多重比较方差检验
- 格式:ppt
- 大小:261.00 KB
- 文档页数:31
第六章,第三、四次课 多重比较和第二节单因素方差分析在试验中所考虑的因素只有一个时,称为单因素实验。
单因素方差分析是最简单的一种,它适用于只研究一个试验因素的资料,目的在于正确判断该试验因素各处理的相对效果(各水平的优劣).组内观测次数相等的方差分析:是指在k 组处理中,每一处理皆含有n 个观测值,其方差分析方法前面已做介绍,这里以方差分析表的形式给出有关计算公式:组内观测次数相等的方差分析例:测定东北、内蒙古、河北、安徽、贵州5个地区黄鼬冬季针毛的长度,每个地区随机抽取4个样本,测定的结果如表,试比较各地区黄鼬针毛长度s e 2k(n-1) SS e 误差或处理内nk-1SS T总和s t2 k-1 SS t处理间 F 均方 自由度 平方和 变异来源 F = s t 2 s e21)分解平方和和自由度=186.7-173.71=12.99作方差分析F 测验 查F 值表,得F0.05 (4,15) =3.06, F0.01 (4,15) =4.89,故F >F0.01 ,P < 0.01,说明5个地区黄鼬冬季针毛长度差异极显著。
不同地区黄鼬冬季针毛长度方差分析表为了确定各个地区之间的差异是否显著,需要进行多重比较。
这里用最小显著差数法(LSD )进行检验。
查t 值表,当dfe =15时,t0.05 =2.131,t0.01 =2.947,于是有:LSD0.05 = 2.131 ×0.658 =1.402 LSD0.01 = 2.947 ×0.658 =1.939本例中各组内观测数相等,而且组内方差均为0.866,故任何两组的比较均可用LSD0.05 及LSD0.01。
在进行LSD0.05 及LSD0.01比较时各组间差数 > LSD0.01,说明两地间差异极显著,标以不同的大写字母;LSD0.01 >各组间差数>LSD0.05 ,说明两地间差异显著,标以不同的小写字母;51.14071455.53022=⨯==nk T C 7.18651.1407121.142582=-=-=∑C x SS T C T n SS i t -=∑2171.17351.14071)4.916.1094.126(41222=-+++⨯= t T e SS SS SS -=43.43471.1732===tt t df SS s 866.01599.122===e e e df SS s 15.50866.043.4322===e t s s F平均数多重比较表结果表明,东北与其它地区,内蒙古与安徽、贵州,河北与贵州黄鼬冬季针毛长度差异均达到极显著水平,安徽与贵州差异达到显著水平,而内蒙古与河北、河北与安徽差异不显著。
方差分析之多重比较目前对于均数的多重比较的方法较多,例如SPSS软件共提供18种均数的多重比较的方法。
对于均数多重比较,当资料满足正态性方差齐性时,可采用的比较方法有LSD法、Bonferroni法、Sidak法、Scheffe法、R-E-G-W F法、R-E-G-W Q法、S-N-K法、Tukey法、Tukey-b法、Duncan法、Hochberg GT2法、Gabriel法、Waller Duncan法、Dunnett法;当资料满足正态性但不符合方差齐性时,可采用Tamhane T2法、Dunnett T3、Games-Howell法、Dunnett C法。
1.常见的多重比较方法介绍1.1 LSD法原理:LSD与独立样本t检验非常相近,主要差别在于LSD法在首先满足F检验达到显著的基础上,将F检验的误差均方作为合并方差。
优点:在ANOVA中F检验显著时,LSD方法是检验效率最高的多重比较方法.缺点:①涉及过多的要比较均数对;②犯I型错误的概率较高;③这种方法只控制了每次比较犯I型错误概率,没有对总犯I型错误概率进行控制。
1.2 Bonferroni法原理:利用Bonferroni不等式来控制多次比较的总I型错误,Bonferroni不等式是指一个或多个事件发生的总概率不高于这些事件各自发生概率的加和。
通过将每次检验的α设置为总α除以检验次数,从而控制总α。
优点:用途最广,几乎可用于任何多重比较的情形,包括组间例数相等或不等、成对两两比较或综合多重比较等。
缺点:会增加犯Ⅱ型错误的概率。
1.3 Sidak法原理:基本思路与Bonferroni法接近,只是在调整仅值时采用不同的策略。
若控制单次比较犯I型错误的概率为αpc,一次比较不犯I型错误的概率为1-αpc,n次比较均不犯I型错误的概率为(1-αpc)n,则n次比较总的犯I型错误的概率为1-(1-αpc)n。
优点:调整多重比较的显著性水平,提供比Bonferroni 更严密的边界。
用SPSS进行单因素方差分析和多重比较在SPSS中进行单因素方差分析和多重比较可以帮助研究人员分析各组之间的差异,并确定是否存在显著性差异。
本文将详细介绍如何使用SPSS进行单因素方差分析和多重比较。
一、单因素方差分析1.数据准备首先,将数据导入SPSS软件。
确保每个观测值都位于独立的行中,并且将每个因素作为一个变量列。
确保每个变量的测量水平正确设置。
对于要进行单因素方差分析的变量,应该是连续型变量。
2.描述性统计在执行方差分析之前,我们需要进行描述性统计,以了解每个组的均值、标准差和样本数量。
在SPSS中,可以通过选择“统计”菜单,然后选择“描述统计”来执行描述性统计。
在弹出的对话框中,选择想要分析的变量,并选择“均值”和“标准差”。
3.单因素方差分析要进行单因素方差分析,在SPSS中选择“分析”菜单,然后选择“一元方差分析”。
在弹出的对话框中,将要分析的变量移入“因素”框中。
然后,点击“选项”按钮,选择想要输出的结果,如方差分析表和均值表。
最后,点击“确定”执行单因素方差分析。
4.结果解读方差分析表提供了重要的统计信息,包括组间和组内的平方和、自由度、均方、F值和p值。
其中,F值表示组间变异性和组内变异性的比值。
p值表示在原假设下观察到的差异是否显著。
如果p值小于设定的显著性水平(通常为0.05),则可以拒绝原假设,即存在显著差异。
二、多重比较当在单因素方差分析中发现存在显著组间差异时,下一步是进行多重比较,以确定哪些组之间存在显著差异。
1.多重比较检验在SPSS中,可以使用多种方法进行多重比较检验,如Tukey HSD、Bonferroni、LSD等。
这些方法可以通过选择“分析”菜单,然后选择“比较手段”来执行。
在弹出的对话框中,选择要进行比较的变量和方法。
点击“确定”执行多重比较检验。
2.结果解读多重比较结果表提供了各组之间的均值差异估计、标准误差、置信区间和p值。
根据p值,可以确定哪些组之间存在显著差异。
报告中的ANOVA分析和多重比较引言:ANOVA(方差分析)是一种经典的统计方法,用于比较两个或多个组别之间的差异。
在报告中使用ANOVA进行数据分析时,为了更全面地揭示结果,通常需要进行多重比较。
本文将就报告中使用ANOVA分析和多重比较方法的相关问题展开论述,包括效应大小的解读、假设检验的细节、多重比较的必要性以及选择合适的多重比较方法。
一、效应大小的解读在报告中,除了给出显著性检验的结果外,也需要对实验效应的大小进行解读。
效应大小可以通过η²或ω²指标来衡量,它们分别表示了解释变量(组别)对因变量的解释程度。
η²指标的取值范围是0到1,表示了变量解释的百分比;而ω²指标的取值范围是-1到1,它修正了样本偏差的影响。
二、假设检验的细节在报告中呈现ANOVA分析结果时,需要清晰地陈述研究者所采用的假设以及相应的检验方法。
具体而言,首先要明确零假设(H0)和备择假设(H1),以及选择合适的统计检验(如一元ANOVA、双因素ANOVA等)。
此外,还需提及所使用的显著性水平和效应大小指标。
三、多重比较的必要性多重比较是为了进一步分析差异显著的组别之间的具体差异。
在进行多重比较时,可以利用事前比较和事后比较两种方法。
事前比较是在进行方差分析之前,对组别进行两两比较;而事后比较是在方差分析结果显著时,对不同组别之间进行比较。
四、多重比较的方法选择在报告中选择合适的多重比较方法非常重要。
有多种方法可以选择,包括Bonferroni校正、Tukey HSD、Scheffe法等。
具体选择哪种方法取决于研究者的需求和实验设计的特点。
文章中可以简要介绍每种方法的原理和应用场景,以帮助读者选择适合自己研究的方法。
五、多重比较的结果描述在报告中对进行多重比较的结果进行准确和全面的描述至关重要。
可以使用表格或图表来展示多个组别之间的差异,同时注明置信区间和显著性水平等信息。
此外,还可以使用文字对发现的差异进行解释和解读。
常用的多重比较方法
在数据分析和统计学中,常用的多重比较方法包括以下几种:
1. 方差分析中的多重比较方法:用于比较多个组或处理之间的均值差异,包括Tukey's HSD(Tukey's Honestly Significant Difference)、Bonferroni校正和Scheffé法等。
2. 多重t检验:用于比较两个或多个样本均值是否有显著差异,通常用于独立样本或配对样本之间的比较。
3. 多重相关分析:用于比较多个变量之间的相关性,包括Pearson相关系数、Spearman等级相关系数等。
4. 多重回归分析:用于比较多个自变量对因变量的影响程度,可以进行变量选择和模型比较。
5. 多重比例比较:用于比较不同组别之间的比例差异,包括卡方检验和Fisher 精确检验等。
以上仅列举了常见的一些多重比较方法,具体选择何种方法应根据研究问题、数据类型和假设情况等综合考虑。
此外,需要注意的是,在进行多重比较时,需要
进行多重校正,以控制因进行多个比较而增加的类型I错误的风险。
方差分析(ANOV A)、多重比较(LSD Duncan)、q检验(student)实际研究中,经常需要比较两组以上样本均数的差别,这时不能使用t检验方法作两两间的比较(如有人对四组均数的比较,作6次两两间的t检验),这势必增加两类错误的可能性(如原先a定为0.05,这样作多次的t检验将使最终推断时的a>0.05)。
故对于两组以上的均数比较,必须使用方差分析的方法,当然方差分析方法亦适用于两组均数的比较。
方差分析可调用此过程可完成。
Least-significant difference(LSD):最小显著差法。
a可指定0~1之间任何显著性水平,默认值为0.05;Bonferroni:Bonferroni修正差别检验法。
a可指定0~1之间任何显著性水平,默认值为0.05;Duncan’s multiple range test:Duncan多范围检验。
只能指定a为0.05或0.01或0.1,默认值为0.05;Student-Newman-Keuls:Student-Newman-Keuls检验,简称N-K检验,亦即q 检验。
a只能为0.05;(以前都以SNK法最为常用,但研究表明,当两两比较的次数极多时,该方法的假阳性非常高,最终可以达到100%。
因此比较次数较多时,包括SPSS和SAS在内的权威统计软件都不再推荐使用此法。
) Tukey’s honestly significant difference:Tukey显著性检验。
a只能为0.05;Tukey’s b:Tukey另一种显著性检验。
a只能为0.05;Scheffe:Scheffe差别检验法。
a可指定0~1之间任何显著性水平,默认值为0.05。
根据对相关研究的检索结果,除了参照所研究领域的惯例外,一般可以参照如下标准:如果存在明确的对照组,要进行的是验证性研究,即计划好的某两个或几个组间(和对照组)的比较,宜用Bonferoni(LSD)法;若需要进行的是多个平均数间的两两比较(探索性研究),且各组样本数相等,宜用Tukey法,其他情况宜用Scheffe法。
一、均数间的多重比较(Multipie Comparison)方法的选择:1、如两个均数的比较是独立的,或者虽有多个样本的均数,但事先已计划好要做某几对均数的比较,则不管方差分析的结果如何,均应进行比较,一般采用LSD法或Bonferroni 法;2、如果事先未计划进行多重比较,在方差分析得到有统计意义的F检验值后,可以利用多重比较进行探索性分析,此时比较方法的选择要根据研究目的和样本的性质。
比如,需要进行多个实验组和一个对照组比较时,可采用Dunnett法;如需要进行任意两组之间的比较而各组样本的容量又相同时,可采用Tukey法;若各组样本的容量不相同时,可采用Scheffe法;若事先未计划进行多重比较,且方差分析结果未有显著差别,则不应进行多重比较;3、有时候研究者事先有对特定几组均值比较的考虑,这时可以不用Post hoc进行几乎所有均值组合的两两比较,而是通过Contrasts中相应的设置来实现;4、最后需要注意的是,如果组数较少,如3组、4组,各种比较方法得到的结果差别不会很大;如果比较的组数很多,则要慎重选择两两均值比较的方法。
5、LSD法:即最小显著差法;是最简单的比较方法之一,它其实只是t检验的一种简单变形,未对检验水准做任何校正,只是在标准误计算上充分利用了样本信息。
它一般用于计划好的多重比较;6、Sidak法:它是在LSD法上加入了Sidak校正,通过校正降低每次两两比较的一类错误率,达到整个比较最终甲类错误率为α的目的;7、Bonferroni法:它是Bonferroni校正在LSD法上的应用。
8、Scheffe法:它实质上是对多组均数间的线性组合是否为0做假设检验(即所谓的Contrasts),多用于各组样本容量不等时的比较;9、Dunnett法:常用于多个实验组与一个对照组间的比较,因此使用此法时,应当指定对照组;10、S-N-K法:它是根据预先制定的准则将各组均数分为多个子集,然后利用Studentized Range分布进行假设检验,并根据均数的个数调整总的犯一类错误的概率不超过α;11、Tukey法:这种方法要求各组样本容量相同,它也是利用Studentized Range分布进行各组均数间的比较,与S-N-K法不同,它是控制所有比较中最大的一类错误(即甲类错误)的概率不超过α;12、Duncan法:思路与S-N-K法相似,只不过检验统计量服从的是Duncan′s MultipleRange分布;13、还需注意的是,SPSS同时给出了方差不齐性时的4种检验方法,但从接受程度和稳定性看,方差不齐性时尽量不做多重比较。