当前位置:文档之家› DLQ-02电缆故障定位高压电桥

DLQ-02电缆故障定位高压电桥

DLQ-02电缆故障定位高压电桥
DLQ-02电缆故障定位高压电桥

电力电缆故障原因及其普通地检测方法(超全讲解)

电力电缆故障原因及常用的检测方法(超全讲解)盲目的进行电缆故障查找工作往往费时费力而且无法准确的进行故障定点判断,这不是因为电缆故障种类的复杂造成,而是因为电缆周边环境所造成的。 1、电力电缆基础理论 我们目前采用的电缆故障查找方法离不开:故障诊断、粗测定点与精确定点三个步骤。但是往往在实际测试中能够确定故障类型,做到粗测定点,但是却无法真正精确定点进行开挖。这种原因的形成是因为客观存在的我们听得到的因素(公路或施工处振动噪声过大等原因)和看不到的因素(电缆走向、电缆埋设深度过深、故障点在积水中、电缆施工时余留不规范等原因)所造成的。因此在电缆故障查找前通过电缆施工、运行管理人员明确电缆长度、电缆走向、周边特殊情况、中间头位置、周边是否存在施工等要因是电缆故障查找前不可或缺的准备工作。 2、电缆故障原因及测量仪器 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

注:(HZ-TC电缆故障测试仪) 电缆故障测试仪是我公司根据用户要求,从现场使用考虑,精心设计和制造的全新一代便携式电缆故障测试仪器。它秉承我们一贯高科技、高精度、高质量的宗旨,将电缆测试水平提高到一个新境界。 电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。 电缆寻迹及故障定点是由路径仪、定点仪、T型探头、A字架、听筒等组成。本仪器是电缆故障定位测试的专用仪表,适用测试对象为具有金属导体(线对、护层、屏蔽层)的各种电缆。其主要功能为对地绝缘不良点的定位测试,线缆路径的探测以及线缆埋深的测试。

高压电桥法在电缆故障定位中应用的要点

高压电桥法在电缆故障定位中应用的要点摘要:本文简述了高压电桥定位的原理,与波发射法(TDR)的比较,及二种电桥的特点。介绍了电桥在电缆主绝缘及高压电缆金属护套缺陷点的使用经验。 关键词:电缆故障高压电桥电缆主绝缘高阻定位多点缺陷点定位相间击穿定位 一.概述 供电系统一直认为电缆定位比较困难,有三分仪器,七分找的说法。随着仪表的进步,定位更为方便。实践中,选择合理的仪器及定位经验仍然很重要。 通常,电力电缆故障点定位分四步进行 1.判断故障点类型 2.选择合适方法及相应的仪器 3.粗测定位 4.精确定点 粗测定位方法有电桥法及波反射法二种。目前波反射法定位仪较普及。其缺点为:部分仪器现场连线复杂,有定位盲区。波形不典型时,要求定位人员熟练掌握仪器,并富有经验才能分辩脉冲波形。有几种电缆故障很难用波反射法查找:如,高压电缆护套绝缘缺陷点,钢带铠装低压力缆,PVC 电缆,没有反射波,无法定位。短电缆,无法定位。一些高阻击穿点,在冲击电压下无法击穿,也难以定位。 利用故障点两侧的电缆线芯电阻与比例电阻构成Murray电桥,是传统,经典的电缆故障定位方法,其应用几乎与电缆使用同步,有上百年的历史。定位电桥设备价格低,操作简单,我国过去曾普遍使用。而目前大量应用交联聚乙烯电缆,击穿后难以形成导电区,击穿点电阻很高,甚至能耐高电压,呈闪烙型击穿。

在国内保有量最大的QF2型电桥,额定试验电压只有500V,无法对高阻故障定位。又因为电子技术的进步,波反射法定位得到了普及,使电桥法的应用逐步减少,不为新的电缆用户所知,因此,电桥法几乎被遗忘。 最近,我们采用上海慧东电气设备有限公司研制的GZD型高压电桥,该设备内含高频高压恒流源,解决了电源对电桥高灵敏放大的干扰难题,电源与电桥合为一体。测量电缆为专用的高压电缆,采用四端法电阻测量原理,定位精度高。电桥臵于高压侧,而操作钮安全接地。彻底解决了电桥法用于高阻定位的局限性,使电桥法无盲区、精确、方便的特点得以发挥。本文总结了一些应用GZD型高压电桥定位电缆绝缘及护套缺陷点的经验,供广大同行参考。 二.原理与设备 电桥法的依据是线芯(或屏蔽层)电阻均匀,与长度成比例。下图1为典型用法: 试样为三芯钢带铠装电力电缆,长度L,B相 线芯对钢带在L1处击穿。借助于A相线芯作为辅 助线。使用低阻值连线短路N、Y 两端线芯。L1段 电缆线芯电阻为R1 ,L2段电缆及A相电缆线芯

电阻应变计在电桥中的接线方法

测量电桥的特性及应用 一、测量电桥的基本特性和温度补偿 在结构强度的实验分析中,构件表面的应变测量主要是使用应变电测法,即将电阻应变计粘贴在构件表面,并正确地接入测量电路,从而得到构件表面的应变。应变电测法的基本测量电路是电桥。测量电桥是由应变计作为桥臂,作用是将应变计的电阻变化转化为电压或电流信号。在测量时,将应变计粘贴在各种被测试件上,组成电桥,并利用电桥的特性提高读数应变的数值,或从复杂的受力构件中测出某一内力分量(如轴力、弯矩等)。 1. 测量电桥的基本特性 设电桥的四个桥臂接上应变计,电阻分别为1234R R R R R ====(见图一),如果桥臂电阻改变1234R R R R ????、、、,则输出电压为: 0312412344i u R R R R u R R R R ?? ????= --+ ??? (1) 式中:0u 为电桥的桥压,i u 为电桥的输出电压。若四个桥臂上的应变计的灵敏系数均为K ,即 i i R K R ε?=,则输出电压: ()012344 i u u K εεεε=--+ (2) 式中:1234εεεε、、、分别为应变计1234R R R R 、、、所感受的应变值。 应变仪的输出应变为:123404i d u u K εεεεε= =--+ (3) 由式(3)可见,电桥有下列特性: (1) 两相邻桥臂上应变计的应变相减。即应变同号时,输出应变为两邻桥臂应变之 图一 电桥

差;异号时为两相邻桥臂应变之和。 (2) 两相对桥臂上应变计的应变相加。即应变同号时,输出应变为两相对桥臂应变之和;异号时为两相对桥臂应变之差。 应变仪的输出应变实际上就是读数应变,所以合理地、巧妙地利用电桥特性,可以增大读数应变,并且可测出复杂受力杆件中的内力分量。 2. 温度的影响与补偿 在测量时,被测构件和所粘贴的应变计的工作环境是具有一定温度的。当温度发生变化时,应变计将产生热输出t ε。显然,热输出t ε不包含结构因受载而产生的应变,即使结构处在不承载且无约束状态,t ε仍然存在。因此,当结构承受载荷时,这个应变就会与由载荷作用而产生的应变叠加在一起的输出,使测量到的输出应变中包含了因环境温度变化而引起的应变t ε,因而必然对测量结果产生影响。温度引起的应变t ε的大小可以与构件的实际应变相当,例如,当采用镍铬丝的电阻应变计粘贴在钢构件上进行应变测量时,如果温度升高 1℃,t ε即可达 70με 。因此,在应变计电测中,必须消除应变t ε,以排除温度的影响, 这是一个十分重要的问题。测量应变计既传递被测构件的机械应变,又传递环境温度变化引起的应变。根据式(3),如果将两个应变计接入电桥的相邻桥臂,或将四个应变计分别接入电桥的四个桥臂,只要每一个应变计的t ε相等,即要求应变计相同,被测构件材料相同,所处温度场相同,则电桥输出中就消除了t ε的影响。这就是桥路补偿法,或称为温度补偿片法。桥路补偿法可分为两种,下面作简单介绍。 补偿块补偿法 此方法是准备一个其材料与被测构件相同,但不受外力的补偿块,并将它置于构件被测点附近,使补偿片与工作片处于同一温度场中,如图二所示。 在构件被测点处粘贴电阻应变计1R ,称工作应变计(简称工作片),接入电桥的 AB 桥臂,另外在补偿块上粘贴一个与工作应变计规格相同的电阻应变计2R 称温度补偿应变计 (简 图二

电缆故障测距方法.

电缆故障测距方法 在线测距方法 故障定位技术的发展主要经历了三个阶段:模拟式定位技术、单端数字式定位技术、双端定位技术。早期的故障定位装置是机电式或静态电子仪器构成的模拟式装置。后期的故障录波器是以光电转化为原理、以胶片为记录载体、根据故障录波仪记录的电信号来粗略估计故障点位置。测试技术的出现以及计算机技术和通信技术都加速了故障定位技术的发展。这个阶段出现了许多利用计算机进行故障定位的方法,其特点是采用单端信息,应用计算机的超强运算能力对各自算法进行修正,求得故障距离。有些算法已应用到实际故障定位装置中,不足之处是无法克服故障电阻对故障定位精度的影响。 其中,单端阻抗法只用到线路一侧的电压、电流测量值,由于其理论上无法克服过渡电阻的影响,需要在测距算法中做一定的假设,所以其测量精度在很多情况下难以保证,但是有着造价低,不受通信因数的限制的优点,在实际应用中有着一定的应用需求。单纯依靠单端信息不能有效地消除因素包括:负荷电流;系统运行阻抗;故障点过渡电阻,这自然影响到测距的精度。 单端行波法 是基于单端信息量的一种测距方法,其中单端行波测距的关键是准确求出行波第一次到达监测端与其从故障点反射回到监测端的时间差,并包括故障行波分量的提取。常用的行波单端故障定位算法有求导数法、相关法、匹配滤波器法和主频率法。由于行波在特征阻抗变化处的折反射情况比较复杂(如行波到达故障点后会发生反射也会通过故障点折射到对侧母线上去),非故障线路不是“无限长”,由测量点折射过去的行波分量经一定时间后,又会从测量点折射回故障线路等,使行波分析和利用单端行波精确故障定位有较大困难。 双端行波测距 是通过计算故障行波到达线路两端的时间差来计算故障位置,其测距精度基本不受线路的故障位置、故障类型、线路长度、接地电阻等因素的影响。双端行波法的关键是准确记录下电流或电压行波到达线路两端的时间,误差应在几微秒以内,以保证故障定位误差在几百米内,行波在线路上的传播速度近似为300m/μs,1μs 时间误差对应约150m 的测距误差。双端信号要求严格的同步,随着GPS对民用开放,使得双端故障定位法迅速发展。这种定位方法的定位精度高,已成为近几年来故障定位方法研究的热点。 电缆故障定位技术经过国内外专家学者几十年的共同努力,已取得了

如何快速测试定位电缆故障点

要想精确定位电缆故障点,充分利用和合理选择使用电缆故障测试仪,也是提高效率赢得时间必不可少的条件,目前国内普遍使用电缆故障仪的采用高压冲击法。 高压冲击法的原理为:由调压器调压使升压器产生高压,经电阻限流,经二极管整流为电容充电,当电容电压上升到放电间隙放电电压时,间隙放电向故障电缆释放冲击电流,电流经过故障点产生声波,利用声音放大器寻找故障点。这种方法十分精确有效,关键的是要故障点声音足够大,频率适当。要在故障点产生足够大的声音,关键取决于冲击电流的大小。而冲击电流的大小,取决于电容器C的容量和放电间隙的大小。间隙加大放电电压增高,但是如果电压太高,无论对电缆还是设备都是一种威协。所以我们在设备和元件选用控制时一定要计算好,不能超过它的额定值。 当高压冲击法放电后,我们就可以通过声测法、声磁同步检测法和音频感应法进行电缆故障的精确定点。这是因为在进行电缆故障测距时,无论采用哪种仪器和测量方法,难免有误差,为减少开挖,测距后必须进行精确定点,通常使用的方法为: (一)声测法 目前在国内是常用的定点方法,故障测寻时给故障电缆加上一个幅度足够高的冲击电压,故障点发生闪络放电的同时会产生相当大的放电声并传至地表面,利用这种现象来定点可以准确地找出故障点。 (二)声磁同步检测法 在监听到声音信号的同时,利用磁性天线接收脉冲磁场信号,并用电表或光电指示。如果耳机听到的声音与电表指针的摆动或光电信号同步,即可判断该声音是由故障点放电产生的,故障点就在附近。

(三)音频感应法 一般用于探测故障电阻小于10KΩ的电阻故障。用音频信号发生器向待测电缆注入音频电流,在地面上用探头沿被测电缆路径接收电磁场信号并放大,再送入耳机或指示仪表指示值的大小而定出故障点的位置。 在实测中,以上三种方法可以结合使用,大大提高电缆故障精确定点的效率。需要注意的是声磁同步检测法抗无线声波干扰能力差,这需要在实际中根据现场情况校正接收频率。 结合以上分析,我们可总结出以下查找故障的经验: 1、当电缆在运行中发生故障,可将电缆一端短接另一端用万用表可迅速判断,电缆是否开路。 2、如果故障是高阻,使用闪测法就可以粗测故障范围。 3、优先选择用脉冲法粗测低阻或开路故障电缆的故障范围。

利用电桥法测量电容

利用电桥法测量电容 与在水箱里储水的方式完全一样,电荷也可以被储存在一个被称为电容的装置里。在实际应用中,会出于不同的原因而利用电容器产生短而强的电流脉冲。尽管实际中应用的电容器有各种存在形式,但有一点是相同的,即它们都是由2块导电板或被绝缘体隔开的2块板子构成的。如果这2块板子之间有电势差,那么它们会带上等量异号的电荷,携带的电荷量与电压成正比。这是电容器的典型特征,这个恒定不变的比值即是电容器的电容。本实验的目的是探究电桥法测量电容并验证串、并联电容器的电容计算公式。 1 实验原理 电容器主要是由2块金属板构成的,它们用被称为电介质的一种绝缘材料隔开。这样的结构安排之所以能够储存电荷,是因为如果将电压源与2块板子相连,那么正电荷就会从一块板子流向另一块,同时使那块板子带上负电荷,此过程直到电介质内的磁场足够强以致阻止电流的进一步流动时为止。这时,一定量的电荷(一端为正,另一端为负)被分别储存在2块板子上,电势差等于它们之间的电源电压。电荷与电势差的比值是一个常数,称为电容器的电容,因此,C=Q/V。公式中,C表示电容,单位是法拉;Q 表示电荷,单位是库伦;V表示电势差,单位是伏特。值得注意的是:电容的单位实际上是库伦的平方/牛顿米,但它还是被称为法

拉,一方面是为了纪念迈克尔法拉第,另一方面是为了简洁方便。因为法拉这个单位太大,在现实中应用得很少,所以常常会用到微法拉(1法拉的百万分之一),也会经常用到皮法拉(亦称微微法拉,10-12F)。 当把电容器连接到交流电路中时,交替地充电和放电使电容器看起来像是通上交流电。交流电压和通过的电流之间的线性关系很像欧姆定律中电阻的特性。电压和电流之间的比值Xc被称作电容器的容抗。所以,可以用类似测电阻的方法来测容抗。然而,容抗是与电容有关的,即:Xc=1/(2×π×f×C)。公式中,Xc 表示电容的容抗值,单位是欧姆;C是电容值,单位是前面提到的法拉;f是交流电的频率,单位是转/秒(或赫兹)。所以容抗不同于阻抗,它取决于频率,当频率接近于0时,容抗趋向无穷大。这表明一个事实,即在直流电路中(f=0),电容器实际上是开路的。但是对于特定频率的交流电,电容器在许多方面就像电阻器。因此可以采用类似于惠斯登电桥电路(见图1a)的方法进行电容的测量。所不同的只是用电容器替代桥臂一侧的电阻器,用交流电源(本实验采用信号发生器)替代电池,用一个合适的交流电检测器(该实验使用耳机)替代检流计(图1b)。与惠斯登桥式电路比较,若用C1和C2替代R1和R2,那么用容抗 Xc1=1/(2×π×f×C1),Xc2=1/(2×π×f×C2)分别替代惠斯登桥式电路中对应的电阻,其等式变为 (2×π×f×C2)/(2×π×f×C1)=C2/C1=R3/R4。

电缆故障定位仪基本原理

电缆故障定位仪基本原理 根据故障的探测原理,当电缆故障定位仪处于闪络触发方式时,故障点瞬时击穿放电所形成的闪络回波是随机的单次瞬态波形,因此测试仪器应具备存储示波器的功能,可捕获和显示单次瞬态波形。本仪器采用数字存储技术,利用高速A/D 转换器采样,将输入的瞬态模拟信号实时地转换成数字信号,存储在高速存储器中,经CPU 微处理器处理后,送至LCD 显示控制电路,变为时序点阵信息,于是在LCD 屏幕上显示当前采样的波形参数。 当仪器处于脉冲触发方式时,仪器按一定周期发出探测脉冲加入被测电缆和输入电路,即时启动A/D 工作,其采样、存储、处理和显示与前述过程相同。LCD 显示屏上应有反射回波。 仪器的组成 HT-TC 电缆故障测试仪是以微处理器为核心,控制信号的发射、接收及数字化处理过程。仪器的工作原理方框图如图6所示。 微处理器完成的数字处理任务包括:数据的采集、储存、数字滤波、光标移动、距离计算、图形比较、图像的比例扩展,直到送LCD 显示。也可根据需要由通讯口与PC 机通讯。 脉冲发生器是根据微处理器送来的编码信号,自动形成一定宽度的逻辑脉冲。此脉冲经微处理器 脉冲发生器 高速A/D 存储器 电 源 输入电路 键盘 被测电缆 LCD 液晶显示器 图6 工作原理方框图

发射电路转换成高幅值的发射脉冲,送至被测电缆上。 高速A/D发生器是将被测电缆上返回的信号经输入电路送高速A/D采样电路转换成数字信号,最后送微处理器进行处理。 键盘是人机对话的窗口,操作人员可根据测试需要通过键盘将命令输入给计算机,然后由计算机控制仪器完成某一测试功能。 面板控制机构和按键菜单的作用 1、控制机构 1)触发:供选择触发工作方式用。按下开关(位置)为闪络法工作方式。在使用脉冲法测试时,开关置于位置。 2)输出:仪器输出线连接被测电缆的测试端。 3)充电:仪器使用直流蓄电池组,若仪器显示电量不足,插入电源充电指示灯亮即可。 2、按键作用说明 1)“开、关”键:控制仪器电源开启/关断。按下此键,仪器电源接通,显示屏将显示工作视窗。 2)“采样”键:按键向被测线路上发射脉冲,每按一次,仪器就发射一次脉冲并进行采样,若按下三秒钟,仪器则连续发射脉冲,只有当其它键按下时才停止。 3)“??”键:具有两种作用: 仪器测试功能时,为活动光标左右移动操作。 仪器菜单功能时,为左、右移动选择菜单项操作。 4)“+○—”键:LCD液晶显示屏对比度调节。 3、菜单功能的作用及操作

电缆故障定位系统使用说明书

DPD-2003 电缆故障定位系统 使 用 说 明 书 上海蓝波高电压技术设备有限公司

!安全警告 ●使用局部放电检测分析系统进行局部放电试验的工作人员必须是 具有“高压试验上岗证”的专业人员。 ●使用本仪器请用户必须按《电力安规》168条规定,并在工作电 源进入试验系统前加装两个明显断开点。 ●在局放试验过程中,必须遵守有关高电压试验的安全操做规定。 ●非专业人员请勿私自拆开该设备,以免由于对该设备不熟悉而造 成不必要的人身伤害。

目录 第一章电缆故障定位系统概述。 第二章电缆故障定位的基本原理。 第三章电缆故障定位系统使用操做说明。 第四章电缆故障定位系统使用中应该注意的问题。第五章设备维护及保养注意事项。

第一章电缆故障定位系统概述。 一.概述 随着交联电缆生产线及相应的局部放电测试设备的引进,为交联电缆的生产和检测提供了基本条件,但由于目前国内电缆生产工艺、原材料及管理方面都可能存在一定的问题。生产的产品在一定程度上仍会存在缺陷。因此有必要采用一种简单而可靠的定位方法,找出电缆的故障点,加以解剖分析,改进生产工艺,可大大地节省人力物力,保证电缆的正常生产。PDSL(Partial Discharge Site Lacation)局放定位是电缆局放测试时,一旦发现局放超过标准规定数值后,为减少工厂经济损失、分析电缆生产工艺缺陷所进行的一项工作。 本系统采用高通五阶采样线路进行局放信号采入,利用行波原理进行故障定位,因此不是所有的局放超标的电缆均能利用这套系统进行定位。只能对那些脉冲式放电进行故障定位,对连续式放电或多点放电定位比较困难。 第二章电缆故障定位的基本原理。 一.基本原理 电缆中的局部放电均出现在第一和第三象限,每次放电时间约持续十几个纳秒。由于采样线路的积分和整形,最后在示波器上得到的每个脉冲的持续时间约100ns左右。放电脉冲在电缆中是以电磁波的速度传输的,每个微秒约运行160~170米。我们利用电缆故障点的一次放电,采用行波法就可以定出故障点的位置,其简单原理如下:如图(1)所示,有一根长为L的电缆,我们称测量端为近端,相应电缆的另一端为远端。

如何利用电桥测试实际电缆中的故障

电阻电桥基础:第一部分 摘要:利用电桥电路精确测量电阻及其它模拟量的历史已经很久远。本文讲述电桥电路的基础并演示如何在实际环境中利用电桥电路进行精确测量,文章详细介绍了电桥电路应用中的一些关键问题,比如噪声、失调电压和失调电压漂移、共模电压以及激励电压,还介绍了如何连接电桥与高精度模/数转换器(ADC)以及获得最高ADC性能的技巧。 概述 惠斯通电桥在电子学发展的早期用来精确测量电阻值,无需精确的电压基准或高阻仪表。实际应用中,电阻电桥很少按照最初的目的使用,而是广泛用于传感器检测领域。本文分析了电桥电路受欢迎的原因,并讨论在测量电桥输出时的一些关键因素。 注意:本文分两部分,第一部分回顾了基本的电桥架构,并将重点放在低输出信号的电桥电路,比如导线或金属箔应变计。第二部分,应用笔记3545介绍使用硅应变仪的高输出信号电桥。 基本的电桥配置 图1是基本的惠斯通电桥,图中电桥输出Vo是Vo+和Vo-之间的差分电压。使用传感器时,随着待测参数的不同,一个或多个电阻的阻值会发生改变。阻值的改变会引起输出电压的变化,式1给出了输出电压Vo, 它是激励电压和电桥所有电阻的函数。 图1.基本惠斯通电桥框图 式1:Vo=Ve(R2/(R1+R2)-R3/(R3+R4)) 式1看起来比较复杂,但对于大部分电桥应用可以简化。当Vo+和Vo-等于Ve的1/2时,电桥输出对电阻的改变非常敏感。所有四个电阻采用同样的标称值R,可以大大简化上述公式。待测量引起的阻值变化由R 的增量或dR表示。带dR项的电阻称为“有源”电阻。在下面四种情况下,所有电阻具有同样的标称值R,1个、2个或4个电阻为有源电阻或带有dR项的电阻。推导这些公式时,dR假定为正值。如果实际阻值减小,则用-dR表示。在下列特殊情况下,所有有源电阻具有相同的dR值。

电桥电缆故障测试仪

电桥电缆故障测试仪基于MURRAY电桥原理而设计,适用于敷设后各种电线电缆的击穿点(低阻、高阻及闪络型击穿)及没有击穿但绝缘电阻偏低点的定位:如用兆欧表发现电缆阻值较低,但运行电压下不击穿的绝缘缺陷点。当然,也可用于电缆厂内各种线缆的缺陷点定位。粗测电缆故障定位方法有电桥法及波反射法二种。目前波反射法定位仪较普及。其缺点为:部分仪器现场连线复杂,有定位盲区。波形不典型时,要求定位人员熟练掌握仪器,并富有经验才能分辩脉冲波形。有几种电缆故障很难用波反射法查找:如,高压电缆护套绝缘缺陷点,钢带铠装低压力缆,PVC 电缆,没有反射波,无法定位。短电缆,无法定位。一些高阻击穿点,在冲击电压下无法击穿,也难以定位。高压电桥电缆故障测试仪内含高频高压恒流源,解决了电源对电桥高灵敏放大的干扰难题,电源与电桥合为一体。测量电缆为专用的高压电缆,采用四端法电阻测量原理,定位精度高。电桥置于高压侧,而操作钮安全接地。彻底解决了电桥法用于高阻定位的局限性,使电桥法无盲区、精确、方便的特点得以发挥。与波反射法相比,高压电桥电缆故障测试仪特别适用于: 1.敷设后电缆的高阻击穿点,特别是难以烧成低阻的线性高阻击穿点,如电缆中间接头的线性高阻击穿(这种主要是由于电缆接头制作工艺不过关造成的。施加高压时只泄露爬弧不击穿放电)。 2. 高压电桥平衡法没有测试盲区,用于判断短电缆及靠近电缆端头的击穿点。 3. 高压电桥法仅仅要求电缆相线电阻的均匀性即可进行测量。而行波传输特性不好的电缆,如介质损耗很大的PVC低压电缆; ◎设备采用高频高压开关电源构成高压恒流源,电压高,电流稳定,体积小,重量轻。 ◎采用高灵敏度放大器及检流计指示平衡,与比例电位器构成平衡电桥,整体置于高电位。面板上的操作钮处于低电位,通过绝缘杆操作电桥。

电缆故障排除原理

摘要:本文主要针对电力电缆的常见故障,从结构设计,人为因素,运行环境等方面进行分析,总结了电力电缆故障原因。并介绍了常用的电力电缆故障查找方法的原理、优缺点及适用范围,针对不同的电力电缆故障采用不同的方法以便快速、准确、方便查找故障,本文结合工作实际,以实际的电力电缆故障来说明各个各个电缆故障查找方法的适用性,具有一定的参考价值。 0 引言 电力电缆作为电力系统的重要组成部份,它的安全运行具有重要意义。一旦发生故障后,如何在最短时间内快速找出故障点一直电缆行业十分注重的研究课题。本文总结了多年来从事电缆运行维护的经验,对电缆故障原因进行了分析,重点介绍几种常用探测方法,并对各方法的优缺点和适用范围进行比较,以实际的例子进行分析,具有一定的参考意义。 1 电缆故障分类 电缆故障可概括为接地、短路、断线三类;如以故障点绝缘特征分类又可分 :1) 开路故障:电缆线芯连续性受到破坏,形成断线。 2 ) 低阻故障:绝缘电阻一般在几百欧姆以下。 3) 高阻故障:用兆欧表测量电缆绝缘电阻低于正常值但高于几百欧姆的故障。 2 形成电缆故障的原因分析 致使电缆发生故障的原因是多方面的,包括电缆运行环境,人为因素,施工质量等,现将常见的几种主要原因归纳如下。 2 .1 外力破坏 09年厦门电力电缆运行情况分析:10 kV电缆故障56次,其中外破28起,占50%。近几年来由于城市建设工程项目遍及各个角落,因施工单位在不明地下管线情况下进行地下管线施工或有些素质不高施工队的野蛮施工,是造成电缆受外力破坏的主要原因。

2 .2 电缆安装、产品质量不合格 09年厦门10kV电缆附件及电缆施工工艺不良造成电缆故障6起,占11%。由于附件施工人员对中间接头制作安装的操作细节不够重视或现场安装工艺条件较差等原因,导致中间接头的制作出现工艺和操作缺陷,对电缆的正常运行带来安全隐患。还有就是电缆附件产品存在质量问题;因此应加强对附件安装人员工艺培训和对电缆附件产品质量的入网把关显得尤为重要。 2 . 3 机械损伤 施工队伍在电缆敷设过程中未按要求和施工规范进行,用力不当或牵引力过大,使用的敷设工具不当或野蛮施工等原因造成电缆的机械损伤,有些机械损伤很轻微,当时并未造成故障,要在数月甚至数年后故障才会暴露出来。这类故障一般表现在 0.4 k V 电缆居多。 2 .4 电缆本体故障 电缆本体故障主要有电缆制造工艺和绝缘老化两种原因。制造工艺造成的故障现在比较少了,因国内中压电缆的制造已经达到国际先进水平了。而电缆的老化现象问题还是存在的,造成电缆提前老化的原因有: 1 、电缆在长期高温或高电压作用下容易产生局部放电,引起绝缘老化而出现故障; 2 、塑料绝缘电缆因长期浸泡在水中或水分侵入,使绝缘纤维产出水解,在电场集中处形成“ 水树枝” 现象,造成绝缘击穿等现象。 3 电缆故障检测方法及实例分析 电力电缆故障查找一般按故障性质诊断、故障测距、故障定点三个步骤进行。故障性质诊断过程是对故障电缆情况做初步了解及分析,然后用兆欧表及万用表进行故障性质判别,根据不同故障性质选择不同方法进行粗测,然后再依据粗测的结果进行精确定位。电缆故障检测的方法有许多,这些方法的适应对象及检测结果也各有不同,以下将介绍电缆故障测距电桥法、低压脉冲法、冲击高压闪络法的工作原理,并以实际的例子说明方法的适用情况,并对各种方法的优缺点进行比较。

电缆绝缘在线监测及故障定位 系统

电缆绝缘在线监测及故障定位系统 上海蓝瑞电气有限公司 CIM-II电缆绝缘监测及故障定位系统 目录 一、概述...................................................................... .. (1) 二、装置介 绍 ..................................................................... . (1) 1、工作原 理 ..................................................................... ............... 1 2、功能介 绍 ..................................................................... ............... 2 3、优势介 绍 ..................................................................... ............... 3 4、技术指 标 ..................................................................... ............... 4 5、配置介 绍 ..................................................................... (4) 系统简介

一、概述 电线电缆是最常用的电力设备,同时也是出现绝缘故障概率最高的设备,由于电缆绝缘损坏直接导致线路相间短路、单相接地等重大事故,严重影响供电可靠性。当电缆发生故障时,人工寻找故障点比较困难。因此,对电缆绝缘状态进行在线监测及故障定位意义重大。 CIM-II电缆绝缘监测及故障定位系统是上海蓝瑞电气有限公司依托上海交通大学联合研制的,该系统由电缆绝缘在线监测装置和电缆故障智能测试仪组成。电缆绝缘在线监测装置以改进的介损因数法+直流分量法为主,对电缆的绝缘情况给出预警,以便及时更换电缆,当电缆线路发生故障时,装置可在线辨识故障支路。确定故障支路后,再通过电缆故障测试仪离线方式下精确定位故障点。二、装置介绍 1、工作原理 1.1电缆绝缘在线监测装置(图1) 根据国内外大量研究表明,电缆的绝缘老化过程是一个渐变的过程,通过绘制电缆介质因数的历 史变化曲线,可以看出电缆绝缘老化趋势。 其基本方法是直接测量电缆护套接地电流和电缆对地电压,通过数字信号频谱分析方法分别计算 出电缆的容性阻抗和阻性阻抗的大小,以改进的介损因数法+直流分量法分析绝缘状况,对于绝缘老 化超限报警,绝缘故障线路选择。因正常时容性电流远大于阻性电流,所以测量精度要求高,为保证 监测的准确性,装置采用了以相对偏差和阻抗变化斜率为比较对象的方法,可有效屏蔽测量误差。

电缆故障点的四种实用检测方法

电缆故障点的四种实用检测方法 1 电缆故障的种类与判断 无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力作用等原因造成故障。电缆故障可概括为接地、短路、断线三类,其故障类型主要有以下几方面: ①三芯电缆一芯或两芯接地。 ②二相芯线间短路。 ③三相芯线完全短路。 ④一相芯线断线或多相断线。 对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接地故障,用兆欧表摇测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 故障类型确定后,查找故障点并不是一件容易的事情,下面根据笔者的经验,介绍几种查找故障点的方法,供参考。 2 电缆故障点的查找方法 (1) 测声法: 所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。电路接线如图1所示,其中SYB为高压试验变压器,C为高压电容器,ZL为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。

当电容器C充电到一定电压值时,球间隙对电缆故障芯线放电,在故障处电缆芯线对绝缘层放电产生“滋、滋”的火花放电声,对于明敷设电缆凭听觉可直接查找,若为地埋电缆,则首先要确定并标明电缆走向,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到“滋、滋”放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。 (2) 电桥法: 电桥法就是用双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算出故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。

利用电桥法测量电容

利用电桥法测量电容 The latest revision on November 22, 2020

利用电桥法测量电容 与在水箱里储水的方式完全一样,电荷也可以被储存在一个被称为电容的装置里。在实际应用中,会出于不同的原因而利用电容器产生短而强的电流脉冲。尽管实际中应用的电容器有各种存在形式,但有一点是相同的,即它们都是由2块导电板或被绝缘体隔开的2块板子构成的。如果这2块板子之间有电势差,那么它们会带上等量异号的电荷,携带的电荷量与电压成正比。这是电容器的典型特征,这个恒定不变的比值即是电容器的电容。本实验的目的是探究电桥法测量电容并验证串、并联电容器的电容计算公式。 1 实验原理 电容器主要是由2块金属板构成的,它们用被称为电介质的一种绝缘材料隔开。这样的结构安排之所以能够储存电荷,是因为如果将电压源与2块板子相连,那么正电荷就会从一块板子流向另一块,同时使那块板子带上负电荷,此过程直到电介质内的磁场足够强以致阻止电流的进一步流动时为止。这时,一定量的电荷(一端为正,另一端为负)被分别储存在2块板子上,电势差等于它们之间的电源电压。电荷与电势差的比值是一个常数,称为电容器的电容,因此,C=Q/V。公式中,C表示电容,单位是法拉;Q表示电荷,单位是库伦;V表示电势差,单位是伏特。值得注意的是:电容的单位实际上是库伦的平方/牛顿米,但它还是被称

为法拉,一方面是为了纪念迈克尔法拉第,另一方面是为了简洁方便。因为法拉这个单位太大,在现实中应用得很少,所以常常会用到微法拉(1法拉的百万分之一),也会经常用到皮法拉(亦称微微法拉,10-12F)。 当把电容器连接到交流电路中时,交替地充电和放电使电容器看起来像是通上交流电。交流电压和通过的电流之间的线性关系很像欧姆定律中电阻的特性。电压和电流之间的比值Xc被称作电容器的容抗。所以,可以用类似测电阻的方法来测容抗。然而,容抗是与电容有关的,即:Xc=1/(2×π×f×C)。公式中,Xc表示电容的容抗值,单位是欧姆;C是电容值,单位是前面提到的法拉;f是交流电的频率,单位是转/秒(或赫兹)。所以容抗不同于阻抗,它取决于频率,当频率接近于0时,容抗趋向无穷大。这表明一个事实,即在直流电路中(f=0),电容器实际上是开路的。但是对于特定频率的交流电,电容器在许多方面就像电阻器。因此可以采用类似于惠斯登电桥电路(见图1a)的方法进行电容的测量。所不同的只是用电容器替代桥臂一侧的电阻器,用交流电源(本实验采用信号发生器)替代电池,用一个合适的交流电检测器(该实验使用耳机)替代检流计(图1b)。与惠斯登桥式电路比较,若用C1和C2替代R1和R2,那么用容抗 Xc1=1/(2×π×f×C1),Xc2=1/(2×π×f×C2)分别替代惠斯登桥式电路中对应的电阻,其等式变为 (2×π×f×C2)/(2×π×f×C1)=C2/C1=R3/R4。

电力电缆故障定位分析及预防 贺磊

电力电缆故障定位分析及预防贺磊 发表时间:2018-05-14T17:19:11.757Z 来源:《电力设备》2017年第34期作者:贺磊 [导读] 摘要:随着社会经济的不断发展,人们对电能的需求也越来越大,所以现代社会对电力的传输质量和安全性就有了更高的要求。(国网江苏省电力公司常州供电公司江苏常州 213003) 摘要:随着社会经济的不断发展,人们对电能的需求也越来越大,所以现代社会对电力的传输质量和安全性就有了更高的要求。但是,电力电缆的复杂性越来越高,电缆出现故障的现象逐渐明显,所以及时对配电网中的故障电缆进行点位一直被研究的课题。因此有效的故障定位方法,准确的找出故障点,对保证电力运输畅通具有重要的意义。 关键词:电力电缆;故障定位;预防 1电力电缆故障分类及故障原因分析 1.1电力电缆故障分类 电力电缆故障的分类方法较多,按其绝缘电阻大小,可分为开路故障、低阻(短路)故障和高阻故障3类。(1)开路故障。若电缆相对地或相间绝缘电阻为无穷大,但工作电压却不能传输到终端;或虽终端有电压,但负载能力较差,开路故障的特例即为断线故障。(2)低阻故障。此类故障较常见的有单相接地、两相或三相短路或接地。故障表现为电缆的相对地或相间绝缘受损但电缆芯线连接良好,其绝缘电阻值低于10Zc(Zc为电缆线路波阻抗,一般不超过40Ω),能用低压脉冲法测量到。(3)高阻故障。与低阻故障相对应,故障表现为电缆相对地或者相间绝缘受损,但是绝缘电阻大于10Zc,不能用低压脉冲法测量到。一般分为闪络性高阻故障和泄漏性高阻故障2类。其中,电缆在一些特殊条件下,绝缘被击穿后又恢复正常的这一类电缆故障被称为闪络性高阻故障;泄漏电流随试验电压的增加而增加,在试验电压升高到额定值或远没达到额定值时,泄漏电流超过允许值,被称为泄漏性高阻故障。 1.2故障原因 造成电缆故障的原因是复杂的。要想对故障点进行快速判断,就需要对电缆的工作环境以及常见原因有所了解,这也是减少电缆故障的一个重要途径。常见的故障原因主要包括外力破坏、电缆质量、电缆中间头制作不达标、管理存在问题、自然现象造成的损伤以及电缆生产质量等。 外力破坏主要是在未经许可、核实的情况下进行的打桩、开挖等施工破坏电缆而导致的接地短路故障。电缆施工质量问题是未能落实安装要求,在施工过程中走形成碰伤或不合理的机械牵引力对电缆形成拉伤,对于移动设备,通常会出现因固定不够而发生变形、摩擦、拉扯和错位而出现绝缘故障。电缆接头故障的原因大致包括以下几个方面:潮湿环境下未对电缆头进行相关防护;中间接头因密封不良而受潮导致的绝缘层劣化;中间接头导体连接管管口不平整而导致的压接不良;不合理的中间接头设置。电缆的管理方面,存在电缆长期超负荷工作而未进行相关维护,长期处于腐蚀环境中,通过热力管线未采取防护措施,这些都导致电缆的绝缘老化、腐蚀以及过热损坏。 2电力电缆故障定位的步骤与方法 2.1故障分析 电力电缆事故发生后,首先要找到电缆敷设时的详细资料,要对故障电缆的基本情况,如电缆型号、长度、走向、敷设方式、有无接头及接头位置、有无预留、预留地点及长度,故障前的运行情况,有无检修历史,路径上有无施工等进行了解与分析。并对故障电缆进行绝缘测试,判断故障类型。如果电缆的长度、路径等不清楚时,则应在定位时探查清楚。 2.2测距 测距的含义就是测量出从故障点到测量端的距离。可以说,在全部定位过程中最重要的一环就是测距,特别是对于长电缆,如果不能将测距这项工作做好,将会大大延长故障定位的时间,给电缆检修维护人员带来巨大的压力。所以,在实际测试中应保证初测的准确性,可采用不同方法进行验证。比如采用行波法测距时,低阻与高阻的分界并不是很确切,因此可在使用行波法后再利用脉冲电流法或电桥法进行验证。 一般而言,行波法是测距的首选方法,低压脉冲法可用来测试电缆的开路、短路、低阻故障,脉冲电流法或二次脉冲法可用来测试高阻故障。如果行波法测距时出现没有反射脉冲或反射脉冲波形比较乱的情况,就可以选用电桥法进行测试。而对单芯高压电缆护层故障,因为大地的衰减系数很大,使用脉冲电流法能测量的范围很小,一般也选用电桥法测距。 2.3精确定位 精准定位是根据初步测距后进行定位,主要包括音频感应法、声磁同步法以及声测法三种。声磁同步法克有限应用于部分低阻故障或会产生冲击放电声的高阻故障,如果不存在放电声的金属性短路、接地则可选用跨步电压法和音频感应法。 ①声测法。高压脉冲作用于故障电缆时会出现击穿放电,会伴随较大的放电声。对于直埋电缆或是打开盖板的沟架式敷设电缆,可通过人耳听声来定位。在较大埋深或封闭性电缆中,可通过振动传感器和声电转换器来对放电点进行查找,该技术也是最基础的精确定位技术,有着较高的可信性,但是受环境噪声影响较大。应用仪器可对故障点的声波信号进行记录,测试人员根据相关数据来对故障点的防电信号进行准确判断。 ②声磁同步法。高压脉冲作用于故障线路产生声音信号同时还会产生放电电流,使电缆周围出现脉冲磁场。该方法是采用仪器来对脉冲磁场信号进行检测,如果磁场信号与声音信号同步,则可将其认作故障点发出,否则为干扰信号。由于声音信号和磁场信号传输速度差,到达地面会存在一定的时间差,通过探头对时间差最小的地方进行查找就能寻找到故障点位置。声磁同步法能排除环境干扰因素,也是当前较为理想的检测方式。 ③音频感应法。该方法是对电缆输入音频电流,通过接收电磁波来实现准确定位。探头移动在电缆上会接收到相同强度和规律的音频声音,而在故障点上方则会出现信号突然加强的情形,越过故障点,信号明显减弱,则可判断信号增强点为故障点。该方法多用于低于10欧的低阻故障。当电缆接地电阻较低特别是金属性接地故障时,因微弱的放电声音,声测法进行定位存在很大难度,所以要采用音频感应法。音频感应法能较好的应用于两相短路并接地故障,三相短路以及三相短路并接地故障。 3电力电缆故障的预防措施 3.1提高电缆生的产质量 在电缆的生产过程中,要严格规范生产秩序,按照国家相关规定提高电缆的生产质量。其次,要加强相关检验部门的检验力度,认真

电桥法测电阻

实验十 电桥法测电阻 电桥是一种精密的电学测量仪器,可用来测量电阻、电容、电感等电学量,并能通过这些量的测量测出某些非电学量,如温度、真空度和压力等,被广泛应用在工业生产的自动控制方面。 【实验目的】 ⒈ 掌握用惠斯登电桥测电阻的原理和特点。 ⒉ 学会QJ19型两用直流电桥的使用。 ⒊ 了解双臂电桥测低电阻的原理和特点。 【实验原理】 直流电桥主要分单臂电桥和双臂电桥。单臂电桥又称惠斯登电桥,一般用来测量102 ~ 106Ω的电阻。双臂电桥又称开尔文电桥,可用来测量10-5~10-2 Ω范围的电阻。实验所用的 QJ19型电桥是单、双臂两用直流电桥。 ⒈ 惠斯登单臂电桥的工作原理 惠斯登电桥的原理电路如图3-10-1所示,四个电阻1R 、2R 、3R 、和x R 称为电桥的四个臂,组成一个四边形ABCD ,对角D 和B 之间接检流计G 构成“桥”,用以比较“桥”两端的电位,当D 和B 两点的电位相等时,检流计G 指零,电桥达到了平衡状态。此时有 2211R I R I =,33R I R I x x = 由于x I I =1,23I I =因此可得 32 1 R R R R X = (3-10-1) (3-10-1)式为惠斯登电桥的平衡条件,根据1R 、2R 和3R 的大小,可以计算出待测电阻x R 的阻值,一般称1R 、2R 为比率臂,3R 为比较臂。 图 3-10-1 惠斯登电桥的原理电路图

⒉ 开尔文双臂电桥的工作原理 在惠斯登电桥电路中,存在着接触电阻和接线电阻,这对低电阻的测量将带来很大的误差。特别是当待测电阻的阻值与接触电阻同数量级时,测量便无法进行。在此情形下,为了获得准确的测量结果,必须采用开尔文双臂电桥进行测量。开尔文双臂电桥的电路结构如图3-10-2所示,x R 为待测电阻,S R 为低值标准电阻,1R 、2R 、内R 和外R 均为阻值较大的电阻,Y 表示联接x R 和 S R 的接线电阻(其中包括这一接线与x R 和S R 的接触电阻)它与x R ,S R 同数量级,是引 起测量误差的重要因素,必须设法消除它的影响。对图中以7、2、4为顶点的△形电路变换成Y 型电路后,就可把双臂电桥变成一个惠斯登电桥,根据惠斯登电桥的平衡条件,不难得到开尔文电桥的平衡方程。 )(2 1221R R R R r R R r R R R R R S X 内外内外-++?+= (3-10-2) 不难看出,如果在电桥结构上能够做到内R =外R 和1R =2R (3-10-2)式右边的第二项为零,此时平衡方程就变成如下形式: S R R R R 1 2外= (3-10-3) 实际上不可能完全做到内R =外R ,1R =2R ,但只要把r 值做得很小,(3-10-2)式右边的第二项便为二阶无限小量,此时就可以认为(3-10-3)式成立。 ⒊ 电桥的灵敏度 (3-10-1)式和(3-10-3)式是在电桥平衡条件下推导出来的,在实验中测试者是依据检流计G 的指针有无偏转来判断电桥是否平衡的。然而,检流计的灵敏度是有限的。例如,选用电流灵敏度为1格/1微安的检流计做为指零仪,当通过检流计的电流小于10-7 安培时,指针 图3-10-2双臂电桥的电路结构图

相关主题
文本预览
相关文档 最新文档