1B1=OA∴四边形OAA1B1是平行四边形.21.【答案】(1)解:当x =0时,y= -2,即直线l 1与y 轴交点A 的坐标为(0,−2)当x =0时,y= -1,即直线l 2与y 轴交点B 的坐标为(0,−1);(2)解:∵一次函数y =2x −2的图象l 1与y =12x −1的图象l 2相交∴2x −2=12x −1∴x =23∴y =2×23−2=−23∴交点P 的坐标为(23,−23);(3)解:三点P 、A 、B 围成的三角形,如下图,作PD ⊥AB 交y 轴于点DAB =|−1−(−2)|=1△ABP 的高DP 为:23∴S △ABP =12AB ×DP =12×1×23=13即由三点P 、A 、B 围成的三角形的面积:13.22.【答案】(1)解:如图,∠A′B′C′为所作;(2)解:线段AC 与A′C′的位置关系是平行,数量关系是相等 (3)解:∠A′B′C′的面积=12×4×4=8.23.【答案】(1)证明:连接CE∵CD=CB,点E为BD的中点∴CE⊥BD∵点F为AC的中点∴EF=12AC;(2)解:∵点F是AC中点∴AF=FC,又EF⊥AC∴∠AFM=∠CFM,且AF=FC∴ΔAFM≅ΔCFM(SAS)∴AM=CM∵BC=CD=DM+CM=DM+AM.24.【答案】(1)1;10(2)解:当运动时间为t时,AQ=t+2,BP=t,AP=10−t 如图,作PH⊥AC,则△APH∽△ABC∴PH=APAB·BC=4(10−t)5∴S△APQ=12AQ·PH=12(t+2)4(10−t)5=2(t+2)(10−t)5∴△APQ的面积为12cm2时,解方程12=2(t+2)(10−t)5,得t1=4+√6∴当t=4+√6或4−√6时,△APQ的面积为12cm2;(3)解:∵S△ABC=24cm2,C△ABC=6+8+10=24cm∴12S△ABC=12cm2①当0<t≤4时由(2)可知,当t=4−√6时,△APQ的面积为12cm2此时,AQ=4−√6+2=6−√6∴AP+AQ=6+√6+6−√6=12,即AP+AQ=12C△ABC∴t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;②当4<t≤10时设PQ与BC交于点N,作PM⊥BC则有:△PBM∽△ABC∴PM AC=BPBA=BMBC,∴PM=3t5,BM=4t5,MC=8−4t5∵PM QC=MNCN,∴MN=3t2−30t25−10t当BN+BP=12时,解方程4t5+3t2−30t25−10t+t=12,得t=5或t=4(舍去)此时,PM=3,BM=4,BP=5∴BN=4+3=7∴当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分;∴综上,当t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分.第11页共11页。
中考数学直角三角形与勾股定理专题训练一、选择题1. 如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为()A.B.3 C.D.52. 如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.3. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米4. 如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点,则点D的个数共有()B,C),若线段AD长为正整数...A. 5个B. 4个C. 3个D. 2个5.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB的长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于A.1和2之间B.2和3之间C.3和4之间D.4和5之间6. 如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE ⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.37. 如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A. x-y2=3B. 2x-y2=9C. 3x-y2=15D. 4x-y2=218. 已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.32B.332C.32D. 不能确定二、填空题9. 如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).10. 如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F.过点E,F作直线EF,交AB于点D,连接CD,则CD的长是________.11. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD 的长度是 .12. 如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC 绕点C 逆时针旋转60°得到△DEC ,连接BD ,则BD 2的值是 .13. (2019•通辽)腰长为5,高为4的等腰三角形的底边长为__________.14. 如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥BC 于点E ,连接AE ,则△ABE 的面积等于________.15. 在等腰直角三角形ABC 中,∠ACB =90°,AC =3,点P 为边BC 的三等分点,连接AP ,则AP 的长为________.16. (2019•伊春)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的△是直角三角形时,则CD的长为__________.点E处,当BDE三、解答题17. 如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=;(2)求线段DB的长度.18. 已知:整式A=(n2-1)2+(2n)2,整式B>0.[尝试] 化简整式A.[发现] A=B2,求整式B.[联想] 由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2-1 2n B勾股数组Ⅰ8勾股数组Ⅱ3519. 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.20. 在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完.............成解答过程.....21.如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港.(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:2≈1.414,3≈1. 732);(2)确定C港在A港的什么方向.22. 已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.答案一、选择题1. 【答案】B2. 【答案】D[解析]如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选D.3. 【答案】C[解析]在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A'BD中,∵∠A'DB=90°,A'D=2米,BD2+A'D2=A'B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).4. 【答案】C【解析】如解图,当AD⊥BC时,∵AB=AC,∴D为BC的中点,BD=CD=12BC=4,∴AD=AB2-BD2=3;又∵AB=AC=5,∴在BD和CD之间一定存在AD=4的两种情况,∴点D的个数共有3个.5. 【答案】C【解析】由作法过程可知,OA=2,AB=3,∵∠OAB=90°,∴OB=22222313+=+=,∴P点所表示的数就是OA AB13,∵91316<<,<<,∴3134即点P所表示的数介于3和4之间,故选C.6. 【答案】A[解析]过点D作DF⊥AC于F,如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1.在Rt△BED中,∠B=30°,∴BD=2DE=2.在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF=,∴BC=BD+CD=2+.7. 【答案】B【解析】连接DE,过点A作AF⊥BC,垂足为F,过E作EG⊥BC,垂足为G.∵AB=AC,AF⊥BC,BC=12,∴BF=FC=6,又∵E是AC的中点,EG⊥BC,∴EG∥AF,∴CG=FG=12CF=3,∵在Rt△CEG中,tan C=EG CG,∴EG=CG×tan C=3y;∴DG=BF+FG-BD=6+3-x=9-x,∵HD是BE的垂直平分线,∴BD=DE=x,∵在Rt△EGD中,由勾股定理得,ED2=DG2+EG2,∴x2=(9-x)2+(3y)2,化简整理得,2x-y2=9.8. 【答案】B【解析】如解图,△ABC是等边三角形,AB=3,点P是三角形内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于点H,则BH=32,AH=AB2-BH2=332.连接P A,PB,PC,则S△P AB+S△PBC+S△PCA=S△ABC,∴12AB·PD+12BC·PE+12CA·PF=12BC·AH,∴PD+PE+PF=AH=332.二、填空题9. 【答案】45[解析]本题考查三角形的外角,可延长AP交正方形网格于点Q,连接BQ,如图所示,经计算PQ=BQ=,PB=,∴PQ2+BQ2=PB2,即△PBQ为等腰直角三角形,∴∠BPQ=45°,∴∠P AB+∠PBA=∠BPQ=45°,故答案为45.10. 【答案】5【解析】由题意知EF垂直平分AB,∴点D是AB的中点,∵∠ACB=90°,∴CD为斜边AB的中线,∴CD=12AB.∵BC=6,AC=8,∴AB=AC2+BC2=82+62=10,∴CD=5.11. 【答案】15-5[解析]过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC×sin30°=10=5,CM=BC×cos30°=15.在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.12. 【答案】8+4[解析]如图,连接AD,设AC与BD交于点O,由题意得CA=CD,∠ACD=60°,∴△ACD为等边三角形,∴AD=CD,∠DAC=∠DCA=∠ADC=60°.∵∠ABC=90°,AB=BC=2,∴AC=CD=2.∵AB=BC,CD=AD,∴BD垂直平分AC,∴BO=AC=,OD=CD·sin60°=,∴BD=,∴BD 2=()2=8+4.13. 【答案】6或25或45【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6;②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴222425BC =+=,∴此时底边长为25;③如图3,当5AB AC ==,4CD =时,则223AD AC CD =-=,∴8BD =,∴45BC = ∴此时底边长为56或54514. 【答案】78 【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC=90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12.法一:BC·AH =AB·AC ,AH =AB·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE ∽△CAH 可得,CD CA =ED HA ,∴AH =9×2015=12,S △ABE =12×12×13=78.15. 【答案】13 或10 【解析】(1)如解图①所示,当P 点靠近B 点时,∵AC =BC =3,∴CP =2,在Rt △ACP 中,由勾股定理得AP =13;(2)如解图②所示,当P 点靠近C 点时,∵AC =BC =3,∴CP =1,在Rt △ACP 中,由勾股定理得AP =10.综上可得:AP 长为13 或10.16. 【答案】3或247【解析】分两种情况:①若90DEB ∠=︒,则90AED C ∠=︒=∠,CD ED =,连接AD ,则Rt Rt ACD EAD △≌△,∴6AE AC ==,1064BE =-=,设CD DE x ==,则8BD x =-,∵Rt BDE △中,222DE BE BD +=,∴2224(8)x x +=-,解得3x =,∴3CD =;②若90BDE ∠=︒,则90CDE DEF C ∠=∠=∠=︒,CD DE =,∴四边形CDEF 是正方形,∴90AFE EDB ∠=∠=︒,AEF B ∠=∠, ∴AEF EBD △∽△,∴AF EF ED BD=, 设CD x =,则EF DF x ==,6AF x =-,8BD x =-, ∴68x x x x -=-,解得247x =,∴247CD =, 综上所述,CD 的长为3或247,故答案为:3或247.三、解答题17. 【答案】解:(1)4(2)∵AC=AD ,∠CAD=60°,∴△CAD 是等边三角形,∴CD=AC=4,∠ACD=60°.过点D 作DE ⊥BC 于E ,∵AC ⊥BC ,∠ACD=60°,∴∠BCD=30°.在Rt △CDE 中,CD=4,∠BCD=30°,∴DE=CD=2,CE=2,∴BE=,在Rt△DEB中,由勾股定理得DB=.18. 【答案】解:[尝试] A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2. [发现] ∵A=B2,B>0,∴B==n2+1.[联想] ∵2n=8,∴n=4,∴B=n2+1=42+1=17.∵n2-1=35,∴B=n2+1=37.∴填表如下:直角三角形三n2-1 2n B边勾股数组Ⅰ8 17勾股数组Ⅱ35 3719. 【答案】解:(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F.∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF.(2)∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3.∵AD⊥BC,BD=CD,∴AC=AB=3.20. 【答案】解:如解图,过点A作AD⊥BC,垂足为点D,设BD=x,则CD=14-x,根据勾股定理可得:AD2=AB2-BD2=AC2-CD2,即152-x2=132-(14-x)2,解得x=9.(3分)∴AD2=152-x2=152-92=144.(5分)∵AD>0,∴AD=12.(8分)∴S△ABC=12BC·AD=12×14×12=84.(10分)21. 【答案】(1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴22AB BC102.答:A、C两地之间的距离为14.1 km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏东15°的方向上.22. 【答案】13证明:(1)∵△ACB 和△ECD 都是等腰直角三角形,∴CD =CE ,AC =BC ,∠ECD =∠ACB =90°,∴∠ECD -∠ACD =∠ACB -∠ACD ,即∠ACE =∠BCD ,(1分) 在△ACE 与△BCD 中,⎩⎪⎨⎪⎧EC =DC ∠ACE =∠BCD AC =BC,(3分)∴△ACE ≌△BCD(SAS ).(4分)(2)∵△ACE ≌△BCD ,∴AE =BD ,∠EAC =∠B =45°,(6分)∴∠EAD =∠EAC +∠CAD =90°,在Rt △EAD 中,ED 2=AD 2+AE 2,∴ED 2=AD 2+BD 2,(8分)又ED 2=EC 2+CD 2=2CD 2,∴2CD 2=AD 2+DB 2.(10分)。
2023年中考九年级数学高频考点专题训练--三角形综合1.如图,在△ABC中,AB=AC,DE垂直平分AC,CE△AB,AF△BC,(1)求证:CF=EF;(2)求△EFB的度数.2.如图,在△ABC中,∠B=60°,AB=8,BC=10,动点P从点A出发以每秒1个单位的速度沿AB匀速运动,同时动点Q从点B出发,以每秒2个单位的速度沿BC匀速运动,点Q到达点C后,立即以每秒4个单位的速度沿CB返回,当点Q返回到点B时,P、Q两点都停止运动,设点Q运动时间为t秒.(1)当t=3时,BQ=,当t=7时,BQ=.(2)如图,当点P运动到AB的中点时,猜想PQ与AB的位置关系,并证明你的结论.(3)在点P、Q运动过程中,若△BPQ是等边三角形时,求t的值.3.如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.动点P以2cm/s的速度沿射线BC运动,同时,点Q从点C出发,以acm/s的速度向终点A运动,当Q点停止运动时,P点也随之停止运动,设点P的运动时间为t(s)(t>0).(1)用含t的代数式表示PC的长;(2)若点Q的运动速度为1cm/s,当△CQP是以△C为顶角的等腰三角形时,求t的值;(3)当点Q的运动速度为多少时,能使△BPD与△CQP在某一时刻全等.4.如图,在ΔABC中,∠C=90°,将ΔACE沿着AE折叠以后C点正好落在AB边上的点D处.(1)当∠B=28°时,求∠CAE的度数;(2)当AC=6,AB=10时,求线段DE的长.5.如图,△ABC由两个全等的含45°的直角板拼成,其中,∠ACB=90°,AC=BC,AB= 8,点D是AB边长的中点,点E时AB边上一动点(点E不与点A、B重合),连接CE,过点B作BF⊥CE于F,交射线CD于点G.(1)当点E在点D的左侧运动时,(图).求证:△ACE≌△CBG;(2)当点E在点D的右侧运动时(图)(1)中的结论是否成立?请说明理由:(3)当点E运动到何处时,BG=5,试求出此时AE的长.6.如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD= AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想:图1中,线段NM、NP的数量关系是,∠MNP的大小为;(2)探究证明:把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由.7.如图,△ABC 中,AB=AC,△BAC <60°,将线段AB 绕点A逆时针旋转60°得到点D,点 E 与点D 关于直线BC 对称,连接CD,CE,DE.(1)依题意补全图形;(2)判断△CDE 的形状,并证明;(3)请问在直线CE上是否存在点P,使得PA - PB =CD 成立?若存在,请用文字描述出点P 的准确位置,并画图证明;若不存在,请说明理由.8.如图,点M是△ABC的边AB上一点,连接CM,过A作AD⊥CM于点D,过B作BE⊥CM于点E.(1)如图①,若点M为AB的中点时,连接AE,BD,求证:四边形ADBE是平行四边形;(2)如图②,若点M不是AB的中点,点O是AB上不与M重合的一点,连接DO,EO,已知点O在DE的垂直平分线上,求证:AO=BO.9.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=4,求BC边上的中线AD的取值范围是(2)问题解决:如图②,在△ABC中D是BC边上的中点,DE△DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,△B+△D=180°,CB=CD,△BCD=140°,以C为顶点作一个70角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.10.在平面直角坐标系中,O为坐标原点,直线y=mx+m交x轴于点A,交y轴的正半轴于点B,点C在x轴的正半轴上,连接BC,tan∠BAO=3tan∠BCO.(1)求点A,C的坐标;(2)如图1,点P在第一象限内,横坐标为t.PD⊥y轴于点D,PA⊥BC于点E,AP= BC,求m与t之间的函数关系式(不必写出自变量t的取值范围)(3)如图2,在(2)的条件下,设BC交DP于点F,当BF=PE时,求m的值.11.综合与实践问题情境:在数学课上老师出了这样一道题:如图1,在△ABC中AB=AC=6,∠BAC=30°,求BC的长.(1)探究发现:如图2,勤奋小组经过思考后,发现:把△ABC绕点A顺时针旋转90°得到△ADE,连接BD,BE,利用直角三角形的性质即可求解,请你根据勤奋小组的思路,求BC的长;(2)探究拓展:如图3,缜密小组的同学在勤奋小组的启发下,把△ABC绕点A顺时针旋转120°后得到△ADE,连接BD,CE交于点F,交AB于点G,请你判断四边形ADFC的形状并证明;(3)奇异小组的同学把图3中的△BGF绕点B顺时针旋转,在旋转过程中,连接AF,发现AF的长度在不断变化,直接写出AF的最大值和最小值.12.综合与实践.特例感知.两块三角板△ADB与△EFC全等,△ADB=△EFC=90°,△B=45°,AB=6.(1)将直角边AD和EF重合摆放.点P、Q分别为BE、AF的中点,连接PQ,如图1.则△APQ的形状为.(2)操作探究若将△EFC绕点C顺时针旋转45°,点P恰好落在AD上,BE与AC交于点G,连接PF,如图2.①FG:GA=▲ ;②PF与DC的位置关系为▲ ;③求PQ的长;(3)开放拓展若△EFC绕点C旋转一周,当AC△CF时,△AEC为.13.在Rt△ABC中,△ACB=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB 上,连接BD,过点D作DF△AC于点F.(1)如图1,当点F与点A重合时,求△ABC的度数;(2)若△DAF=△DBA,①如图2,当点F在线段CA上时,求△ABC的度数;②当点F在线段CA的延长线上,且BC=7时,请直接写出△ABD的面积.14.在△ABC中,AB=AC,△BAC=90,BD平分△ABC交AC于点D.(1)如图1,点F为BC上一点,连接AF交BD于点E.若AB=BF,求证:BD垂直平分AF.(2)如图2,CE△BD,垂足E在BD的延长线上.试判断线段CE和BD的数量关系,并说明理由.(3)如图3,点F为BC上一点,△EFC= 12△ABC,CE△EF,垂足为E,EF与AC交于点M.直接写出线段CE与线段FM的数量关系.15.如图,在菱形ABCD中,△ABC是锐角,E是BC边上的动点,将射线AE绕点A按逆时针方向旋转,交直线CD于点F.(1)当AE△BC,△EAF=△ABC时,①求证:AE=AF;②连结BD,EF,若EFBD=25,求S△AEFS菱形ABCD的值;(2)当△EAF=12△BAD时,延长BC交射线AF于点M,延长DC交射线AE于点N,连结AC,MN,若AB=4,AC=2,则当CE为何值时,△AMN是等腰三角形.16.已知点O是线段AB的中点,点P是直线l上的任意一点,分别过点A和点B作直线l的垂线,垂足分别为点C和点D.我们定义垂足与中点之间的距离为“足中距”.(1)[猜想验证]如图1,当点P与点O重合时,请你猜想、验证后直接写出“足中距”OC和OD 的数量关系是.(2)[探究证明]如图2,当点P是线段AB上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由.(3)[拓展延伸]如图3,①当点P是线段BA延长线上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由;②若∠COD=60°,请直接写出线段AC、BD、OC之间的数量关系.答案解析部分1.【答案】(1)证明:∵DE垂直平分AC,∴AE=CE,∵CE△AB,∴△ACE是等腰直角三角形,△BEC=90°,∵AB=AC,AF△BC,∴BF=CF,即F是BC的中点,∴Rt△BCE中,EF= 12BC=CF;(2)解:由(1)得:△ACE是等腰直角三角形,∴△BAC=△ACE=45°,又∵AB=AC,∴△ABC=△ACB= 12(180°−45°)=67.5°,∴△BCE=△ACB-△ACE=67.5°-45°=22.5°,∵CF=EF,∴△CEF=△BCE=22.5°,∵△EFB是△CEF的外角,∴△EFB=△CEF+△BCE=22.5°+22.5°=45°. 2.【答案】(1)6;2(2)解:PQ⊥AB,理由如下:在BQ上截取BE=BP,∵点P运动到AB的中点,∴AP=PB=4,∴t=41=4s,∴BQ=4×2=8,∵PB=BE=4,∠B=60°,∴△PEB是等边三角形,∴PE=BE=4,∠EPB=∠PEB=60°,∴QE=PE=4,∴∠EPQ=∠EQP,∵∠EPQ+∠EQP=∠PEB=60°,∴∠QPE=30°,∴∠QPE+∠EPB=90°=∠QPB,∴PQ⊥AB;(3)解:当0≤t≤5,BQ=2t,当5<t≤152,BQ=10−4(t−5)=30−4t,∵△BPQ是等边三角形,∴BP=BQ,∴8−t=2t或8−t=30−4t,∴t=83或t=223.3.【答案】(1)解:∵点P的运动速度为2cm/s,∴BP=2t,∴PC=10−2t;(2)解:△CQP以∠C为顶角的等腰三角形,则PC=CQ,PC=10−2t,CQ=t,即10−2t=t,解得:t=10 3,∴当t=103s时,△CQP是以∠C为顶角的等腰三角形;(3)解:①当BP=CQ时,BD=CP,此时△BPD≅△CQP,根据题意可得:BP=2t,CQ=at,BD=13AB=6,PC=10−2t,∴2t=at,6=10−2t,解得:a =2,t =2, ②当BP ≠CQ 时,∵△BPD 与△CQP 全等,∠B =∠C ,∴BP =CP =12BC =5,BD =CQ =6,∴t =52s ,∴a =CQ t =125cm/s , 综上可得:当Q 的速度为2cm/s 或125cm/s 时,△BPD 与△CQP 在某一时刻全等.4.【答案】(1)∵∠C =90° , ∠B =28°∴∠CAB =90−∠B =90°−28°=62°由折叠的性质可知 ∠CAE =∠EAB∴∠CAE =12∠CAB =31° (2)∵∠C =90° , AC =6 , AB =10 ∴BC =√AB 2−AC 2=√102−62=8由折叠的性质可知 AC =AD,CE =DE,∠EDA =∠C =90°∴∠EDB =180°−∠EDA =180°−90°=90°设 DE =x ,则 BE =8−x,DB =10−6=4 在 Rt △EDB 中, ED 2+DB 2=EB 2 ∴x 2+42=(8−x)2 解得 x =3 ∴DE =35.【答案】(1)证明:在 Rt △ABC 中,∵AC =BC ,∴∠A =∠ABC =45° .∵点 D 是 AB 的中点,∴∠BCG =12∠ACB =45° ,∴∠A =∠BCG .∵BF ⊥CE ,∴∠CBG +∠BCF =90° . ∵∠ACE +∠BCF =90° , ∴∠CBG =∠ACE , 在 △ACE 和 △CBG 中,{∠ACE =∠CBGAC =BC ∠A =∠BCG,∴△ACE ≌△CBG (ASA) (2)解:结论仍然成立,即△ACE△△CBG . 理由如下:在Rt△ABC 中, ∵AC=BC ,∴△A=△ABC=45°.∵点D 是AB 的中点,∴△BCG= 12 △ACB=45°,∴△A=△BCG .∵BF△CE ,∴△CBG+△BCF=90°. ∵△ACE+△BCF=90°, ∴△CBG=△ACE , 在 △ACE 和 △CBG 中,{∠ACE =∠CBGAC =BC ∠A =∠BCG,∴△ACE ≌△CBG (ASA) (3)解:在Rt△ABC 中, ∵AC=BC ,点D 是AB 的中点, ∴CD△AB ,CD=AD=BD= 12AB=4,在Rt△BDG 中, DG =√BG 2−BD 2=√52−42=3 , 点E 在运动的过程中,分两种情况讨论: ①当点E 在点D 的左侧运动时,CG=CD-DG=1, ∵△ACE△△CBG , ∴AE=CG=1;②当点E 在点D 的右侧运动时,CG=CD+DG=7, ∵△ACE△△CBG , ∴AE=CG=7. 故答案为:1或7.6.【答案】(1)NM =NP ;60°(2)解:△MNP 是等边三角形.理由如下:由旋转可得,△BAD =△CAE ,又∵AB =AC ,AD =AE ,∴△ABD△△ACE (SAS ),∴BD =CE ,△ABD =△ACE ,∵点M 、N 、P 分别为DE 、BE 、BC 的中点.∴MN =12BD ,PN =12CE ,MN△BD ,PN△CE ,∴MN =PN ,△ENM =△EBD ,△BPN =△BCE,∴△ENP=△NBP+△NPB=△NBP+△ECB,∵△EBD=△ABD+△ABE=△ACE+△ABE,∴△MNP=△MNE+△ENP=△ACE+△ABE+△EBC+△EBC+△ECB=180°−△BAC=60°,∴△MNP是等边三角形.7.【答案】(1)解:如图即为所求,(2)解:△CDE是等边三角形.如图,连接BD、CE,由点D与点E关于直线BC对称可知BF垂直平分DE,∴CD=CE,BD=BE由旋转可知AB=AD,∠BAD=60°,∴△ABD为等边三角形∴AB=BD=AD,∠BAD=∠ABD=60°∴∠CAD=60°−∠BAC∵AB=AC∴∠ABC=180°−∠BAC2=90°−∠BAC2,BE=BD=AB=AC∴∠FBD=∠ABC−∠ABD=90°−∠BAC2−60°=30°−∠BAC2∴∠EBD=2∠FBD=60°−∠BAC∴∠CAD=∠FBD在△ACD和△BED中,{AD=BD ∠CAD=∠EBD AC=BE∴△ACD≅△BED(SAS)∴CD=ED∴CD=ED=CE∴△CDE是等边三角形;(3)解:存在,如图,将△BCD绕点B逆时针旋转60°得到△ABC′,延长AC′交直线CE于点P,连接BP,由(2)得△CDE是等边三角形,∴∠DCE=60°∴∠DCF=∠ECF=30°∴∠BCD=150°由旋转可得CD=C′A,∠C′BC=60°,∠BC′A=∠BCD=150°,∴∠BC′P=30°∵PA−PB=CD,PA−PC′=C′A=CD∴PB=PC′∴∠C′BP=∠BC′P=30°∴∠PBC=30°∵∠BCP=∠ECF=30°∴∠PBC=∠BCP∴BP=CP所以直线CE上存在点P,使得PA - PB =CD 成立,点P在点C左边距离为CE长的位置. 8.【答案】(1)证明:证法一:∵AD⊥CM,BE⊥CM.∴AD∥BE,∴∠ADM=∠BEM=90°(或∠DAM=∠EBM)∵点M为AB的中点,∴AM=BM∵∠AMD=∠BME,∴△ADM≌△BEM∴AD=BE∴四边形ADBE是平行四边形证法二:∵AD⊥CM,BE⊥CM.∴∠ADM=∠BEM=90°∵点M为AB的中点,∴AM=BM∵∠AMD=∠BME,∴△ADM≌△BEM∴DM=EM∴四边形ADBE是平行四边形(2)证明:延长DO交BE于F,∵AD⊥CM,BE⊥CM.∴AD∥BE,∠BEM=90°∴∠DAO=∠EBO,∠ODE+∠OFE=∠DEO+∠FEO=90°∵点O在DE的垂直平分线上,∴DO=EO∴∠ODE=∠DEO∴∠OFE=∠FEO∴FO=EO∴DO=FO∵∠AOD=∠BOF∴△ADO≌△BFO∴AO=BO.9.【答案】(1)2<AD<6(2)解:如图2,延长FD至点M,使DM=DF,连接BM、EM同(1)得:△BMD≅△CFD(SAS)∴BM=CF∵DE⊥DF,DM=DF∴DE是MF的垂直平分线∴EM=EF在△BME中,由三角形的三边关系得:BE+BM>EM∴BE+CF>EF;(3)解:BE+DF=EF;证明如下:如图3,延长AB至点N,使BN=DF,连接CN∵∠ABC+∠D=180°,∠NBC+∠ABC=180°∴∠NBC=∠D在△NBC和△FDC中,{BN=DF ∠NBC=∠D CB=CD∴△NBC≅△FDC(SAS)∴CN=CF,∠NCB=∠FCD ∵∠BCD=140°,∠ECF=70°∴∠BCE+∠FCD=70°∴∠BCE+∠NCB=70°∴∠ECN=70°=∠ECF在△NCE和△FCE中,{CN=CF ∠ECN=∠ECF CE=CE∴△NCE≌△FCE(SAS)∴EN=EF∵BE+BN=EN∴BE+DF=EF.10.【答案】(1)解:∵直线y=mx+m交x轴于点A,交y轴的正半轴于点B,当x=0时,y=m,∴B(0,m)当y=0时,mx+m=0,解得x=-1∴A(-1,0)∴OA=1,OB=m∵tan∠BAO=OBOA=m1=m,tan∠BCO=OBOC=mOC又tan∠BAO=3tan∠BCO∴3mOC=m∴OC=3∴C(3,0)(2)解:过点P作PH△x轴于点H,则△PHA=90°=△BOC∴△PAH+△APH=90°∵AP△BC∴△AEC=90°∴△PAH+△BCO=90°∴△APH =△BCO∵AP=BC∴△APH△△BCO,∴PH=OC=3,AH=BO,∴t-(-1)=m,则m=t+1;(3)解:过点E作EM△x轴于点M,延长ME交BD于N,则△NMO=90°∵△APH△△BCO,PH=3=OC,BD=m-3∴△DBF =△PAH,∵PD△y轴∴△PDO =△PHO=△DOH =△NMO=90°∴△NPE =△PAH=△DBF∵BF=PE∴△BDF△△PNE,∴BD=NP= m-3=MH,∵OH=t∴OM=OH-MH=OH-MH=t-(m-3)=t-m+3又OC=3∴CM=OC-OM=3-(t-m+3)=m-t∵m=t+1∴CM=m-t=1∴AM=AH-MH=(1+t)- (m-3)=1+t-m+3=3∵△CEM =△EAM∴1EM=EM3故EM= √3∴tan△EAM= tan△CBO∴EM AM=√33=3m,∴m=3 √3.11.【答案】(1)解:如图4,延长CB、DE交于点H.∵△ABC绕点A顺时针旋转90°得到△ADE∴△ABC≌△ADE,∠CAE=∠BAD=90°,△H=90°,∴AB=AD=6,AC=AE=6,∠DAE=∠BAC,DE=BC ∵AB=AC=6,∠BAC=30°∴△ABC是等腰三角形,∠BAE=∠CAE−∠BAC=60°∴∠ABC=180°−∠BAC2=75°,∵AE=AB=6∴△AEB是等边三角形∴BE=AB=6,∠ABE=60°∴∠EBH=180°−∠ABE−∠ABC=45°∴△EBH是等腰直角三角形∴HE=HB.∵AD=AB,∠DAB=90°.∴△ABD是等腰直角三角形,∠BDA=45°.在Rt△EBH中,由勾股定理,得HE2+HB2=BE2.∴HE2+HB2=62=36.∴HE2=HB2=18∴HE=HB=√18=3√2.在△BDH中,∠H=90°,∠BDH=∠EDA−∠BDA=∠ABC−∠BDA=30°.在Rt△BDH中,BH=12BD=3√2.∴BD=6√2.在Rt△BDH中,tan∠BDH=BH DH,∴3√2 DH=√3 3,∴DH=3√6.∴DE=DH−EH=3√6−3√2.∵DE=BC,∴BC的长是3√6−3√2.(2)解:四边形ADFC是菱形.理由如下:∵△ABC绕点A顺时针旋转120°得到△ADE,AB=AC,∠BAC=30°,∴△ABC≌△ADE,∠BAD=∠CAE=120°.∴AC=AE,AB=AD,∠BAC=∠DAE=30°.∴AC=AE=AB=AD.∴△ACE是等腰三角形∴∠ACE=∠AEC=180°−∠CAE2=30°.同理可得:∠ABD=∠ADB=30°.∵∠ACB=180°−∠BAC2=75°.∴∠BCG=∠ACB−∠ACE=45°,∠FBC=∠ABC+∠ABF=105°.∴在△BFC中,∠BFG=180°−∠FBC−∠BCG=30°.∴∠BFG=∠ACF,∠BFG=∠ADB.∴DB∥AC,FC∥AD.∴四边形ADFC是平行四边形.∵AD=AC,∴四边形ADFC是菱形.(3)解:如图5,作AH△BD于点H,则∠AHB=90°∵△ABC绕点A顺时针旋转120°得到△ADE,∴△ABC≌△ADE,∠BAD=120°∴AB=AD=6∴△ABD是等腰三角形∴BH=DH=12BD∴∠ABD=∠ADB=180°−∠BAD2=30°.在Rt△ABH中,△AHB=90°,△ABH=30°,AB=6∵BHAB=cos∠ABH=cos30°∴BH=3√3∴BD=2 BH=6√3由(2)知四边形ADFC是菱形∴DF=AD=6∴BF=BD-DF=6√3-6当△BGF绕点B顺时针旋转,在旋转过程中,当旋转到A、B、F第一次三点共线时,如图6,△BGF≌△BG″F″,∴BF=BF″此时AF有最小值,此时AF=AF″=AB-BF″=AB-BF=6-(6√3-6)=12-6√3当旋转到A、B、F第二次三点共线时,如图7,△BGF≌△BG′F′,∴BF=BF′此时AF有最大值,此时AF=AB+BF′=AB+BF=6+6√3-6=6√3故AF的最大值是6√3,AF的最小值是12−6√3 12.【答案】(1)等腰直角三角形(2)①∵AB=6,△B=45°,△ADB=90°,∴√AD2+BD2=AB,∴AD=BD= 3√2,∴EF= 3√2,∵△BFC=△BAC=90°,∴△GFE=△BAG,∵△AGP=△EGF,∴△ABQ=△GBF,∴△EGF△△BGA,∴FGAG=EFAB,∴FGAG=EFAB=3√26=√22=1√2故答案为:1:√2;②如图,过P作PM//BC交CE与点M,∴EMCM=EPBP=11,∴EM=CM∴FM//BC,∴F在PM上,∴PF△CD,故答案为:平行;③∵BP=PE,BD=CD,∴DP为△BCE的中位线,∴PD//CE,∵CE△BC,∴PD△BC,又∵AD△BC,∴P在AD上,△APF=△ADC=90°,∵Q 为AF 的中点, ∴PQ= 12AF ,又∵△B=45°,△ADB=90°,∴EF =√22AB =3√2 ,∴FC=EF= 3√2 , ∴AF=AC-CF=6- 3√2 ,∴PQ= 12AF = 3−3√22;(3)22.5°或67.5°13.【答案】(1)解:由旋转的性质可得△ABC△△ADE∴△BAC=△DAE∵DF△AC ,点F 与点A 重合, ∴△CAD=90° ∴△BAC=△DAE=45° ∵△ACB=90°∴△ABC=90°-△CAB=45°;(2)①∵△ABC△△ADE ,则△BAC=△DAE=12△DAF∵△DAF=△DBA , ∴△DAE=12△DAF=12△DBA∵△ABC△△ADE ∴AB=AD∴△DBA=△BDA ,设△BAC=△BAD-x ,则△DBA=△BDA-2x ∵△BAD+△ABD+△ADB=180° ∴x+2x+2x=180°解得:x=36° ∴△BAC=36°∴△ABC=90°-△BAC=54°; ②493√3 14.【答案】(1)证明:∵BD 平分△ABC ,∵BA=BF,BE=BE,∴△ABE△△FBE(SAS),∴AE=FE,△AEB=△FEB= 12× 180°=90°,∴BD垂直平分AF.(2)解:BD=2CE,理由如下:延长CE,交BA的延长线于G,∵CE△BD,△ABE=△FBE,∴GE=2CE=2GE,∵△CED=90°=△BAD,△ADB=△EDC,∴△ABD=△GCA,又AB=AC,△BAD=△CAG,∴△BAD△△CAG(ASA),∴BD=CG=2CE,(3)解:FM=2 CE,理由如下:作FM的中垂线NH交CF于N,交FM于H,∴FN=MN,MH=FH= 12FM,∴△NMH=△NBH,∵△EFC= 12△ABC=22.5°,∴△MNC=2△NFH=2× 12△ABC=△ABC,∵AB=AC,△BAC=90,∴△ABC=△ACB=△MNC=45°,∵△EMC=△MFC+△MCF=22.5°+45°=67.5°,∴△ECM=90°-△EMC=22.5°,∴△NFH=△MCE,又∵△FHN=△E=90°,∴△FNH△△CME(AAS),∴FH=CE,∴FM=2FH=2CE.15.【答案】(1)解:①∵菱形ABCD,∴AB=AD,△ABC=△ADC,AD△BC,∵AE△BC,∴AE△AD,∴△EAF+△DAF=△BAE+△ABE=90°,∵△EAF=△ABC,∴△DAF=△BAE,在△ABE和△ADF中{∠ABC=∠ADC AB=AD ∠DAF=∠BAE∴△ABE△△ADF(ASA)∴AE=AF.②连接AC,∵菱形ABCD,∴AB=BC=CD,AC△BD,∵△ABE△△ADF,∴BE=CF , ∴CE=CF ∵AE=AF ∴AC△EF ∴BD△FE , ∴△CEF△△CBD , ∴EC BC =EF BD =25设EC=2a ,则AB=BC=5x ,BE=3a , ∴AE =√25a 2−9a 2=4a , ∵AE AB =AF BC ,△EAF=△ABC , ∴△AEF△△BAC ,S △AEF S △ABC =(AEAB)2=(4a 5a)2=1625S △AEFS 菱形ABCD=S △AEF 2S △ABC=12×1625=825.(2)解:∵菱形ABCD , ∴△BAC=12△BAD ,∵△EAF=12△BAD ,∴△BAC=△EAF , ∴△BAE=△CAM , ∵AB△CD , ∴△BAE=△ANC ,同理可知:△AMC=△NAC , ∴△MAC△△ANC , ∴AC CN =AM NA; 当△AMN 时等腰三角形, 当AM=AN 时,在△ANC和△MAC中{∠ANC=∠CAM AM=AN ∠AMC=∠NAC∴△ANC△△MAC(ASA)∴CN=AC=2,∵AB△CN,∴△CEN△△BEA,∴CEBE=CNAB=24=12∵AB=BC=4∴CE4−CE=12解之:CE=43;当NA=MN时△NMA=△NAM,∵AB=BC,∴△BAC=△BCA,∵△BAC=△EAF,∴△NMA=△NAM=△BAC=△BCA,∴△ANM△△ABC,∴AMAN=ACAB=12∴AC CN =AM NA =12 ∴CN=2AC=4=AB 解之:AC=2∵△CEN△△BEA (AAS ) ∴CE=BE=2; 当MA=MN 时,易证△MNA=△MAN=△BAC=△BCA , ∴△AMN△△ABC ∴AM AN =AB AC =42=2 ∴CN=12AC=1∵△CEN△△BEA , ∴CE BE =CN AB =14 ∴CE 4−CE =14 解之:CE =45;∴当CE 为43或2或45时,△AMN 是等腰三角形.16.【答案】(1)OC =OD(2)解:数量关系依然成立.证明(方法一):过点O 作直线 EF//CD ,交BD 于点F ,延长AC 交EF 于点E .∵EF//CD∴∠DCE=∠E=∠CDF=90°∴四边形CEFD为矩形.∴∠OFD=90°,CE=DF由(1)知,OE=OF∴△COE≌△DOF(SAS),∴OC=OD.证明(方法二):延长CO交BD于点E,∵AC⊥CD,BD⊥CD,∴AC//BD,∴∠A=∠B,∵点O为AB的中点,∴AO=BO,又∵∠AOC=∠BOE,∴△AOC≌△BOE(ASA),∴OC=OE,∵∠CDE=90°,∴OD=OC.(3)解:①数量关系依然成立.证明(方法一):过点O作直线EF//CD,交BD于点F,延长CA交EF于点E.∵EF//CD∴∠DCE=∠E=∠CDF=90°∴四边形CEFD为矩形.∴∠OFD=90°,CE=DF由(1)知,OE=OF∴△COE≌△DOF(SAS),∴OC=OD.10分证明(方法二):延长CO交DB的延长线于点E,∵AC⊥CD,BD⊥CD,∴AC//BD,∴∠ACO=∠E,∴点O为AB的中点,∴AO=BO,又∵∠AOC=∠BOE,∴△AOC≌△BOE(AAS),∴OC=OE,∵∠CDE=90°,∴OD=OC.②AC+BD=√3OC。
中考数学复习《全等三角形》专题训练-附带有答案一、选择题1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于()A.3 B.4 C.7 D.82.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去3.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=60°,∠ACB= 40°然后在BC的同侧找到点M使∠MBC=60°,∠MCB=40°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA4.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°5.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为1cm2则△PBC的面积为().A.0.4 cm2B.0.5 cm2C.0.6 cm2D.不能确定6.如图,OP平分∠AOB,PA⊥OA,PB⊥OB垂足分别为A,B,下列结论中不一定成立是()A.PA=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP7.如图,△ABC中∠ACF、∠EAC的角平分线CP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF.则下列结论中正确的个数()①BP平分∠ABC ②∠ABC+2∠APC=180°③∠CAB=2∠CPB④S△PAC=S△MAP+S△NCP.A.1个B.2个C.3个D.4个8.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=()A.6 B.3 C.2 D.1.5二、填空题9.如图BA=BE,∠1=∠2要使△ABD≌△EBC还需添加一个条件是.(只需写出一种情况)10.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.11.如图,在Rt△ABC,∠C=90°,E是AB上一点,且BE=BC,DE⊥AB于点E,若AC=8,则AD+DE的值为.12.如图,在△ABC中AB=AC,BF=CD,BD=CE,∠FDE=70°那么∠A的大小等于度.13.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三、解答题14.如图,AD平分∠BAC,∠B=∠C.(1)求证:BD=CD;(2)若∠B=∠BDC=100°,求∠BAD的度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A=25°,∠D=15°,求∠ACB的度数.16.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,△ABD、△AEC都是等边三角形,直线CD与直线BE交于点F.(1)求证:CD=BE;(2)求∠CFE的度数.18.如图,在△AOB和△COD中OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°连接AC、BD交于点M,连接OM.求证:(1)∠AMB=36°;(2)MO平分∠AMD.参考答案1.C2.C3.D4.B5.B6.D7.D8.D9.BD =BC 或∠A =∠E 或∠C =∠D (任填一组即可)10.411.812.4013.414.(1)证明:∵AD 平分∠BAC∴∠BAD =∠CAD .在△ABD 和△ACD 中{∠BAD =∠CAD ∠B =∠C AD =AD∴△ABD ≌△ACD(AAS)∴BD =CD .(2)解:由(1)得:△ABD ≌△ACD∴∠C =∠B =100°,∠BAD =∠CAD∵∠BAC +∠B +∠BDC +∠C =360°∴∠BAC =60°∴∠BAD =30°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )∴BC =DC ;(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:∵△ABD 、△AEC 都是等边三角形∴AD=AB ,AC=AE ,∠DAB=∠DBA=∠ADB=60°,∠CAE=60°∵∠DAB=∠DAC+∠CAB ,∠CAE=∠BAE+∠CAB∴∠DAC=∠BAE在△DAC 和△BAE 中{AD =AB ∠DAC =∠BAE AC =AE∴△DAC ≌△BAE∴CD=BE(2)解:∵△DAC ≌△BAE∴∠ADC=∠ABE∴∠CFE=∠BDF+∠DBF=∠BDF+∠DBA+∠ABF=∠BDF+∠DBA+∠ADC=∠BDA+∠DBA=60°+60°=120°18.(1)解:证明:∵∠AOB=∠COD=36°∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD 在△AOC和△BOD中{OA=OB ∠AOC=∠BOD OC=OD∴△AOC≌△BOD(SAS)∴∠OAC=∠OBD∵∠AEB是△AOE和△BME的外角∴∠AEB=∠AMB+∠OBD=∠AOB+∠OAC∴∠AMB=∠AOB=36°;(2)解:如图所示,作OG⊥AC于G,OH⊥BD于H∴OG是△AOC中AC边上的高,OH是△BOD中BD边上的高由(1)知:△AOC≌△BOD∴OG=OH∴点O在∠AMD的平分线上即MO平分∠AMD.。
中考数学复习考点题型专题练习《三角形》1.如图,在△ABC中,∠ACB=90°,AC=BC,CD是AB边上的中线,点E为线段CD上一点(不与点C、D重合),连接BE,作EF⊥BE与AC的延长线交于点F,与BC交于点G,连接BF.(1)求证:△CFG∽△EBG;(2)求∠EFB的度数;(3)求的值.2.好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在△ABC中,点I是∠ABC、∠ACB的平分线的交点,点D是∠MBC、∠NCB平分线的交点,BI、DC的延长线交于点E.(1)若∠BAC=50°,则∠BIC= °;(2)若∠BAC=x°(0<x<90),则当∠ACB等于多少度(用含x的代数式表示)时,CE∥AB,并说明理由;(3)若∠D=3∠E,求∠BAC的度数.3.(1)思考探究:如图,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,已知∠ABC=70°,∠ACD=100°.求∠A和∠P的度数;(2)类比探究:如图,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,已知∠P=n°.求∠A的度数(用含n的式子表示);(3)拓展迁移:已知,在四边形ABCD中,四边形ABCD的内角∠ABC与外角∠DCE的平分线所在直线相交于点P,∠P=n°,请画出图形;并探究出∠A+∠D的度数(用含n的式子表示).4.如图1,在△ABC中,BD平分∠ABC,CD平分∠ACB.(1)若∠A=80°,则∠BDC的度数为 ;(2)若∠A=α,直线MN经过点D.①如图2,若MN∥AB,求∠NDC﹣∠MDB的度数(用含α的代数式表示);②如图3,若MN绕点D旋转,分别交线段BC,AC于点M,N,试问在旋转过程中∠NDC﹣∠MDB的度数是否会发生改变?若不变,求出∠NDC﹣∠MDB的度数(用含α的代数式表示),若改变,请说明理由;③如图4,继续旋转直线MN,与线段AC交于点N,与CB的延长线交于点M,请直接写出∠NDC与∠MDB的关系(用含α的代数式表示).5.如图,在平面直角坐标系中,O为原点,点A(0,10),点B(m,0),且m>0,把△AOB绕点A逆时针旋转90°,得到△ACD,点O,B旋转后的对应点分别为点C,D. (1)点C的坐标为 ;(2)①设△BCD的面积为S,用含m的代数式表示S,并直接写出m的取值范围;②当S=12时,请直接写出点B的坐标.6.如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.7.如图,在△ABC中,BC=5,高AD、BE相交于点O,BD=CD,且AE=BE.(1)求线段AO的长;(2)动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q 从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动.设点P的运动时间为t秒,△POQ的面积为S,请用含t的式子表示S,并直接写出相应的t的取值范围;(3)在(2)的条件下,点F是直线AC上的一点且CF=BO.是否存在t值,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请直接写出符合条件的t值;若不存在,请说明理由.8.已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.(1)如图1,①求证:点B,C,D在以点A为圆心,AB为半径的圆上.②直接写出∠BDC的度数(用含α的式子表示)为 .(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD; (3)如图3,当α=90°时,记直线l与CD的交点为F,连接BF.将直线l绕点A旋转,当线段BF的长取得最大值时,直接写出tan∠FBC的值.9.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C 不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q 不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.10.情景观察:(1)如图1,在△ABC中,AB=AC,∠BAC=45°,CD⊥AB于D,AE⊥BC于E,CD与AE相交于点F.①写出图1中两对全等三角形 ;②线段AF与线段CE的数量关系是 .问题探究:(2)如图2,在△ABC中,AB=BC,∠BAC=45°,AD平分∠BAC,且AD⊥CD 于D,AD与BC交于点E.求证:AE=2CD.拓展延伸:(3)如图3,在△ABC中,AB=BC,∠BAC=45°,点D在AC上,∠EDC=∠BAC,DE⊥CE于E,DE与BC交于点F.求证:DF=2CE.11.已知在Rt△BAC中,∠BAC=90°,AB=AC,点D为射线BC上一点(与点B不重合),过点C作CE⊥BC于点C,且CE=BD(点E与点A在射线BC同侧),连接AD,ED.(1)如图1,当点D在线段BC上时,请直接写出∠ADE的度数.(2)当点D在线段BC的延长线上时,依题意在图2中补全图形并判断(1)中结论是否成立?若成立,请证明;若不成立,请说明理由.(3)在(1)的条件下,ED与AC相交于点P,若AB=2,直接写出CP的最大值.12.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC= °,∠DEC= °;点D从B向C的运动过程中,∠BDA逐渐变 (填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数,若不可以,请说明理由.13.如图1,在△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,AB=DE,BE∥AC. (1)求证:△ABC≌△DEB;(2)连结AD、AE、CE,如图2.①求证:CE是∠ACB的角平分线;②请判断△ABE是什么特殊形状的三角形,并说明理由.14.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上,连接BE、CE. (1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,原题设其它条件不变.求证:∠CAD=∠CBF.(3)在(2)的条件下,若∠BAC=45°,判断△CFE的形状,并说明理由.15.如图,△ABC是等边三角形,D是BC边的中点,以D为顶点作一个120°的角,角的两边分别交直线AB、直线AC于M、N两点.以点D为中心旋转∠MDN(∠MDN的度数不变),当DM与AB垂直时(如图①所示),易证BM+CN=BD.(1)如图②,当DM与AB不垂直,点M在边AB上,点N在边AC上时,BM+CN=BD是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(2)如图③,当DM与AB不垂直,点M在边AB上,点N在边AC的延长线上时,BM+CN =BD是否仍然成立?若不成立,请写出BM,CN,BD之间的数量关系,不用证明.16.如图所示,△ABC为等边三角形,点D,点E分别在CA,CB的延长线上,连接BD,DE,DB=DE.(1)如图1,若CA:AD=3:7,BE=4,求EC的长;(2)如图2,点F在AC上,连接BE,∠DBF=60°,连接EF,①求证:BF+EF=BD;②如图3,若∠BDE=30°,直接写出的值.17.问题提出:(1)如图1,点A为线段BC外一动点,且BC=a,AB=b,填空:当∠ABC= 时,线段AC的长取得最大值,且最大值为 (用含a,b的式子表示).问题探究:(2)点A为线段BC外一动点,且BC=6,AB=3,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE,找出图中与BE相等的线段,请说明理由,并直接写出线段BE长的最大值.问题解决:(3)如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.18.数学活动课上,老师出示了一个问题:如图1,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC,现将△ABC与△DEF按如图所示的方式叠放在一起,现将△ABC保持不动,△DEF运动,且满足点E在边BC边从B向C移动(不与B、C重合),DE始终经过点A,EF与AC交于M点.求证:△ABE ∽△ECM.(1)请解答老师提出的问题.(2)受此问题的启发,小明将△DEF绕点E按逆时针旋转,使DE、EF分别交AB、AC边于点N、M,连接MN,如图2,当EB=EC时,小明猜想△NEM与△ECM相似,小明的猜想正确吗?请你作出判断并说明理由;(3)在(2)的条件下,以E为圆心,作⊙E,使得AB与⊙E相切,请在图3中画出⊙E,并判断直线MN与⊙E的位置关系,说明理由.19.在△ABC中,AC=BC,∠ACB=90°,D为AB边的中点,以D为直角顶点的Rt△DEF的另两个顶点E,F分别落在边AC,CB(或它们的延长线)上.(1)如图1,若Rt△DEF的两条直角边DE,DF与△ABC的两条直角边AC,BC互相垂直,则S△DEF+S△CEF=S△ABC,求当S△DEF=S△CEF=2时,AC边的长;(2)如图2,若Rt△DEF的两条直角边DE,DF与△ABC的两条直角边AC,BC不垂直,S+S△CEF=S△ABC,是否成立?若成立,请给予证明;若不成立,请直接写出S△DEF,S△CEF,△DEFS△ABC之间的数量关系;(3)如图3,若Rt△DEF的两条直角边DE,DF与△ABC的两条直角边AC,BC不垂直,且点E在AC的延长线上,点F在CB的延长线上,S△DEF+S△CEF=S△ABC是否成立?若成立,请给予证明;若不成立,请直接写出S△DEF,S△CEF,S△ABC之间的数量关系.参考答案1.(1)证明:∵∠ACB=90°,EF⊥BE,∴∠FCG=∠BEG=90°,又∵∠CGF=∠EGB,∴△CFG∽△EBG;(2)解:由(1)得△CFG∽△EBG,∴,∴,又∵∠CGE=∠FGB,∴△CGE∽△FGB,∴∠EFB=∠ECG=∠ACB=45°;(3)解:过点F作FH⊥CD交DC的延长线于点H,由(2)知,△BEF是等腰直角三角形,∴EF=BE,∵∠FEH+∠DEB=90°,∠EBD+∠DEB=90°,∴∠FEH=∠EBD,在△FEH和△EBD中,,∴△FEH≌△EBD(AAS),∴FH=ED,∵∠FCH=∠ACD=45°,∠CHF=90°,∴∠CFH=∠CFH=45°,∴CH=FH,在Rt△CFH中,CF==FH,∴CF=DE,∴.2.解:(1)∵点I是两角B、C平分线的交点,∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90+∠BAC=115°.故答案为115.(2)当∠ACB等于(180﹣2x)°时,CE∥AB.理由如下: ∵CE∥AB,∴∠ACE=∠A=x°,∵CE是∠ACG的平分线,∴∠ACG=2∠ACE=2x°,∴∠ABC=∠ACG﹣∠BAC=2x°﹣x°=x°,∴∠ACB=180°﹣∠BAC﹣∠ABC=(180﹣2x)°.(3)由题意知:△BDE是直角三角形∠D+∠E=90°若∠D=3∠E时,∠E=22.5°,设∠ABE=∠EBG=x,∠ACE=∠ECG=y,则有,可得∠A=2∠E=45°.3.解:(1)∵∠ABC=70°,∠ACD=100°,∴∠A=100°﹣70°=30°,∵P点是∠ABC和外角∠ACD的角平分线的交点,∴∠PCD=∠ACD=50°,∠PBC=∠ABC=35°,∴∠P=50°﹣35°=15°;(2)∠A=2n°.理由:∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC,∵P点是∠ABC和外角∠ACD的角平分线的交点,∴∠ACD=2∠PCD,∠ABC=2∠PBC,∴∠A+∠ABC=2(∠P+∠PBC),∠A+∠ABC=2∠P+2∠PBC,∠A+∠ABC=2∠P+∠ABC,∴∠A=2∠P,∴∠A=2n°;(3)(Ⅰ)如图②延长BA交CD的延长线于F.∵∠F=180°﹣∠FAD﹣∠FDA=180°﹣(180°﹣∠A)﹣(180°﹣∠D)=∠A+∠D﹣180°,由(2)可知:∠F=2∠P=2n°,∴∠A+∠D=180°+2n°.(Ⅱ)如图③,延长AB交DC的延长线于F.∵∠F=180°﹣∠A﹣∠D,∠P=∠F,∴∠P=(180°﹣∠A﹣∠D)=90°﹣(∠A+∠D).∴∠A+∠D=180°﹣2n°综上所述:∠A+∠D=180°+2n°或180°﹣2n°.4.解:(1)如图1中,∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A,∵∠A=80°,∴∠BDC=120°.故答案为120°.(2)①如图2中,∵MN∥AB,∴∠A=∠DNC,∠ABD=∠BDM,∴∠NDC﹣∠BDM=180°﹣∠A﹣∠ACB﹣∠ABC=180°﹣α﹣(180°﹣α)=90°﹣α.②结论不变.理由:如图3中,∵∠NDC﹣∠BDM=∠DMC+∠DCM﹣∠BDM=∠DBM+∠BDM+∠DCM﹣∠BDM=∠ABC+∠ACB=(180°﹣α)=90°﹣α,∴结论成立.③结论:如图4中,∠NDC+∠MDB=90°﹣α.理由:∵∠NDC+∠BDM=180°﹣∠BDC,∠BDC=90°+α,∴∠NDC+∠BDM=90°﹣α.5.解:(1)∵点A(0,10),∴AO=10,∵△AOB绕点A逆时针旋转90°得△ACD,∴AC=AO=10,∠OAC=90°,∴C(10,10),故答案为:(10,10);(2)①延长DC交x轴于点E,∵点B(m,0),∴OB=m,∵△AOB绕点A逆时针旋转90°得△ACD,∴DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,∴∠ACE=90°,∴四边形OACE是正方形,∴DE⊥x轴,OE=AC=10,如图1,当点E在线段OB上时,BE=OB﹣OE=m﹣10,∴S=DC•BE=m(m﹣10),即S=m2﹣5m(m>10),如图2,当点E在线段OB的延长线上(点B不与O,E重合)时, 则BE=OE﹣OB=10﹣m,∴S=DC•BE=m(10﹣m),即S=﹣m2+5m(0<m<10),当点B与E重合时,即m=10,△BCD不存在,综上所述,S=m2﹣5m(m>10)或S=﹣m2+5m(0<m<10);②当S=12,m>10时,m2﹣5m=12,解得:m1=﹣2(舍去),m2=12,当S=12,0<m<10时,﹣m2+5m=12,解得:m3=4,m4=6,∴点B的坐标为(12,0)或(4,0)或(6,0).6.解:(1)作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC, 在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,当C、P,Q三点共线时,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P点坐标为(1,0).7.解:(1)如图1中,∵AD是高,∴∠ADC=90°,∵BE是高,∴∠AEB=∠BEC=90°,∴∠EAO+∠ACD=90°,∠EBC+∠ECB=90°,∴∠EAO=∠EBC,在△AOE和△BCE中,,∴△AOE≌△BCE,∴AO=BC=5.(2)∵BD=CD,BC=5,∴BD=2,CD=3,由题意OP=t,BQ=4t,①当点Q在线段BD上时,QD=2﹣4t,∴S=•t(2﹣4t)=﹣2t2+t(0<t<).②当点Q在射线DC上时,DQ=4t﹣2,∴S=•t(4t﹣2)=2t2﹣t(<t≤5).(3)存在.①如图2中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,∴△BOP≌△FCQ.∴CQ=OP,∴5﹣4t═t,解得t=1,②如图3中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,∴△BOP≌△FCQ.∴CQ=OP,∴4t﹣5=t,解得t=.综上所述,t=1或s时,△BOP与△FCQ全等.8.证明:(1)①如图1,连接DA,并延长DA交BC于点M,∵点C关于直线l的对称点为点D,∴AD=AC,且AB=AC,∴AD=AB=AC,∴点B,C,D在以点A为圆心,AB为半径的圆上②∵AD=AB=AC∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α ∴∠BDC=故答案为:α(2)如图2,连接CE,∵∠BAC=60°,AB=AC∴△ABC是等边三角形∴BC=AC,∠ACB=60°,∵∠BDC=∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)∴BD=AE,(3)如图3,取AC的中点O,连接OB,OF,BF,∵在△BOF中,BO+OF≥BF,∴当点O,点B,点F三点共线时,BF最长, 如图,过点O作OH⊥BC,∵∠BAC=90°,AB=AC,∴BC=AC,∠ACB=45°,且OH⊥BC,∴∠COH=∠HCO=45°,∴OH=HC,∴OC=HC,∵点O是AC中点,∴AC=2HC,∴BC=4HC,∴BH=BC﹣HC=3HC∴tan∠FBC==9.(1)解:设AP=x,则BQ=x,∵∠BQD=30°,∠C=60°,∴∠QPC=90°,∴QC=2PC,即x+6=2(6﹣x),解得x=2,即AP=2.(2)证明:如图,过P点作PF∥BC,交AB于F,∵PF∥BC,∴∠PFA=∠FPA=∠A=60°,∴PF=AP=AF,∴PF=BQ,又∵∠BDQ=∠PDF,∠DBQ=∠DFP,∴△DQB≌△DPF,∴DQ=DP即D为PQ中点,(3)运动过程中线段ED的长不发生变化,是定值为3, 理由:∵PF=AP=AF,PE⊥AF,∴,又∵△DQB≌△DPF,∴,∴.10.解:情景观察:(1)①∵AB=AC,AE⊥BC,∴BE=EC=BC,且AB=AC,AE=AE∴△ABE≌△ACE(SSS)∵CD⊥AB,∠BAC=45°∴∠BAC=∠ACD=45°∴AD=CD,∵AE⊥BC,CD⊥AB,∴∠B+∠BAE=90°,∠B+∠BCD=90°,∴∠BAE=∠BCD,且∠ADC=∠BDC=90°,AD=CD,∴△ADF≌△CDB(ASA)故答案为:△ABE≌△ACE,△ADF≌△CDB; ∵△ADF≌△CDB∴BC=AF∴AF=2CE故答案为:AF=2CE;问题探究:(2)如图,延长AB、CD交于点G,∵AD平分∠BAC,∴∠CAD=∠GAD,∵AD⊥CD,∴∠ADC=∠ADG=90°,在△ADC和△ADG中,,∴△ADC≌△ADG(ASA),∴CD=GD,即CG=2CD,∵∠BAC=45°,AB=BC,∴∠BAC=∠BCA=45°∴∠ABC=90°=∠CBG=90°,∴∠G+∠BCG=90°,∵∠G+∠BAE=90°,∴∠BAE=∠BCG,在△ABE和△CBG中,,∴△ADC≌△CBG(ASA),∴AE=CG=2CD拓展延伸:(3)如图,作DG⊥BC于点H,交CE的延长线于G,∵∠BAC=45°,AB=BC,∴∠BAC=∠ACB=45°,∴AB⊥BC,且DG⊥BC,∴DG∥AB,∴∠GDC=∠BAC=45°,∵∠EDC=∠BAC,∴∠EDC=∠BAC=22.5°=∠EDG,∴DH=CH,又∵DE⊥CE,∴∠DEC=∠DEG=90°,在△DEC和△DEG中,,∴△DEC≌△DEG(ASA),∴DC=DG,GE=CE,∵∠DHF=∠CEF=90°,∠DFH=∠CFE,∴∠FDH=∠GCH,在△DHF和△CHG中,,∴△DHF≌△CHG(ASA),∴DF=CG=2CE.11.解:(1)如图1,连接AE,∵在Rt△BAC中,∠BAC=90°,AB=AC, ∴∠B=∠ACB=45°.∵CE⊥BC,∴∠BCE=90°.∴∠3=45°.∴∠B=∠3.又∵AB=AC,BD=CE,∴△ABD≌△ACE.∴AD=AE,∠BAD=∠CAE.∴∠DAE=∠BAC=90°.∴△DAE是等腰直角三角形.∴∠ADE=45°.(2)补全图形,如图2所示,结论成立.证明:如图,连接AE,∵在Rt△BAC中,∠BAC=90°,AB=AC, ∴∠B=∠1=45°.∵CE⊥BC,∴∠BCE=90°.∴∠2=45°.∴∠B=∠2.又∵AB=AC,BD=CE,∴△ABD≌△ACE.∴AD=AE,∠BAD=∠CAE.∴∠DAE=∠BAC=90°.∴△DAE是等腰直角三角形.∴∠ADE=∠3=45°.(3)由(1)知,△ADE是等腰直角三角形,∵AB=2,∴AC=2,当AP最小时,CP最大,即:DE⊥AC时,AP最小,∵∠ADE=45°,∠ACB=45°,∴AD⊥BC,AD=BC=×AB=,在Rt△ADP中,AP=AD=1,∴CP=AC﹣AP=1.即:CP的最大值为1.12.解:(1)∵∠ADB+∠ADE+∠EDC=180°,且∠ADE=40°,∠BDA=110°, ∴∠EDC=30°,∵∠AED=∠EDC+∠ACB=30°+40°=70°∴∠EDC=180°﹣∠AED=110°,故答案为:30,110,∵∠BDA+∠B+∠BAD=180°,∴∠BDA=140°﹣∠BAD∵点D从B向C的运动过程中,∠BAD逐渐变大∴∠BDA逐渐变小,故答案为:小(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠CDE,∠B=∠ADE=40°, ∴∠BAD=∠CDE,且AB=CD=2,∠B=∠C=40°,∴△ABD≌△DCE(ASA)(3)若AD=DE时,∵AD=DE,∠ADE=40°∴∠DEA=∠DAE=70°∵∠DEA=∠C+∠EDC∴∠EDC=30°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣30°=110°若AE=DE时,∵AE=DE,∠ADE=40°∴∠ADE=∠DAE=40°,∴∠AED=100°∵∠DEA=∠C+∠EDC∴∠EDC=60°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣60°=80°综上所述:当∠BDA=80°或110°时,△ADE的形状可以是等腰三角形 13.解:(1)∵∠ACB=90°,BE∥AC,∴∠CBE=90°,∴△ABC和△DEB都是直角三角形,∵AC=BC,点D为BC的中点,∴AC=BD,又∵AB=DE,∴Rt△ABC≌Rt△DEB(HL);(2)①由(1)得:△ABC≌△DEB,∴BC=EB,又∵∠CBE=90°,∴∠BCE=45°,∴∠ACE=90°﹣45°=45°,∴∠BCE=∠ACE,∴CE是∠ACB的角平分线.②△ABE是等腰三角形,理由如下:在△ACE和△DCE中∵,∴△ACE≌△DCE(SAS),∴AE=DE,又∵AB=DE,∴AE=AB,∴△ABE是等腰三角形.14.证明:(1)∵AB=AC,D是BC的中点, ∴∠BAE=∠CAE,在△ABE和△ACE中,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠CAD+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠CAD=∠CBF;(3)△CEF是等腰直角三角形,理由:∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,在△AEF和△BCF中,∴△AEF≌△BCF(ASA),∴EF=CF,∵∠CFE=90°,∴△CFE为等腰直角三角形.15.解:(1)结论BM+CN=BD成立,理由如下: 如图②,过点D作DE∥AC交AB于E,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C=60°, ∴∠B=∠BED=∠BDE=60°,∴△BDE是等边三角形,∠EDC=120°,∴BD=BE=DE,∠EDN+∠CDN=120°,∵∠EDM+∠EDN=∠MDN=120°,∴∠CDN=∠EDM,∵D是BC边的中点,∴DE=BD=CD,在△CDN和△EDM中,,∴△CDN≌△EDM(ASA),∴CN=EM,∴BD=BE=BM+EM=BM+CN;(2)上述结论不成立,BM,CN,BD之间的数量关系为:BM﹣CN=BD;理由如下: 如图③,过点D作DE∥AC交AB于E,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∴∠NCD=120°,∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C=60°,∴∠B=∠BED=∠BDE=60°,∴△BDE是等边三角形,∠MED=∠EDC=120°,∴BD=BE=DE,∠NCD=∠MED,∠EDM+∠CDM=120°,∵∠CDN+∠CDM=∠MDN=120°,∴∠CDN=∠EDM,∵D是BC边的中点,∴DE=BD=CD,在△CDN和△EDM中,,∴△CDN≌△EDM(ASA),∴CN=EM,∴BD=BE=BM﹣EM=BM﹣CN,∴BM﹣CN=BD.16.解:(1)如图1,延长CB至H,使EH=BC,连接DH,∵DB=DE,∴∠DBE=∠DEB,∴∠DEH=∠DBC,且DE=DB,EH=BC,∴△DEH≌△DBC(SAS)∴DH=AC,∵△ABC是等边三角形,∴∠C=60°,AC=BC,∴△DHC是等边三角形,∴DC=CH,∵CA:AD=3:7,∴设AD=7a,AC=3a=BC=EH,∴CD=CH=10a,∴BE=CH﹣EH﹣BC=4a=4,∴a=1,∴EC=EB+BC=7a=7;(2)①如图2,延长CB至H,使EH=BC,连接DH,延长BF至G,使BG=BD,由(1)可得△DEH≌△DBC,△DHC是等边三角形,∴∠HDE=∠BDC,∠HDC=60°,∴∠HDB=∠EDF,∵BG=BD,∠DBF=60°,∴△DBG是等边三角形,∴DB=BG=DG,∠BDG=∠HDC=60°,∴∠HDB=∠FDG,∴∠EDF=∠FDG,且DE=BD=DG,DF=DF,∴△DEF≌△DGF(SAS)∴EF=FG,∠DEF=∠DGB=60°,∴BF+EF=BF+FG=BG=BD;②如图3,过点F作FM⊥BC于M,作∠EFN=∠FEC,交BC于N,∵∠BDE=30°,DE=BD,∴∠DEB=∠DBE=75°,∵∠DEF=∠DGB=60°,∴∠FEC=15°,∴∠EFN=∠FEC=15°,∴EN=FN,∠FNC=30°,且FM⊥BC,∴FN=2FM,NM=FM,∴EN=2FM,∴EM=(2+)FM,∴EF==()FM,∵∠DBC=∠BDE+∠DEB=105°,∠DBF=60°,∴∠FBC=45°,且FM⊥BC,∴BF=FM,∴==1+.17.解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b, ∴∠ABC=180°,故答案为:180°,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,∴由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=3+6=9;(3)①如图1,连接BM,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,).18.(1)证明:如图1中,∵△ABC≌△DEF,∴∠B=∠DEF,∵AB=AC,∴∠B=∠ECM,∵∠AEC=∠B+∠BAE=∠DEF+∠CEM,∴∠CEM=∠BAE,∴△ABE∽△ECM.(2)结论正确.理由:如图2中,∵∠NEC=∠B+∠ENB=∠NEF+∠CEM,∠NEF=∠B, ∴∠ENB=∠CEM,∵∠B=∠ECM,∴△BNE∽△CEM,∴=,∵BE=EC,∴=,∴=,∵∠NEM=∠C,∴△NEM∽△ECM.(3)结论:直线MN与⊙E相切.理由:如图3中,设⊙E与AB相切于点G,作EH⊥NM于H.由(2)可知△BNE∽△CEM,△NEM∽△ECM.∴∠BNE=∠CEN=∠ENM,∵AB是⊙E的切线,∴EG⊥NB,∵EH⊥NM,∴EG=EH,∴NM是⊙E的切线.19.解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形DECF是矩形,∵∠ACB=90°,∴BC⊥AC,∵DE⊥AC,∴DE∥BC,∵D为AB边的中点,∴DE是△ABC的中位线,∴DE=BC,AC=2CE,同理:DF=AC,∵AC=BC,∴DE=DF,∴四边形DECF是正方形,∴CE=DF=CF=DE,∵S△DEF=S△CEF=2=DE•DF=DF2,∴DF=2,∴CE=2,∴AC=2CE=4;(2)S△DEF+S△CEF=S△ABC成立,理由如下:连接CD;如图2所示:∵AC=BC,∠ACB=90°,D为AB中点,∴∠B=45°,∠DCE=∠ACB=45°,CD⊥AB,CD=AB=BD, ∴∠DCE=∠B,∠CDB=90°,S△ABC=2S△BCD,∵∠EDF=90°,∴∠CDE=∠BDF,在△CDE和△BDF中,,∴△CDE≌△BDF(ASA),∴DE=DF.S△CDE=S△BDF.∴S△DEF+S△CEF=S△CDE+S△CDF=S△BCD=S△ABC;(3)不成立;S△DEF﹣S△CEF=S△ABC;理由如下:连接CD,如图3所示:同(1)得:△DEC≌△DBF,∠DCE=∠DBF=135°,∴S△DEF=S五边形DBFEC,=S△CFE+S△DBC,=S△CFE+S△ABC,∴S△DEF﹣S△CFE=S△ABC.∴S△DEF、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF=S△ABC.。
2021中考临考专题训练:全等三角形一、选择题1. 如图,小强画了一个与已知△ABC全等的△DEF,他画图的步骤是:(1)画DE =AB;(2)在DE的同旁画∠HDE=∠A,∠GED=∠B,DH,EG相交于点F,小强画图的依据是()A.ASA B.SASC.SSS D.AAS2. 如图所示,∠C=∠D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.∠ABC=∠ABD D.∠BAC=∠BAD3. 如图,李颖同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最合理的办法是带哪块玻璃去()A.只带①B.只带②C.只带③D.带①和②4. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()A .3B .-3C .2D .-25. (2019•张家界)如图,在ABC △中,90C ∠=︒,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于A .4B .3C .2D .16. 如图,已知在四边形ABCD 中,∠BCD=90°,BD 平分∠ABC ,AB=6,BC=9,CD=4,则四边形ABCD 的面积是 ( )A .24B .30C .36D .427. 现已知线段a ,b (a<b ),∠MON=90°,求作Rt △ABO ,使得∠O=90°,OA=a ,AB=b.小惠和小雷的作法分别如下:小惠:①以点O 为圆心、线段a 的长为半径画弧,交射线ON 于点A ;②以点A 为圆心、线段b 的长为半径画弧,交射线OM 于点B ,连接AB ,△ABO 即为所求. 小雷:①以点O 为圆心、线段a 的长为半径画弧,交射线ON 于点A ;②以点O 为圆心、线段b 的长为半径画弧,交射线OM 于点B ,连接AB ,△ABO 即为所求. 则下列说法中正确的是 ( ) A .小惠的作法正确,小雷的作法错误B .小雷的作法正确,小惠的作法错误C .两人的作法都正确D.两人的作法都错误8. 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()二、填空题9. 如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件:______________,使得△ABD≌△CDB.(只需写出一个)10. 如图,已知AC=EC,∠ACB=∠ECD,要直接利用“AAS”判定△ABC≌△EDC,应添加的条件是__________.11. 如图,在Rt△ABC中,∠C=90°,∠B=20°,以点A为圆心,小于AC的长为半径画弧与AB,AC分别交于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧相交于点P,连接AP并延长交BC于点D,则∠ADB=°.12. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).13. 如图,在△ABC 中,分别以AC ,BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE ,BD 交于点O ,则∠AOB 的度数为 .14. 如图,AB ∥CD ,点P 到AB ,BD ,CD 的距离相等,则∠BPD 的度数为________.15. 如图,点O 在△ABC 的内部,且到三边的距离相等.若∠BOC =130°,则∠A=________°.16. (2019•襄阳)如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC △≌△DCB △的是__________(只填序号).三、解答题17. (2019•泸州)如图,AB CD ∥,AD 和BC 相交于点O ,OA OD =.求证:OB OC =.18. 如图所示,在△ADF 和△BCE 中,∠A =∠B ,点D ,E ,F ,C 在同一条直线上,有如下三个关系式:①AD =BC ;②DE =CF ;③BE ∥AF.(1)请你用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题(用序号写出命题的书写形式,如:如果⊗⊗,那么⊗); (2)选择(1)中你写的一个命题,说明它的正确性.19. 如图,四边形ABCD 是正方形,以边AB 为直径作☉O ,点E 在BC 边上,连接AE 交☉O 于点F ,连接BF 并延长交CD 于点G . (1)求证:△ABE ≌△BCG. (2)若∠AEB=55°,OA=3,求的长.(结果保留π)20. (2019•苏州)如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G . (1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.21. 如图,BE,CF都是△ABC的高,在BE上截取BD=AC,在射线CF上截取CG=AB,连接AG,AD.求证:(1)△BAD≌△CGA;(2)AD⊥AG.22. 如图,A,B两点分别在射线OM,ON上,点C在∠MON的内部且CA=CB,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)如果AO=10,BO=4,求OD的长.23. 如图②,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ABE与△CDF的面积之和.24. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.2021中考 临考专题训练:全等三角形-答案一、选择题1. 【答案】A2. 【答案】A3. 【答案】C[解析] 由“ASA”的判定方法可知只带③去就可以配出一块和以前一样(全等)的三角形玻璃.4. 【答案】A[解析] 如图,过点D 作DE ⊥AB 于点E.∵点D 的坐标是(0,-3), ∴OD=3.∵AD 是△OAB 的角平分线, ∴ED=OD=3,即点D 到AB 的距离是3.5. 【答案】C【解析】如图,过点D 作DE AB ⊥于E ,∵8AC =,13DC AD =,∴18213CD =⨯=+, ∵90C ∠=︒,BD 平分ABC ∠,∴2DE CD ==,即点D 到AB 的距离为2,故选C .6. 【答案】B[解析]过点D 作DH ⊥AB 交BA 的延长线于H.∵BD 平分∠ABC ,∠BCD=90°, ∴DH=CD=4,∴四边形ABCD 的面积=S △ABD +S △BCD =AB ·DH +BC ·CD=×6×4+×9×4=30.7. 【答案】A[解析] AB=b ,AB 是斜边,小惠作的斜边长是b 符合条件,而小雷作的是一条直角边长是b.故小惠的作法正确,小雷的作法错误.8. 【答案】C[解析] 选项A 中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项B 中由全等三角形的判定定理“SAS”证得图中两个小三角形全等. 选项C 中,如图①,∵∠DEC=∠B+∠BDE ,∴x °+∠FEC=x °+∠BDE.∴∠FEC=∠BDE.这两个角所对的边是BE 和CF ,而已知条件给的是BD=CF=3,故不能判定两个小三角形全等.选项D 中,如图②,∵∠DEC=∠B+∠BDE ,∴x °+∠FEC=x °+∠BDE.∴∠FEC=∠BDE.又∵BD=CE=2,∠B=∠C ,∴△BDE ≌△CEF .故能判定两个小三角形全等.二、填空题9. 【答案】答案不唯一,如AB =CD [解析] 由已知AB ∥CD 可以得到一对角相等,还有BD =DB ,根据全等三角形的判定,可添加夹这个角的另一边相等,或添加另一个角相等均可.10. 【答案】∠B =∠D11. 【答案】125[解析] 由题意可得AD 平分∠CAB.∵∠C=90°,∠B=20°,∴∠CAB=70°.∴∠CAD=∠BAD=35°.∴∠ADB=180°-20°-35°=125°.12. 【答案】答案不唯一,如AB =DE[解析] ∵BF =CE ,∴BC =EF.在△ABC 和△DEF 中,⎩⎨⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS).13. 【答案】120°[解析]如图,设AC ,DB 的交点为H.∵△ACD ,△BCE 都是等边三角形, ∴CD=CA ,CB=CE ,∠ACD=∠BCE=60°, ∴∠DCB=∠ACE ,在△DCB 和△ACE 中,∴△DCB ≌△ACE , ∴∠CAE=∠CDB ,又∵∠DCH +∠CHD +∠BDC=180°,∠AOH +∠AHO +∠CAE=180°,∠DHC=∠OHA ,∴∠AOH=∠DCH=60°, ∴∠AOB=180°-∠AOH=120°.14. 【答案】90°[解析] ∵点P 到AB ,BD ,CD 的距离相等,∴BP ,DP 分别平分∠ABD ,∠BDC.∵AB ∥CD ,∴∠ABD +∠BDC =180°. ∴∠PBD +∠PDB =90°.故∠BPD =90°.15. 【答案】80[解析] ∵点O 到△ABC 三边的距离相等,∴BO 平分∠ABC ,CO 平分∠ACB.∴∠A =180°-(∠ABC +∠ACB)=180°-2(∠OBC +∠OCB)=180°-2(180°-∠BOC)=80°.16. 【答案】②【解析】∵已知ABC DCB ∠=∠,且BC CB =,∴若添加①A D ∠=∠,则可由AAS 判定ABC △≌DCB △;若添加②AC DB =,则属于边边角的顺序,不能判定ABC △≌DCB △; 若添加③AB DC =,则属于边角边的顺序,可以判定ABC △≌DCB △. 故答案为:②.三、解答题17. 【答案】∵AB CD ∥,∴A D ∠=∠,B C ∠=∠,在AOB △和DOC △中,A D B C OA OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AOB DOC △≌△,∴OB OC =.18. 【答案】解:(1)如果①③,那么②;如果②③,那么①.(2)对于“如果①③,那么②”说明如下:因为BE ∥AF ,所以∠AFD =∠BEC.在△ADF 和△BCE 中,⎩⎨⎧∠AFD =∠BEC ,∠A =∠B ,AD =BC ,所以△ADF ≌△BCE.所以DF =CE.所以DF -EF =CE -EF ,即DE =CF.对于“如果②③,那么①”说明如下:因为BE ∥AF ,所以∠AFD =∠BEC.因为DE =CF ,所以DE +EF =CF +EF ,即DF =CE.在△ADF 和△BCE 中,⎩⎨⎧∠AFD =∠BEC ,∠A =∠B ,DF =CE ,所以△ADF ≌△BCE ,所以AD =BC.19. 【答案】解:(1)证明:∵四边形ABCD 是正方形,AB 为☉O 的直径,∴∠ABE=∠BCG=∠AFB=90°,AB=BC ,∴∠BAF +∠ABF=90°,∠ABF +∠EBF=90°,∴∠EBF=∠BAF ,在△ABE 与△BCG 中,∴△ABE ≌△BCG (ASA).(2)连接OF ,∵∠ABE=∠AFB=90°,∠AEB=55°,∴∠BAE=90°-55°=35°,∴∠BOF=2∠BAE=70°.∵OA=3, ∴的长==.20. 【答案】 (1)∵CAF BAE ∠=∠,∴BAC EAF ∠=∠,∵AE AB AC AF ==,, ∴BAC EAF △≌△,∴EF BC =.(2)∵65AB AE ABC =∠=︒,,∴18065250BAE ∠=︒-︒⨯=︒,∴50FAG ∠=︒,∵BAC EAF △≌△,∴28F C ∠=∠=︒,∴502878FGC ∠=︒+︒=︒.21. 【答案】证明:(1)∵BE ,CF 都是△ABC 的高,∴∠ABE +∠BAC =90°,∠ACF +∠BAC =90°.∴∠ABE =∠ACF.在△BAD 和△CGA 中,⎩⎨⎧AB =GC ,∠ABD =∠GCA ,BD =CA ,∴△BAD ≌△CGA(SAS).(2)∵△BAD ≌△CGA ,∴∠G =∠BAD.∵∠AFG =90°,∴∠GAD =∠BAD +∠BAG =∠G +∠BAG =90°.∴AD ⊥AG .22. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON ,∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,⎩⎨⎧CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL).∴CD =CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON.(2)在Rt △ODC 与Rt △OEC 中,⎩⎨⎧CD =CE ,OC =OC , ∴Rt △ODC ≌Rt △OEC.∴OD =OE.设BE =x.∵BO =4,∴OE =OD =4+x.∵AD =BE =x ,∴AO =OD +AD =4+2x =10.∴x =3.∴OD =4+3=7.23. 【答案】∵∠1=∠2=∠BAC ,且∠1=∠BAE +∠ABE ,∠2=∠CAF +∠ACF ,∠BAC =∠BAE +∠CAF ,∴∠BAE =∠ACF ,∠ABE =∠CAF.在△ABE 和△CAF 中,⎩⎨⎧∠BAE =∠ACF ,AB =CA ,∠ABE =∠CAF , ∴△ABE ≌△CAF(ASA).∴S △ABE =S △CAF .∴S △ABE +S △CDF =S △CAF +S △CDF =S △ACD . ∵CD =2BD ,△ABC 的面积为15, ∴S △ACD =10.∴S △ABE +S △CDF =10.24. 【答案】(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC ,∴△ACO 为等边三角形,∴∠AOC =∠ACO =∠OAC =60°,∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C ,∴OC ⊥DC ,∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°,∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形, ∴OC =CP =OB =PB ,∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径, ∴∠CAP =∠ACB =90°,在Rt △ABC 与Rt △CP A 中,⎩⎨⎧AB =CP AC =AC, ∴Rt △ABC ≌Rt △CP A (HL).。
三角形一、选择题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。
2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值X围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<9【答案】D【解析】:如图∵▱ABCD,AC=8,BD=10,∴OB=BD=5,OC=AC=4∴5-4<BC<5+4,即1<BC<9故答案为:D【分析】根据平行四边形的性质求出OB、OC的长,再根据三角形三边关系定理,建立不等式组,求解即可。
3.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A. 80°B. 100°C. 120°D. 140°【答案】B【解析】如图,延长BC交AD于点E,∵∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,∴∠BCD=∠A+∠B+∠D,∵∠A=50°,∠B=20°,∠D=30°,∴∠BCD=50°+20°+30°=100°,故答案为:B.【分析】延长BC交AD 于点E,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,所以∠BCD=∠A+∠B+∠D,由已知可得∠BCD=50°+20°+30°=100°。
4.如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A. 105°B. 115°C. 125°D. 135°【答案】C【解析】:∵BE∥AF,∴∠B=∠A=35°.∵DC⊥BE,∴∠DCB=90°,∴∠ADC=90°+35°=125°.故答案为:C.【分析】由平行线的性质可得∠B=∠A=35°,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=90°+35°=125°。
初三中考数学复习三角形内角和定理专题复习练习1. 把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A.125° B.120° C.140° D.130°2. 如图所示,∠A,∠1,∠2的大小关系是( )A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠1 3. 如图,射线AD,BE,CF构成∠1,∠2,∠3,则∠1+∠2+∠3等于( )A.180° B.360° C.540° D.无法确定4. 如图,a∥b,∠1=50°,∠2=60°,则∠3的度数为( )A.50° B.60° C.70° D.80°5. 如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )A.110° B.80° C.70° D.60°6. 下面四个图形中,能判断∠1>∠2的是( )7. 如图,AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数为( )A.53° B.63° C.73° D.83°8. 已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为( )A.30° B.35° C.40° D.45°9. 如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC 沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于( )A.40° B.35° C.30° D.25°10. 如图,a,b,c,d互不平行,对它们截出的一些角的数量关系描述错误的是( )A.∠1+∠5+∠4=180° B.∠4+∠5=∠2C.∠1+∠3+∠6=180° D.∠1+∠6=∠211. 如图所示,AB∥CD,AD与BC交于点E,EF是∠BED的平分线.若∠1=30°,∠2=40°,则∠BEF=____度.12. 如图,已知∠1=100°,∠2=140°,那么∠3=______.13. 如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=____度.14. 当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_______.15.如图所示,∠A+∠B+∠C+∠D+∠E+∠F等于_______.16.在△ABC 中,∠A∶∠B=2∶1,∠C=60°,则∠A =____°. 17. 如图,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.18. 如果等腰三角形的一个外角为110°,求它的底角.19. 在三角形ABC 中,∠BAE =12∠BAC ,∠C>∠B ,且FD ⊥BC 于D 点.(1)试推出∠EFD ,∠B ,∠C 的关系;(2)当点F 在AE 的延长线上时,其余条件不变,你在题(1)推导的结论还成立吗?请直接写出结论.20. 如图,CE 是△ABC 外角∠ACD 的平分线,CE 与BA 的延长线相交于点E ,求证:∠BAC>∠B.21. 如图所示,在△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,试说明:∠BOC =90°+12∠A.参考答案1---10 DBBCC DBCAD 11. 35 12. 60° 13. 45 14. 30° 15. 360° 16. 8017. 解:在△ABN 中,∠A +∠B +∠1=180°,在△CDP 中,∠C +∠D +∠3=180°,在△EFM 中,∠E +∠F +∠2=180°,∴∠A +∠B +∠1+∠C +∠D +∠E +∠F +∠3+∠2=540°,在△MNP 中,∠5+∠4+∠6=180°,∴∠1+∠2+∠3=180°,∴∠A +∠B +∠C +∠D +∠E +∠F =540°-(∠1+∠2+∠3)=360°18. 解:①当110°是顶角的外角时,则底角为110°×12=55°,②当110°是底角的外角时,则底角为180°-110°=70°,即它的底角是55°或70°19. 解:(1)∠EFD =90°-∠FED =90°-(∠B +∠BAE)=90°-∠B -12∠BAC=90°-∠B -12(180°-∠B -∠C)=90°-∠B -90°+12∠B +12∠C =12(∠C-∠B)(2)在(1)中推导的结论成立,∠EFD =12(∠C -∠B)20. 证明:∵∠BAC>∠ACE ,∠DCE>∠B ,又∠ACE =∠DCE ,∴∠BAC>∠B 21. 证明:∠BOC =180°-(∠OBC +∠OCB)=180°-12(∠ABC +∠ACB)=180°-12(180°-∠A)=90°+12∠A。
中考数学复习重点知识专项训练25---三角形一、选择题7.(2020·绍兴)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.4B.5C.6D.73.(2020·江苏徐州)若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cmB. 3cmC. 6cmD.9cm7.(2020·宿迁)在△ABC中,AB=1,BC.下列选项中,可以作AC的长度的是()A.3 B.4 C.5 D.62.(2020·陕西)∠A=23°,则∠A的余角是()A.57°B.67°C.77°D.157°8.(2020自贡)如果一个角的度数比它补角的2倍多30°,那么这个角的度数是()A.50°B.70°C.130°D.160°5.(2020·北京)正五边形的外角和为()(A)180°(B)360°(C)540°(D)720°4. (2020·淮安)六边形的内角和是A.360°B.540°C.720°D.1080°(2020·济宁)4.一个多边形的内角和是1080°,则这个多边形的边数是()A. 9B. 8C.7D.66.(2020·扬州)如图,小明从点A出发沿直线前进10来到达点B,向左转45°后又沿直线前进10米到达点C.再向左转45°后沿直线前进10米到达点....照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米(第6题图)(2020·德州)6.如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°……照这样趟下去,他第一次回到出发点A其走的路程为A. 80米B. 96米C. 64米D. 48米5.(2020·无锡)正十边形的每一个外角的度数为( )A .36°B .30°C .144°D .150° 3.(2020·乐山)如图,E 是直线CA 上一点,∠FEA =40°,射线EB 平分∠CEF ,GE ⊥EF .则∠GEB =( )A .10°B .20°C .30°D .40° 12.(2020·泰安)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC ﹦1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( ) A . 2 +1B . 2 +12C .2 2 +1D .2 2 —124.(2020·怀化)若一个多边形的内角和为1080°,则这个多边形的边数为( ) A .6B .7C .8D .96. (2020·湘潭)如图,ACD ∠是△ABC 的外角,若110ACD ︒∠=,50B ︒∠=,则A ∠=( )(第9题)A . 40︒B . 50︒C . 55︒D . 60︒4.(2020·广东)若一个多边形的内角和是540°,则该多边形的边数为( ) A .4 B .5 C .6 D .7 6.(2020·广东)已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( ) A .8B .22 C .16 D .43.(2020·黄冈)已知一个正多边形的一个外角为36°,则这个正多边形的边数是( ) A .7 B .8 C .98 D .106.(2020·宜昌)能说明“锐角α,锐角β的和是锐角”是假命题的例证图是( ).A .B .C .D .9.(2020·宜昌)游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右偏行,成功的招数不止一招,可助我们成功的一招是( ). A .每走完一段直路后沿向右偏72°方向行走 B .每段直路要短 C .每走完一段直路后沿向右偏108°方向行走 D .每段直路要长7.(2020·宜宾)如图,M 、N 分别是△ABC 的边AB 、AC 的中点,若∠A =65°,∠ANM =45°,则∠B =( )A .20°B .45°C .65°D .70°11.(2020·恩施)如图,正方形ABCD 的边长为4,点E 在AB 上且1BE =,F 为对角线AC 上一动点,则BFE △周长的最小值为( ).(第9题)A. 5B. 6C. 7D. 87.(2020·娄底)(2020·娄底)正多边形的一个外角为60,则这个多边形的边数为( ) A . 5 B .6 C . 7 D .85.(2020·吉林)将一副三角尺按如图所示的方式摆放,则α∠的大小为( )A. 85︒B. 75︒C. 65︒D. 60︒二、填空题 14.(2020•丽水)如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 °. 16.(2019·上海)如图,在正六边形ABCDEF 中,设=BA a ,=BC b ,那么向量=BF _______.14.(2020·重庆A 卷)一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是__________.16.(2020·江苏徐州)如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心,若∠ADB =18°,则这个正多边形的边数为 .(第16题)DC BOA图图4A BCDEA BFEDC15.(2020·衡阳)已知一个n 边形的每一个外角都为30° ,则n 等于 .16.(2020·衡阳)一副三角板如图摆放,且AB //CD .则∠1的度数为 .(第 16题图) 12.(2020·陕西)如图,在正五边形ABCDE 中,DM 是边CD 的延长线,连接BD ,则∠BDM 的度数是________.(2020·四川甘孜州)23.三角形的两边长分别为4和7,第三边的长是方程x 2-8x +12=0的解,则这个三角形的周长是_________. (2020·济宁)12.已知三角形的两边长分别为3和6,则这个三角形的第三边长可以是__________(写出一个即可), 15.(2020·北京)如图所示的网格是正方形网格,A ,B ,C ,D 是网格交点,则△ABC 的面积与△ABD 的面积的大小关系为:ABC S ∆ ABD S ∆(填“>”,“=”或“<”)15.(2020·福建)如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC 等于_______度.(2020·江西)11.如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若49EAC ∠=,则BAE ∠的度数为 .14.(2020·南京)如图,在边长为2cm 的正六边形ABCDEF 中,点P 在BC 上,则△PEF 的面积为____cm 2.15.(2020·南京)如图,线段AB 、BC 的垂直平分线l 1、l 2相交于点O.若∠1=39°,则∠AOC =____°.15. (2020·连云港)如图,正六边形A 1A 2A 3A 4A 5A 6。
《三角形》专题训练
一、选择题
1.若等腰三角形底角为72°,则顶角为( )。
A .108°
B .72°
C .54°
D .36°
2.等腰三角形的两边长分别为5和6,则这个三角形的周长是( )。
A .16 B .17 C .13 D .16或17
3. 下列条件能确定△ABC 是直角三角形的条件有( )。
(1) ∠A+∠B=∠C ; (2) ∠A:∠B:∠C=1:2:3; (3) ∠A=90°-∠B ; (4)∠A=∠B=
2
1
∠C A .1个 B .2个 C .3个 D .4个 4. 正△ABC 的两条角平分线BD 和CE 交于点I ,则∠BIC 等于( )
A .60°
B .90°
C .120°
D .150°
5.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( )。
A .60° B .120° C .60°或150°
D .60°或120°
6. 下面给出的几种三角形:(1)有两个角为60°的三角形;(2)三个外角都相等的三角形;(3)一边上的高也是这边上的中线的等腰三角形;(4)有一个角为60°的等腰三角形。
其中一定是等边三角形的有( )。
A .4个
B .3个
C .2个
D .1个 7.已知△ABC ,⑴如图1,若P 点是∠ABC 和∠ACB 的角平分线的交点,则∠P=90°2
1
∠A ; ⑵如图2,若P 点是∠ABC 和外角∠ACE 的角平分线的交点,则∠P=90°-∠A ; ⑶如图3,若P 点是外角∠CBF 和∠BCE 的角平分线的交点,则∠P=90°-
2
1
∠A 。
上述说法下确的个数是( )。
A .0个 B .1个 C .2个 D .3个
8.如图4,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是( )。
A.两点之间线段最短
B.矩形的对称性
C.矩形的四个角都是直角
D.三角形的稳定性 9.如图5,在菱形ABCD 中,E 、F 分别是AB 、CD 的中点,如果EF =2,那么菱形ABCD 的周长是( )。
A .4
B .8
C .12
D .16
10.如图6,平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12 , BD=10, AB=m ,那么m 的取值范围是( )。
A.10<m<12
B.2<m<22
C.1<m<11
D.5<m<6
图4 图5 图6
12.若有一条公共边的两个三角形称为一对“共边三角形”,则图7中以BC 为公共边的“共边三角形”有( )。
A .2对
B .3对
C .4对
D .6对 13.如图8,△ABC 、△AD
E 及△EFG 都是等边三角形,D 和G 分别为AC 和AE 的中点.若AB =4时,则图形ABCDEFG 外围的周长是( )。
A .12 B .15 C .18 D .21
图7 图 8
14.一个等腰三角形底边上的高是4,周长是16,则三角形的面积是( )。
A .24 B .12 C .10 D .8
二、填空题
1. 在△ABC 中,若∠A :∠B :∠C=2:3:4,则∠C=_________。
2. 三角形的三边长为3,a,7,则a 的取值范围是________________。
3.如图9,在△ABC 中,∠AB C=90°,∠A=50°,BD ∥AC ,则∠C BD 的度数是_________。
4. 如图10, 已知△ABC 中,AB =AC ,∠BAC 与∠ACB 的平分线交于D 点,∠ADC=130°,那么∠CAB 的大小是_________。
图9 图10 5.如图11所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是_________。
6. 如图12,△ABC 中,AB =AC ,∠A=36°,BD 平分∠ABC,DE∥BC,则图形中共有_________个等腰三角形。
7.如图13,在△ABC 中,AB=AC ,∠BAD=20 ,且AE=AD ,则∠CDE=_________。
图11 图12 图13
8.在方格纸上,每个小格的顶点叫格点,以格点为顶点的三角形叫格点三角形. 如图14,在4×4的方格纸上,以AB 为边的格点三角形ABC 的面积为2
个平方单位,则符合条件
A E
D
C B 20°
的C 点共有_________个。
9. 如图15是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a ,则六边形的周长是_________。
10.如图16,P 是正三角形 ABC 内的一点,且PA =6,PB =8,PC =10.若将△PAC 绕点A 逆时针旋转后,得到△P'AB ,则点P 与点P' 之间的距离为_________,∠APB =_________。
图14 图15 图16
11. 已知:x :y=1:2,则 (x+y):y=_______ 12. 若
32=b a ,则
b
a a
- =__________ 13.△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC 。
若AD :AB =1:2,则S △ADE :S △ABC =_
14.如图,△ABC 为等边三角形,D 为△ABC 内一点,△ABD 经过旋转后到达△ACP 位置,图中旋转中心是点 ,旋转角度是 度,△ADP 为 三角形.
15.已知D 、E 分别是等边△ABC 中AB 、AC 上的点,且AE=BD ,求BE 与CD•的夹角是 度. 三、解答下列各题
1. 如图,已知△ABC 中,∠ABC=∠ACB=2∠A ,且BD ⊥AC ,垂足为D ,
求∠DBC 的度数。
2.如图,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直, 则绳端离旗杆底端的距离(BC)有5米.求旗杆的高度.
A B
A
D
3如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE•都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,①求证:△BCE ≌△ACD ;②求证:CF=CH ; ③判断△CFH•的形状并说明理由.
4.已知:如图,AB ∥CD ,F 是AC 的中点,求证:F 是DE 中点。
5.已知:如图,AB=AD , CB=CD ,E ,F 分别是AB ,AD 的中点.求证:CE=CF 。
6.如图,△ABC 中,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F 。
求证:(1)AD ⊥EF ;
(2)当有一点G 从点D 向A 运动时,DE ⊥AB 于E ,DF ⊥AC 于F ,此时上面结论是否成立?
7.两个全等的含300
, 600
角的三角板ADE 和三角板ABC 如图所示放置,E,A,C 三点在一条直线上,连结BD ,取BD 的中点M ,连结ME ,MC .试判断△EMC 的形状,并说明理由.
8.某同学想测量旗杆的高度,他在某一时刻测得1m 长的竹杆竖直放置时的影长为1.5m ,在
同一时刻测量旗杆的影长时,因旗杆靠近一幢楼房,影子不全落在地面上,有一部分落在
E
D
A
B
H
F
墙上。
他测得落在地面上的影长为21m,留在墙上的影高为2m。
你能帮助他求出旗杆的高度吗?。