高中数学分章节训练试题:29解析几何初步经典练习题
- 格式:doc
- 大小:359.50 KB
- 文档页数:5
《立体几何、解析几何初步》训练题总分值:100分考试时刻:100分钟一、选择题:本大题共10小题,每题4分,共40分. 在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1. 已知直线α及平面、、n m l ,以下命题中的假命题是:A. 假设n l n m m l //,//,//则B. 假设n l n l ⊥⊥则,//,ααC. 假设n l n m m l ⊥⊥则,//,D. 假设n l n l //,//,//则αα2. 设D C B A 、、、是空间四个不同的点,在以下命题中,不正确...的是 A. 假设BD AC 与共面,那么BC AD 与共面; B. 假设BD AC 与是异面直线,那么BC AD 与是异面直线;C. 假设BCAD DC DB AC AB ===则,,; D. 假设BC AD DC DB AC AB ⊥==则,,3. “直线a 平行于直线b ”是“直线a 平行于过直线b 的平面”成立的: A. 充分没必要要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也没必要要条件4. 若是正方体''''D C B A ABCD -的棱长为a ,那么四面体ABD A -'的体积是: A. 23a B. 33a C. 43a D. 63a 5. 一个梯形采纳斜二测画法作出其直观图,那么其直观图的面积是原先梯形面积的: A. 42倍 B. 21倍 C. 22倍 D. 2倍 6. 已知过点)4,(),2(m B m A 和-的直线与直线012=-+y x 平行,那么m 的值为:A. 0B. 8-C. 2D. 107. 已知点)1,3()21(B A 和,,那么线段AB 的垂直平分线的方程为:A. 0524=-+y xB. 0524=--y xC. 052=-+y xD. 052=--y x8. 已知点BC x A B xOy A C A 则轴对称关于与点点对称关于平面与点,点,,)1,2,1(-的长为: A. 52 B. 4 C. 22 D. 729. 假设圆1)1()2(22=-++y x C 与圆关于原点对称,那么圆C 的方程是:A. 1)1()2(22=++-y xB. 1)1()2(22=-+-y xC. 1)2()1(22=++-y xD. 1)2()1(22=-++y x10. 假设直线的值为相切,则与圆a x y x y x a 0201)1(22=-+=+++:A. 1±B. 2±C. 1D. 1-二、 填空题:本大题共4小题,每题5分,共20分. 把答案填在题中的横线上. 11. 已知点)0,1()01(B A 和,-. 假设直线b x y +-=2与线段AB 相交,那么b 的取值范围是_____________.12. 已知βα、是不同的直线、,n m 是不重合的平面,给出以下命题:①若,,//αβα⊂m n m n //,则β⊂;② 假设βαββα//,//,//,,则n m n m ⊂;③若,//,,n m n m βα⊥⊥ 那么βα//;④ ,//,////αβαn m m n m 、是两条异面直线,若、βαβ//,//则n . 上面的命题中,真命题的序号是 ___________.( 写出所有真命题的序号)13. 设的方程为则直线的中点为的弦圆AB P AB x y x ),1,3(05422=--+___________.14. 在直四棱柱ABCD D C B A -1111中,当底面四边形ABCD 知足条件_________________时,有111D B C A ⊥.(填上你以为正确的一种条件即可,没必要考虑所有可能的情形)OD 1C 1B 1A 1D CBA三、解答题:本大题共4小题,共50分. 解许诺写出文字说明,证明进程或演算步骤.15.(本小题总分值8分)已知两直线0120821=-+=++my x l n y mx l :和:,试确信n m 、的值,使得:(1))1,(21-m P l l 相交于点与;(2)21//l l ;(3)1121-⊥轴上的截距为在且y l l l . 16.(本小题总分值10分)如图,已知NM a AD a DC PD ABCD PD ABCD 、,,平面是矩形,2,===⊥别离是PB AD 、的中点. 求证:平面PBC MNC 平面⊥.N MPDCBA17.(本小题总分值10分)已知O 为坐标原点,圆0320622=-+=+-++y x l c y x y x C :与直线:的两个交点为Q P 、. OQ OP c ⊥为何值时,当?18.(本小题总分值12分)如图,PC AB N M ABCD PA 、分别是、所在的平面,矩形⊥的中点. (1)求证:PAD MN 平面//;(2)求证:CD MN ⊥;(3)假设,45=∠PDA 求证:PCD MN 平面⊥.NM P D CBA参考答案一、选择题:1-5 DCDDA 6-10 BBBAD二、填空题:11. 22≤≤-b12. ③④13.04=-+y x14. 等或BD AC AD AB ⊥=三、解答题:15.(1)⎩⎨⎧==71n m ;(2)2424≠-=-≠=n m n m 时,,当时,当;(3)⎩⎨⎧==80n m .16. 提示:连接PB NC PB MN MB PM MB PM ⊥⊥=;再证,从而,证明、.17. 3=c .18. 提示:(1)取AE MN EN AE E PD //,,,证明连接的中点;(2)PAD AB 平面证明⊥;(3).,,PCD MN CD MN PD MN 平面从而又证明⊥⊥⊥。
高中数学解析几何测试题(答案版)高中数学解析几何测试题(答案版)第一部分:平面解析几何1. 已知平面P1:2x + 3y - 4 = 0和平面P2:5x - 7y + 2z + 6 = 0,求平面P1和平面P2的夹角。
解析:首先,我们需要根据平面的一般式方程确定法向量。
对于平面P1,法向量为(n1, n2, n3) = (2, 3, 0),对于平面P2,法向量为(n4, n5,n6) = (5, -7, 2)。
根据向量的内积公式,平面P1和平面P2的夹角θ可以通过以下公式计算:cosθ = (n1 * n4 + n2 * n5 + n3 * n6) / √[(n1^2 + n2^2 + n3^2) * (n4^2 + n5^2 + n6^2)]代入数值计算,得到cosθ ≈ 0.760,因此夹角θ ≈ 40.985°。
2. 已知四边形ABCD的顶点坐标为A(1, 2, 3),B(4, 5, 6),C(7, 8, 9)和D(10, 11, 12),判断四边形ABCD是否为平行四边形,并说明理由。
解析:要判断四边形ABCD是否为平行四边形,我们需要比较四边形的对角线的斜率。
四边形ABCD的对角线分别为AC和BD。
根据两点间距离公式,我们可以计算出AC的长度为√99,BD的长度为√99。
同时,我们还需要计算坐标向量AC = (6, 6, 6)和坐标向量BD = (9, 9, 9)。
由于AC和BD的长度相等,且坐标向量AC与坐标向量BD的比值为1∶1∶1,因此四边形ABCD是一个平行四边形。
第二部分:空间解析几何3. 已知直线L1:(x - 1) / 2 = y / 3 = (z + 2) / -1和直线L2:(x - 4) / 3= (y - 2) / 1 = (z + 6) / 2,判断直线L1和直线L2是否相交,并说明理由。
解析:为了判断直线L1和直线L2是否相交,我们可以通过解方程组的方法来求解交点。
直线和圆的方程一、知识导学1.两点间的距离公式:不论A(x 1,y 1),B(x 2,y 2)在坐标平面上什么位置,都有d=|AB|=221221)()(y y x x -+-,特别地,与坐标轴平行的线段的长|AB|=|x 2-x 1|或|AB|=|y 2-y 1|.2.定比分点公式:定比分点公式是解决共线三点A(x 1,y 1),B(x 2,y 2),P(x ,y )之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以A 为起点,B 为终点,P 为分点,则定比分点公式是⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x .当P 点为AB 的中点时,λ=1,此时中点坐标公式是⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x . 3.直线的倾斜角和斜率的关系(1)每一条直线都有倾斜角,但不一定有斜率.(2)斜率存在的直线,其斜率k 与倾斜角α之间的关系是k =tan α.4.确定直线方程需要有两个互相独立的条件。
直线方程的形式很多,但必须注意各种5.两条直线的夹角。
当两直线的斜率1k ,2k 都存在且1k ·2k ≠ -1时,tan θ=21121k k k k +-,当直线的斜率不存在时,可结合图形判断.另外还应注意到:“到角”公式与“夹角”公式的区别.6.怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断.(1)斜率存在且不重合的两条直线l 1∶11b x k y +=, l 2∶22b x k y +=,有以下结论: ①l 1∥l 2⇔1k =2k ,且b1=b2 ②l 1⊥l 2⇔1k ·2k = -1(2)对于直线l 1∶0111=++C y B x A ,l 2 ∶0222=++C y B x A ,当A 1,A 2,B 1,B 2都不为零时,有以下结论:①l 1∥l 2⇔21A A =21B B ≠21C C②l 1⊥l 2⇔A 1A 2+B 1B 2 = 0 ③l 1与l 2相交⇔21A A ≠21B B ④l 1与l 2重合⇔21A A =21B B =21C C 7.点到直线的距离公式.(1)已知一点P (00,y x )及一条直线l :0=++C By Ax ,则点P 到直线l 的距离d =2200||BA C By Ax +++;(2)两平行直线l 1: 01=++C By Ax , l 2: 02=++C By Ax 之间的距离d=2221||BA C C +-.8.确定圆方程需要有三个互相独立的条件。
高中数学解析几何训练题(带答案)试卷分析高中数学习题精选第三部分解析几何一、选择题:1、直线的倾斜角是______。
A. B. C. D.2、直线m、l关于直线_ = y对称,若l的方程为,则m的方程为_____。
A. B. C. D.3、已知平面内有一长为4的定线段AB,动点P满足|PA||PB|=3,O为AB中点,则|OP|的最小值为______。
A.1 B. C.2 D.34、点P分有向线段成定比,若,则所对应的点P的集合是___。
A.线段 B.线段的延长线 C.射线 D.线段的反向延长线5 、已知直线L经过点A 与点B ,则该直线的倾斜角为______。
A.150 B.135 C.75 D.456、经过点A 且与直线垂直的直线为______。
A. B. C. D.7、经过点且与直线所成角为30的直线方程为______。
A. B.或C. D.或8、已知点A 和点B ,直线m过点P 且与线段AB相交,则直线m的斜率k的取值范围是______。
A. B. C. D.9、两不重合直线和相互平行的条件是______。
A. B.或 C. D.10、过且倾斜角为15的直线方程为______。
A. B. C. D.11、a = 1是直线和互相垂直的___。
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也非必要条件12、与曲线关于直线对称的曲线方程是______。
A. B. C. D.13、曲线关于点对称的曲线的方程是______。
A. B. C. D.14、实数a = 0是和平行的______A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也非必要条件15、已知m和n的斜率分别是方程的两根,则m和n所成角为______。
A.15 B.30 C.45 D.6016、直线的倾斜角为______。
A. B. C. D.17、a为非负实数,直线不通过的象限是______。
解析几何经典练习题(含答案)题目一:已知平面直角坐标系中两点A(-3,4)和B(5,-2),求直线AB的斜率和方程。
解答:直线AB的斜率可以使用斜率公式计算:斜率 = (y2 - y1) / (x2 - x1)其中,A的坐标为(x1, y1) = (-3, 4),B的坐标为(x2, y2) = (5, -2)。
斜率 = (-2 - 4) / (5 - (-3)) = -6 / 8 = -3/4直线AB的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - 4 = (-3/4)(x + 3)化简得到直线AB的方程为:4y - 16 = -3x - 9整理得到标准形式方程:3x + 4y = 7答案:直线AB的斜率为 -3/4,方程为 3x + 4y = 7。
题目二:已知直线L的斜率为2,经过点A(3,-1),求直线L的方程。
解答:直线L的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - (-1) = 2(x - 3)化简得到直线L的方程为:y + 1 = 2x - 6整理得到标准形式方程:2x - y = 7答案:直线L的方程为 2x - y = 7。
题目三:已知直线L的方程为 3x + y = 5,求直线L的斜率和经过点A (2,-1)的方程。
解答:直线L的斜率可以从方程的标准形式中直接读取:3x + y = 5将方程转化成斜截式形式:y = -3x + 5可以看出直线L的斜率为-3。
经过点A(2,-1)的直线方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - (-1) = -3(x - 2)化简得到通过点A的直线方程为:y + 1 = -3x + 6整理得到标准形式方程:3x + y = 5答案:直线L的斜率为-3,经过点A(2,-1)的方程为 3x + y = 5。
1 / 21高考数学解析几何专题经典试题练习及解析1、已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1)(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足、证明:存在定点Q ,使得|DQ |为定值【解析】(1)由题意可得:22222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)设点()()1122,,,M x y N x y .因为AM ⊥AN ,∴·0AM AN =,即()()()()121222110x x y y --+--=,① 当直线MN 的斜率存在时,设方程为y kx m =+,如图1. 代入椭圆方程消去y 并整理得:()22212k4260xkmx m +++-=,2121222426,1212km m x x x x k k-+=-=++ ②, 根据1122,y kx m y kx m =+=+,代入①整理可得:()()()()221212k1x 2140x km k x x m ++--++-+=将②代入,()()()22222264k 121401212m kmkm k m k k-⎛⎫++---+-+= ⎪++⎝⎭,2 / 21整理化简得()()231210k m k m +++-=,∵2,1A ()不在直线MN 上,∴210k m +-≠,∴23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭, 所以直线过定点直线过定点21,33E ⎛⎫-⎪⎝⎭. 当直线MN 的斜率不存在时,可得()11,N x y -,如图2.代入()()()()121222110x x y y --+--=得()2212210x y -+-=,结合2211163x y +=,解得()1122,3x x ==舍,此时直线MN 过点21,33E ⎛⎫-⎪⎝⎭,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,3 / 21所以AE 中点Q 满足QD 为定值(AE=). 由于()21,32,13,A E ⎛⎫-⎪⎝⎭,故由中点坐标公式可得41,33Q ⎛⎫ ⎪⎝⎭. 故存在点41,33Q ⎛⎫⎪⎝⎭,使得|DQ|为定值. 2、已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点、求直线AB 的方程、【答案】(Ⅰ)221189x y +=;(Ⅰ)132y x =-,或3y x =-、 【解析】(Ⅰ)椭圆()222210x y a b a b +=>>的一个顶点为()0,3A -,∴3b =,由OA OF=,得3c b ==,又由222a b c =+,得2228313a =+=,所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在,4 / 21设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121k k k -⎛⎫⎪++⎝⎭, 由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk k k k k k --+=-+-+=, 又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =. 所以,直线AB 的方程为132y x =-或3y x =-. 3、已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =(Ⅰ)求椭圆C 的方程:5 / 21(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q 、求||||PB BQ 的值【解析】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩, 故椭圆方程为:22182x y +=.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++. 直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.6 / 21很明显0P Q y y <,且:PQPB y PQy =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭, 而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,故0,P Q P Q y y y y +==-.从而1PQPB y BQy ==. 4、已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y . 当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=, 解得b 2=12.7 / 21所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d==,由两点之间距离公式可得||AM==.所以△AMN的面积的最大值:11825⨯=.5、如下图已知椭圆221:12xC y+=,抛物线22:2(0)C y px p=>,点A是椭圆1C与抛物线2C的交点,过点A的直线l交椭圆1C于点B,交抛物线2C于M(B,M不同于A)(Ⅰ)若116=p,求抛物线2C的焦点坐标;(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值、【答案】(Ⅰ)1(,0)32;【解析】(Ⅰ)当116=p时,2C的方程为218y x=,故抛物线2C的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x yB x y M x y I x y mλ=+,8/ 219 / 21由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,?22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,40p ≤, 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .10 / 21将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==p模拟试题1、在平面直角坐标系中,曲线Γ:0(),F x y =和函数21()4f x x =的图像关于点(1,2)对称. (1)函数21()4f x x =的图像和直线4y k x =⋅+交于A 、B两点,O 是坐标原点,求证:2AOB π∠=; (2)求曲线Γ的方程;(3)对于(2),依据课本章节《圆锥曲线》的抛物线的定义,求证:曲线Γ为抛物线.【解析】(1)设()()1122,,A B x y x y ,,由2144y x y kx ⎧=⎪⎨⎪=+⎩得24160x kx --=,则1212+4,16x x k x x =⋅=-, 又1212+OA OB x x y y ⋅=⋅⋅ ()()22112121222211++16+160441616x x x x x x x x =⋅⋅=⋅⋅=-⨯-=,11 / 21所以OA OB ⊥,所以2AOB π∠=;(2)设曲线Γ:0(),F x y =上任意一点(),P x y ,点P 关于点(1,2)对称的点()111,P x y ,则1124x xy y =-⎧⎨=-⎩,代入到214y x =中得()21424y x -=-, 所以曲线Γ的方程是2134y x x =-++;(3)设曲线Γ:0(),F x y =上任意一点(),P x y ,则满足2134y x x =-++,设点()2,3F ,直线:5l y =,则()()22223PFx y =-+-()()22222211233244x x x x x x ⎛⎫⎛⎫=-+-++-=-+-+ ⎪ ⎪⎝⎭⎝⎭()2222251123544x x x x y ⎛⎫⎛⎫=-+=-++-= ⎪ ⎪⎝⎭-⎝⎭,所以曲线Γ:0(),F x y =上任意一点P 到点()2,3F 的距离与到直线:5l y =的距离相等,根据抛物线的定义得到曲线Γ为抛物线.2、点P 是直线2y =-上的动点,过点P 的直线1l 、2l 与抛物线2y x 相切,切点分别是A 、B .(1)证明:直线AB 过定点;(2)以AB 为直径的圆过点()2,1M ,求点P 的坐标及圆的方程. 【解析】(1)设点()11,A x y 、()22,B x y 、(),2P b -,对函数2yx 求导得2y x '=,所以,直线1l 的方程为()1112y y x x x -=-,即1120x x y y --=,同理可得直线2l 的方程为2220x x y y --=,12 / 21将点P 的坐标代入直线1l 、2l 的方程得1122220220bx y bx y -+=⎧⎨-+=⎩,所以,点A 、B 的坐标满足方程220bx y -+=,由于两点确定一条直线,所以,直线AB 的方程为220bx y -+=,该直线过定点()0,2; (2)设直线AB 的方程为()22y kx k b =+=,将直线AB 的方程与抛物线的方程联立得220x kx --=,则240k ∆=+>,由韦达定理得122x x =-,12x x k +=,因为()2,1M 在AB 为直径的圆上,所以0MA MB ⋅=,()()11112,12,1MA x y x kx =--=-+,同理()222,1MB x kx =-+,()()()()()()()21212121222111250MA MB x x kx kx k x x k x x ∴⋅=--+++=++-++=,即2230k k +-=,解得1k =或3k =-.当1k =时,1,22P ⎛⎫-⎪⎝⎭,直线AB 的方程为2y x =+,圆心为15,22⎛⎫⎪⎝⎭,半径2r ==,圆的标准方程为22159222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭; 当3k =-时,3,22P ⎛⎫-- ⎪⎝⎭,直线AB 的方程为32y x =-+,圆心为313,22⎛⎫- ⎪⎝⎭,半径r ==2231385222x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭. 综上所述,当1k =时,1,22P ⎛⎫- ⎪⎝⎭,圆的标准方程为22159222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;13 / 21当3k =-时,3,22P ⎛⎫-- ⎪⎝⎭,圆的标准方程为2231385222x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭.3、设椭圆E 的方程为2212x y +=,斜率为1的动直线l 交椭圆E 于A 、B 两点,以线段AB 的中点C 为圆心,AB 为直径作圆S(1)求圆心C 的轨迹方程,并描述轨迹的图形; (2)若圆S 经过原点,求直线l 的方程;(3)证明:圆S 内含或内切于圆223x y +=.【答案】(1)圆心C的轨迹方程为1233y x x ⎛⎫=--<< ⎪ ⎪⎝⎭,轨迹为线段;(2)3y x =±;(3) 【解析】(1)设斜率为1的动直线l 的方程为y x t =+,联立椭圆方程2222x y +=,可得2234220x tx t ++-=,设()11,A x y 、()22,B x y ,则()2221612222480t t t ∆=--=->,即t <<由韦达定理得1243t x x +=-,212223t x x -=,则中点2,33t t C ⎛⎫- ⎪⎝⎭,可得圆心C的轨迹方程为12y x x ⎛=-<< ⎝⎭,即轨迹为线段; (2)由(1)可得AB ===可得圆S 的方程为2222124339t t t x y -⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,若圆S 经过原点,可得()2243599t t -=,解得3t =±,14 / 21因此,直线l的方程为y x =±; (3)圆223x y +=的圆心设为()0,0O圆S 的圆心2,33t t S ⎛⎫-⎪⎝⎭由222225124133393933t t OS t ⎫⎛⎫--=--+=+-⎪ ⎪⎪ ⎪⎝⎭⎝⎭,()03m m =<<,则2293m t -=,可得()2222941312033333m m OS m ⎫--=+-=--≤⎪⎪⎝⎭, 可得圆S 内含或内切于圆223x y +=.4、在平面直角坐标系xOy 中,抛物线C 关于x 轴对称,顶点为坐标原点,且经过点()2,2 (1)求抛物线C 的标准方程;(2)过点()1,0Q 的直线交抛物线于M 、N 两点,P 点是直线:1l x =-上任意一点.证明:直线PM PQ PN 、、的斜率依次成等差数列.【解析】(1)由条件设抛物线为22y px =,而点()2,2在抛物线上,从而有2222p =⨯,得1p =,故抛物线方程为22y x =;(2)设点()1,P t -是直线l 上任意一点,15 / 21由条件知直线MN 的斜率不等于0,设:1MN x my =+交抛物线于()()1122,,M x y N x y 、,由212x my y x=+⎧⎨=⎩可得:2220y my --= 从而有12122,2y y m y y +==-1212112PM PN PQ y t y t tk k k x x --===-++,, 121211PM PN y t y tk k x x --+=+++ ()()()12122121222424my y tm y y tm y y m y y +-+-=+++222424tm t t m --==-+, 而2PQ k t =-,即证2PM PN PQ k k k +=. 即证直线PM ,PQ ,PN 的斜率成等差数列.5、已知椭圆C :22221x y a b +=(0a b >>)的离心率是2,原点到直线1x y a b +=的距离等于3. (1)求椭圆C 的标准方程.(2)已知点()0,3Q ,若椭圆C 上总存在两个点,A B 关于直线y x m =+对称,且328QA QB ⋅<,求实数m 的取值范围【答案】(1)22142x y+=;(2)13⎛⎫⎪⎪⎝⎭,.【解析】(1)因为椭圆的离心率是2,原点到直线1x ya b+=的距离等于3,所以=⎪⎪⎨=,解得224,2a b==,所以椭圆C的标准方程为22142x y+=、(2)根据题意可设直线AB的方程为y x n=-+,联立22142y x nx y=-+⎧⎪⎨+=⎪⎩,整理得22342(2)0x nx n-+-=,由22(4)432(2)0n n=--⨯⨯->△,得26n<、设1122(),(,)A x x nB x x n-+-+,,则()21212224,33nnx x x x-+==又设AB的中点为00()M x x n-+,,则12002,233x x n nx x n+==-+=.由于点M在直线y x m=+上,所以233n nm=+,得3n m=-代入26n<,得296m<,所以m<<,因为1122(,3),(,3)QA x x n QB x x n=-+-=-+-,所以212122(3)()(3)QA QB x x n x x n⋅=--++-2224(2)4(3)3619(3)333n n n n nn---+=-+-=.由328QA QB⋅<,得2361928n n-+<,即13n-<<,所以133m-<-<,即113m-<<,16/ 2117 / 21所以113m m ⎧<<⎪⎪⎨⎪-<<⎪⎩,解得13m <<.实数m的取值范围为133⎛⎫- ⎪ ⎪⎝⎭,. 6、椭圆2222:1(0)x y C a b a b +=>>F 与长轴垂直的直线与椭圆在第一象限相交于点M ,1||2MF =. (1)求椭圆C 的标准方程;(2)设椭圆C 的左顶点为A ,右顶点为B ,点P 是椭圆上的动点,且点P 与点A ,B 不重合,直线PA 与直线3x =相交于点S ,直线PB 与直线3x =相交于点T ,求证:以线段ST 为直径的圆恒过定点.【答案】(1)2214x y +=;(2)证明见解析. 【解析】(1)由题意,离心率为c e a ==,右焦点为(),0F c ,将x c =代入22221x y a b +=,可得2b y a=±;又过椭圆右焦点F 与长轴垂直的直线与椭圆在第一象限相交于点M ,1||2MF =,所以21||2b MF a ==,联立2212c a b a ⎧==⎪⎪⎨⎪=⎪⎩解得:2a =,1b =,18 / 21所以椭圆C 的标准方程为2214x y +=;(2)证明:由(1)知()2,0A -,()2,0B ,设直线AP 的斜率为k ,则直线AP 的方程为(2)y k x =+, 联立3x =得()3,5S k ;设()00,P x y 代入椭圆的方程有:()22000124x y x +=≠±整理得:()220144y x =--,故2020144y x =--, 又002y k x =+,002y k x '=-(k ,k '分别为直线PA ,PB 的斜率) 所以2020144y kk x '==--, 所以直线PB 的方程为:1(2)4y x k =--,联立3x =得13,4T k ⎛⎫ ⎪-⎝⎭, 所以以ST 为直径的圆的方程为:2225151(3)2828k k x y k k ⎡⎤⎛⎫⎛⎫-+--=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令0y =,解得:3x =±, 所以以线段ST为直径的圆恒过定点3⎛⎫± ⎪ ⎪⎝⎭. 7、已知定点()1,0M -,圆()22:116N x y -+=,点Q 为圆N 上动点,线段MQ 的垂直平分线交NQ 于19 / 21点P ,记P 的轨迹为曲线C (1)求曲线C 的方程;(2)过点M 与N 作平行直线1l 和2l ,分别交曲线C 于点A 、B 和点D 、E ,求四边形ABDE 面积的最大值.【答案】(1)22143x y +=;(2)6. 【解析】(1)由中垂线的性质得PM PQ =,42MP NP PQ NP MN ∴+=+=>=, 所以,动点P 的轨迹是以M 、N 为焦点,长轴长为4的椭圆,设曲线C 的方程为()222210x y a b a b +=>>,则2a =,b =,因此,曲线C 的方程为:22143x y +=;(2)由题意,可设2l 的方程为1x ty =+,联立方程得()2222134690431x y t y ty x ty ⎧+=⎪⇒++-=⎨⎪=+⎩, 设()11,D x y 、()22,E x y ,则由根与系数关系有122122634934t y y t y y t ⎧+=-⎪⎪+⎨⎪⋅=-⎪+⎩,所以()2212134t DE t +===+,20 / 21同理()2212134t AB t +=+,1l 与2l的距离为d =所以,四边形ABDE的面积为24S =,u =,则1u ≥,得224241313u S u u u==++,由双勾函数的单调性可知,函数13y u u=+在[)1,+∞上为增函数, 所以,函数2413S u u=+在[)1,+∞上为减函数, 当且仅当1u =,即0t =时,四边形ABDE 的面积取最大值为6.8、已知椭圆C :22221x y a b +=(0a b >>)的左、右焦点分别为1F ,2F ,M 为椭圆上任意一点,当1260F MF ∠=︒时,12F MF △2b =(1)求椭圆C 的方程;(2)设O 为坐标原点,过椭圆C 内的一点()0,t 作斜率为k 的直线l 与椭圆C 交于A ,B 两点,直线OA ,OB 的斜率分别为1k ,2k ,若对任意实数k ,存在实数m ,使得124k k mk +=,求实数m 的取值范围.【答案】(1)22143x y +=;(2)1,2⎛⎫+∞ ⎪⎝⎭. 【解析】(1)设1MF m =,2MF n =,则2m n a +=,在12MF F △中,1sin 602S mn =︒=4mn =, 由余弦定理可得2222cos604m n mn c +-︒=,即()2234m n mn c +-=,21 / 21代入计算可得223a c -=,23b ∴=,又2b =,2a ∴=,则椭圆C 的方程为22143x y +=; (2)设直线l 的方程为y kx t =+, 由22143y kx t x y =+⎧⎪⎨+=⎪⎩,得()2223484120k x ktx t +++-=, 设()11,A x y ,()22,B x y , 则122834kt x x k +=-+,212241234t x x k-=+. ()212121221212122223t x x y y t t kt k k k k k k x x x x x x t ++=+=+++=+=--. 由124k k mk +=对任意k 成立,得()221223t m t =--, ()23212m t m -∴=, 又()0,t 在椭圆内部,203t ∴<<, 即()321032m m-<<,解得12m >. m ∴的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.。
高三数学章节训练题30《解析几何初步2》时量:60分钟 满分:80分 班级: 姓名: 计分:个人目标:□优秀(70’~80’) □良好(60’~69’) □合格(50’~59’) 一、选择题(本大题共6小题,每小题5分,满分30分)1.直线1x y +=与圆2220(0)x y ay a +-=>没有公共点,则a 的取值范围是( )A .1)B .11)C .(11)D .1) 2.已知两条直线2y ax =-和(2)1y a x =++互相垂直,则a 等于( ) (A )2 (B )1 (C )0 (D )1-3.若圆2244100x y x y +---=上至少有三个不同点到直线l :0ax by +=的距离为则直线l 的倾斜角的取值范围是 ( )A.[,124π]B.[5,1212ππ]C.[,]63ππ D.[0,]2π4.圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是( )A .36B . 18 C. 26 D . 25 5.圆1)3()1(22=++-y x 的切线方程中有一个是( )(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =06.从圆222210x x y y -+-+=外一点()3,2P 向这个圆作两条切线,则两切线夹角的余弦值为( )A .12 B .35 C .2D .0 二、填空题:(本大题共4小题,每小题5分,满分20分)7.设直线30ax y -+=与圆22(1)(2)4x y -+-=相交于A 、B 两点,且弦AB 的长为a =________ ____.8.若半径为1的圆分别与y 轴的正半轴和射线(0)3y x x =≥相切,则这个圆的方程为 .9.已知圆)0()5(:222>=++r r y x C 和直线053:=++y x l . 若圆C 与直线l 没有公共点,则r 的取值范围是 . 10.已知直线5120x y a -+=与圆2220x x y -+=相切,则a 的值为 .三、解答题:(本大题共3小题,每小题10分,满分30分)11.过点(1,2)的直线l 将圆(x -2)2+y 2=4分成两段弧,当劣弧所对的圆心角最小时,求直线l 的方程。
高三数学章节训练题29《解析几何初步1》时量:60分钟 满分:80分 班级: 姓名: 计分:个人目标:□优秀(70’~80’) □良好(60’~69’) □合格(50’~59’)一、选择题(本大题共6小题,每小题5分,满分30分)1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( )A .1=+b aB .1=-b aC .0=+b aD .0=-b a 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( ) A .045,1B .0135,1-C .090,不存在D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A .0≠mB .23-≠mC .1≠mD .1≠m ,23-≠m ,0≠m 二、填空题:(本大题共6小题,每小题5分,满分30分)1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。
4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。
高中数学解析几何练习题赵玉苗一、选择题1.椭圆x 29+y 24+k =1旳离心率为45,则k 旳值为( )A .-21B .21C .-1925或21D.1925或21 2.圆心在抛物线y 2=2x 上且与x 轴和该抛物线旳准线都相切旳一个圆旳方程是( )A .x 2+y2-x -2y -14=0B .x 2+y 2+x -2y +1=0C .x2+y 2-x -2y +1=0 D .x 2+y2-x -2y +14=03.已知P 是椭圆22143x y +=上旳一点,F 1、F 2是该椭圆旳两个焦点,若△PF 1F 2旳内切圆半径为12,则21PF PF ⋅旳值为( )A .32 B .94C .94-D .04.已知12F 、F 分别是双曲线()222210,0x y a b a b-=>>旳左、右焦点,过1F 作垂直于x 轴旳直线交双曲线于A 、B 两点,若2ABF ∆为锐角三角形,则双曲线旳离心率旳范围是( )A .(1,1+B .()1+∞ C.(1D .)15.抛物线2(0)x ay a =>旳准线l 与y 轴交于点P ,若l 绕点P 以每秒12π弧度旳角速度按逆时针方向旋转t 秒钟后,恰与抛物线第一次相切,则t 等于 ( )A .1B .2C .3D .46.从双曲线31532222=+=-y x F y x 引圆的左焦点旳切线FP 交双曲线右支于点P ,T 为切点,M 为线段FP旳中点,O 为坐标原点,则|MO|—|MT|等于( )A .3B .5C .35-D .35+7.已知椭圆x 2a 2+y 2b2=1(a >b >0)上一点P ,F 1、F 2为椭圆旳焦点,若∠F 1PF 2=θ,则△PF 1F 2旳面积等于( )A .a 2tanθ2B .a 2cotθ2C .b 2tanθ2D .b 2cotθ28.椭圆x 25+y 24=1旳右焦点为F ,设A (-52,3),P 为椭圆上旳动点,则|AP |+5|PF |取得最小值时P点旳坐标是( ) A .(52,3) B .(5,0)C .(0,2)D .(0,-2)或(0,2)10.椭圆x 2m+y 2n=1(m >n >0)与双曲线x 2a-y 2b=1(a >0,b >0)有相同旳焦点F 1、F 2,P 是两曲线旳一个交点,则|PF 1|·|PF 2|旳值为( )A .m -a B.12(m -a ) C .m 2-a 2 D.m -a11.如果双曲线x 213-y 212=1上一点P 到右焦点旳距离等于13,那么点P 到右准线旳距离是( ) A.135B .13C .5D.51312.已知点F 1(-2,0)、F 2(2,0),动点P 满足|PF 2|-|PF 1|=2,当点P 旳纵坐标是12时,点P 到坐标原点旳距离是( ) A.62 B.32C.3 D .213.“方程ax 2+by 2=c 表示双曲线”是“ab <0”旳( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件14.某圆锥曲线C 是椭圆或双曲线,若其中心为坐标原点,对称轴为坐标轴,且过点A (-2,23),B (32,-5),则( )A .曲线C 可为椭圆也可为双曲线B .曲线C 一定是双曲线 C .曲线C 一定是椭圆D .这样旳曲线C 不存在二.填空题15.若直线y =x +k 与曲线x =1-y 2恰有一个公共点,则k 旳取值范围是______.16.如果曲线C :⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ,(θ为参数)与直线x +y +a =0有公共点,那么实数a 旳取值范围是______.17.过直线y =4上任一点作圆x 2+y 2=4旳切线,则切线长旳最小值为________.18.已知点P 是以F 1、F 2为焦点旳椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,若PF 1⊥PF 2, tan ∠PF 1F 2=12,则此椭圆旳离心率是________.19.在平面直角坐标系xOy 中,A 1、A 2、B 1、B 2为椭圆x 2a 2+y 2b 2=1(a >b >0)旳四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆旳交点M 恰为线段OT 旳中点,则该椭圆旳离心率为________.20.已知椭圆x 23+y 2=1旳左、右两个焦点分别为F 1和F 2,点P 为椭圆上任意一点,点E 在椭圆旳右准线上.给出下列命题:则其中所有正确命题旳序号为________. 21.对于顶点在原点旳抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1旳点到焦点旳距离等于6;④抛物线通径旳长为5;⑤由原点向过焦点旳某条直线作垂线,垂足坐标为(2,1).能使抛物线方程为y 2=10x 旳条件是________.(要求填写合适条件旳序号)22.双曲线x 29-y 216=1旳两个焦点为F 1、F 2,点P 在双曲线上,若PF 1⊥PF 2,则点P 到x 轴旳距离为________.23.设圆过双曲线x 29-y 216=1旳一个顶点和一个焦点,圆心在此双曲线上,则此圆心到双曲线中心旳距离为________.24.已知F 为双曲线x 24-y 212=1旳左焦点,A (1,4),P 是双曲线右支点上旳动点,则|PF |+|PA |旳最小值为________. 三、解答题25.如右图所示,已知圆C 1:x 2+y 2-2mx -2ny +m 2-1=0和圆C 2:x 2+y 2+2x +2y -2=0交于A 、B 两点且这两点平分圆C 2旳圆周.求圆C 1旳圆心C 1旳轨迹方程,并求出当圆C 1旳半径最小时圆C 1旳方程.26.P 是椭圆x 2a2+y 2=1(a >1)短轴旳一个端点,Q 为椭圆上旳一个动点,求|PQ |旳最大值.27.椭圆旳中心是原点O ,它旳短轴长为22,相应于焦点F (c ,0)(c >0)旳准线l 与x 轴相交于点A ,|OF |=2|FA |,过点A 旳直线与椭圆相交于P 、Q 两点. (1)求椭圆旳方程及离心率; (2)若,求直线PQ 旳方程;28.已知抛物线y x 62=旳焦点为F ,椭圆C :)0(12222>>=+b a b y a x 旳离心率为23=e ,P 是它们旳一个交点,且2||=PF .(I )求椭圆C 旳方程;(II )若直线)0,0(>≠+=m k m kx y 与椭圆C 交于两点A 、B ,点D 满足BD AD +=0,直线FD 旳斜率为1k ,试证明411->⋅k k .29.如图,已知直线与抛物线y 2=2px (p >0)相交于A 、B 两点,且OA ⊥OB ,OD ⊥AB 交AB 于D ,且点D 旳坐标为(3,3).(1)求p 旳值;(2)若F 为抛物线旳焦点,M 为抛物线上任一点,求|MD |+|MF |旳最小值.30.设椭圆22221(0)x y a b a b+=>>旳焦点分别为1(1,0)F -、2(1,0),F 直线2:l x a =交x 轴于点A ,且122.AF AF = (I )试求椭圆旳方程;(II )过F 1、F 2分别作互相垂直旳两直线与椭圆分别交于D 、E 、M 、N 四点(如图所示),试求四边形DMEN 面积旳最大值和最小值.31.圆C 1旳方程为532)1()4(22=-+-y x ,椭圆C 2为()222210x y a b a b+=>>,其离心率为23,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1旳直径. (Ⅰ)求直线AB 旳方程和椭圆C 2旳方程;(Ⅱ)如果椭圆C 2旳左右焦点分别是21F F 、,椭圆上存在点P ,使得12PF PF AB λ+=,求点P 旳坐标.第30题一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一。
高三数学章节训练题29《解析几何初步1》含答案
时量:60分钟 满分:80分 班级: 姓名: 计分:
个人目标:□优秀(70’~80’) □良好(60’~69’) □合格(50’~59’)
一、选择题(本大题共6小题,每小题5分,满分30分)
1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( )
A .1=+b a
B .1=-b a
C .0=+b a
D .0=-b a
2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )
A .012=-+y x
B .052=-+y x
C .052=-+y x
D .072=+-y x
3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为(
) A .0 B .8- C .2 D .10
4.已知0,0ab bc <<,则直线ax by c +=通过( )
A .第一、二、三象限
B .第一、二、四象限
C .第一、三、四象限
D .第二、三、四象限
5.直线1x =的倾斜角和斜率分别是( )
A .045,1
B .0135,1-
C .090,不存在
D .0180,不存在
6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足(
)
A .0≠m
B .23
-≠m
C .1≠m
D .1≠m ,23
-≠m ,0≠m
二、填空题:(本大题共6小题,每小题5分,满分30分)
1.点(1,1)P - 到直线10x y -+=的距离是________________.
2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;
3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。
4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.
5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的
方程为________________。
6. 经过点(1,2)A 并且在两个坐标轴上的截距的绝对值相等的直线 。
三、解答题:(本大题共2小题,每小题10分,满分20分)
1.求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程。
A--作一直线l,使它与两坐标轴相交且与两轴所围成的三角形面积为5.2.过点(5,4)
高三数学章节训练题29《解析几何初步1》答案
一、选择题
1.D tan 1,1,1,,0a k a b a b b
α=-=--=-=-= 2.A 设20,x y c ++=又过点(1,3)P -,则230,1c c -++==-,即210x y +-= 3.B 42,82m k m m -==-=-+ 4.C ,0,0a c a c y x k b b b b
=-+=->< 5.C 1x =垂直于x 轴,倾斜角为090,而斜率不存在
6.C 22
23,m m m m +--不能同时为0
二、填空题
1.2
2d == 2. 32+-=x y
3.250x y --= '101,2,(1)2(2)
202k k y x --==-=--=-- 4.8 22x y +可看成原点到直线上的点的距离的平方,垂直时
最短:d =
= 5. 23
y x = 平分平行四边形A B C D 的面积,则直线过BD 的中点(3,2) 6. 解:当截距为0时,设y kx =,过点(1,2)A ,则得2k =,即2y x =;
当截距不为0时,设1,x y a a +=或1,x y a a
+=-过点(1,2)A , 则得3a =,或1a =-,即30x y +-=,或10x y -+=
这样的直线有3条:2y x =,30x y +-=,或10x y -+=。
三、解答题
1. 解:由23503230x y x y +-=⎧⎨--=⎩,得1913913x y ⎧=⎪⎪⎨⎪=⎪⎩
,再设20x y c ++=,则4713c =-
472013
x y +-=为所求。
2. 解:设直线为4(5),y k x +=+交x 轴于点4(
5,0)k -,交y 轴于点(0,54)k -, 14165545,4025102S k k k k
=⨯-⨯-=--= 得22530160k k -+=,或22550160k k -+=
解得2,5k =或 85
k = 25100x y ∴--=,或85200x y -+=为所求。