反比例函数的图象和性质的综合应用
- 格式:ppt
- 大小:1.68 MB
- 文档页数:17
第32课时反比例函数的图像和性质的综合运用(解析版)核心考点:1.反比例函数的图像和性质的综合运用;2.反比例函数与一次函数的综合运用;3.反比例与一次函数的综合运用一、考点过关1.(2011•和平区校级自主招生)一次函数y=ax+12的图象过一、二、四象限,点A(x1,﹣2)、B(x2,4)、C(x3,5)为反比例函数y=a−1x图象上的三点,则下列结论正确的是( )A.x1>x2>x3B.x1>x3>x2C.x3>x1>x2D.x2>x3>x1【答案】B【思路引领】根据一次函数y=ax+12的图象过一、二、四象限推知a<0,所以a﹣1<0,则反比例函数y=a−1x的图象位于第二、四象限,然后将点A、B、C在反比例函数图象上大致标出,根据图象直接判定x1>x3>x2【详解】∵一次函数y=ax+12的图象过一、二、四象限,∴a<0,∴a﹣1<0,∴反比例函数y=a−1x图象位于第二、四象限,其大致图象如图所示:,根据图象知,x1>x3>x2;故选:B.【总结提升】本题考查了反比例函数图象上点的坐标特征、一次函数图象与系数的关系.解答此题时,采用了“数形结合”的数学思想.2.(2022•成县校级模拟)如图,已知A为反比例函数y=kx(x<0)图象上的一点,过点A作AB⊥y轴,垂足为B.若△OAB的面积为1,则k的值为 ﹣2 .【答案】﹣2.【思路引领】利用反比例函数比例系数k的几何意义得到12|k|=1,然后根据反比例函数的性质确定k的值.【详解】∵AB⊥y轴,∴S△OAB =12|k|=1,而k<0,∴k=﹣2.故答案为﹣2.【总结提升】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.3.(2020•潍坊)如图,函数y=kx+b(k≠0)与y=mx(m≠0)的图象相交于点A(﹣2,3),B(1,﹣6)两点,则不等式kx+b>mx的解集为( )A.x>﹣2B.﹣2<x<0或x>1C.x>1D.x<﹣2或0<x<1【答案】D【思路引领】结合图象,求出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【详解】∵函数y =kx +b (k ≠0)与y =m x (m ≠0)的图象相交于点A (﹣2,3),B (1,﹣6)两点,∴不等式kx +b >m x 的解集为:x <﹣2或0<x <1,故选:D .【总结提升】本题考查了一次函数与反比例函数的交点问题,关键是注意掌握数形结合思想的应用.4.(2021•潜江模拟)如图,双曲线y =−32x(x <0)经过▱ABCO 的对角线交点D ,已知边OC 在y 轴上,且AC ⊥OC 于点C ,则▱OABC 的面积是( )A .32B .94C .3D .6【答案】C【思路引领】根据平行四边形的性质结合反比例函数系数k 的几何意义,即可得出S ▱ABCO =4S △COD =2|k |,代入k 值即可得出结论.【详解】∵点D 为▱ABCD 的对角线交点,双曲线y =−32x(x <0)经过点D ,AC ⊥y 轴,∴S ▱ABCO =4S △COD =4×12×|−32|=3.故选:C .【总结提升】本题考查了反比例函数系数k 的几何意义以及平行四边形的性质,根据平行四边形的性质结合反比例函数系数k 的几何意义,找出S ▱ABCO =4S △COD =2|k |是解题的关键.5.(2022春•靖江市期末)如图,在直角坐标系中,点A 在函数y =k x(x >0)的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数y =k x(x >0)的图象交于点D ,连结AC ,CB ,BD ,DA ,若四边形ACBD 的面积等于k 的值为( )A .4B .C .4D 【答案】见试题解答内容【思路引领】设A (a ,k a ),可求出D (2a ,k 2a),由于对角线垂直,所以面积=对角线乘积的一半即可.【详解】设A (a ,k a ),可求出D (2a ,k 2a),∵AB ⊥CD ,∴S 四边形ACBD =12AB •CD =12×2a ×k a=解得k =故选:B .【总结提升】本题主要考查了反比例函数图象上点的坐标特征以及线段垂直平分线的性质,解题的关键是设出点A 和点D 的坐标.6.(2017•东营)如图,一次函数y =kx +b 的图象与坐标轴分别交于A 、B 两点,与反比例函数y =n x 的图象在第一象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB =3,OD =6,△AOB 的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x >0时,kx +b −n x <0的解集.【答案】见试题解答内容【思路引领】(1)根据三角形面积求出OA ,得出A 、B 的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出C的坐标,把C的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出答案.【详解】(1)∵S△AOB=3,OB=3,∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:0=3k+b −2=b,解得:k=23,b=﹣2,∴一次函数y=23x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=23×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=12 x;(2)当x>0时,kx+b−nx<0的解集是0<x<6.【总结提升】本题考查了用待定系数法求出函数的解析式,一次函数和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.二、能力提升训练7.(2019•澄江市模拟)如图,反比例函数y=kx的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k的值为( )A.﹣6B.﹣5C.﹣4D.﹣3【答案】D【思路引领】将平行四边形面积转化为矩形BDOA面积,再得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.【详解】如图所示,过点P作PE⊥y轴于点E,∵四边形ABCD为平行四边形,∴AB=CD,又∵BD⊥x轴,∴ABDO为矩形,∴AB=DO,∴S矩形ABDO=S▱ABCD=6,∵P为对角线交点,PE⊥y轴,∴四边形PDOE为矩形面积为3,即DO•EO=3,∴设P点坐标为(x,y),k=xy=﹣3,故选:D.【总结提升】本题考查了反比例函数k的几何意义以及平行四边形的性质,理解等底等高的平行四边形与矩形面积相等是解题的关键.8.(2016•长春)如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=kx(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积( )A.减小B.增大C.先减小后增大D.先增大后减小【答案】B【思路引领】首先利用m和n表示出AC和CQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【详解】AC=m﹣1,CQ=n,则S四边形ACQE=AC•CQ=(m﹣1)n=mn﹣n.∵P(1,4)、Q(m,n)在函数y=kx(x>0)的图象上,∴mn=k=4(常数).∴S四边形ACQE=AC•CQ=4﹣n,∵当m>1时,n随m的增大而减小,∴S四边形ACQE=4﹣n随m的增大而增大.故选:B.【总结提升】本题考查了反比例函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.9.(2013•内江)如图,反比例函数y=kx(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为( )A.1B.2C.3D.4【答案】C【思路引领】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC 的面积与|k|的关系,列出等式求出k值.【详解】由题意得:E、M、D位于反比例函数图象上,则S△OCE =|k|2,S△OAD=|k|2,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,∴S矩形ABCO =4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则k2+k2+9=4k,解得:k=3.故选:C.【总结提升】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.10.(2017•南京)函数y1=x与y2=4x的图象如图所示,下列关于函数y=y1+y2的结论:①函数的图象关于原点中心对称;②当x<2时,y随x的增大而减小;③当x>0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是 ①③ .【答案】见试题解答内容【思路引领】结合图形判断各个选项是否正确即可.【详解】①由图象可以看出函数图象上的每一个点都可以找到关于原点对称的点,故正确;②在每个象限内,不同自变量的取值,函数值的变化是不同的,故错误;③y=x+4x=−2)2+4≥4,当且仅当x=2时取“=”.即在第一象限内,最低点的坐标为(2,4),故正确;∴正确的有①③.故答案为:①③.【总结提升】考查根据函数图象判断相应取值;理解图意是解决本题的关键.11.(2018•连云港)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=k2x的图象交于A(4,﹣2)、B(﹣2,n)两点,与x轴交于点C.(1)求k2,n的值;(2)请直接写出不等式k1x+b<k2x的解集;(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A′B,A′C,求△A′BC的面积.【答案】见试题解答内容【思路引领】(1)将A点坐标代入y=k2 x(2)用函数的观点将不等式问题转化为函数图象问题;(3)求出对称点坐标,求面积.【详解】(1)将A(4,﹣2)代入y=k2x,得k2=﹣8.∴y =−8x将(﹣2,n )代入y =−8xn =4.∴k 2=﹣8,n =4(2)根据函数图象可知:﹣2<x <0或x >4(3)将A (4,﹣2),B (﹣2,4)代入y =k 1x +b ,得k 1=﹣1,b =2∴一次函数的关系式为y =﹣x +2与x 轴交于点C (2,0)∴图象沿x 轴翻折后,得A ′(4,2),S △A 'BC =(4+2)×(4+2)×12−12×4×4−12×2×2=8∴△A 'BC 的面积为8.【总结提升】本题是一次函数和反比例函数综合题,使用的待定系数法,考查用函数的观点解决不等式问题.三、思维拓展训练12.(2022春•邹城市校级月考)点P ,Q ,R 在反比例函数y =k x(常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=30,则S 2的值为 275 .【答案】见试题解答内容【思路引领】设CD =DE =OE =a ,则P (k 3a ,3a ),Q (k 2a ,2a ),R (k a ,a ),推出CP =k 3a,DQ =k 2a ,ER =k a ,推出OG =AG ,OF =2FG ,OF =23GA ,推出S 1=23S 3=2S 2,根据S 1+S 3=30,求出S 1,S 3,S 2即可.【详解】∵CD =DE =OE ,∴可以假设CD =DE =OE =a ,则P (k 3a ,3a ),Q (k 2a ,2a ),R (k a,a ),∴CP =k 3a ,DQ =k 2a ,ER =k a,∴OG =AG ,OF =2FG ,OF =23GA ,∴S 1=23S 3=2S 2,∵S 1+S 3=30,∴S 3=18,S 1=12,S 2=6,故答案为:6.【总结提升】本题考查反比例函数系数k 的几何意义,矩形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.13.(2019秋•鼓楼区校级月考)已知一次函数y 1=kx +n (n <0)和反比例函数y 2=m x (m >0,x >0).(1)如图1,若n =﹣2,且函数y 1、y 2的图象都经过点A (3,4).①求m ,k 的值;②直接写出当y 1>y 2时x 的范围;(2)如图2,过点P (1,0)作y 轴的平行线l 与函数y 2的图象相交于点B ,与反比例函数y 3=n x (x >0)的图象相交于点 C .①若k =2,直线l 与函数y 1的图象相交点 D .当点B 、C 、D 中的一点到另外两点的距离相等时,求m ﹣n 的值;②过点B 作x 轴的平行线与函数y 1的图象相交于点 E .当m ﹣n 的值取不大于1的任意实数时,点B 、C间的距离与点B、E间的距离之和d始终是一个定值.设直线y1交y轴于点F,求DE的最小值.【答案】见试题解答内容【思路引领】(1)①将点A的坐标代入一次函数表达式即可求解,将点A的坐标代入反比例函数表达式,即可求解;②由图象可以直接看出;(2)①BD=2+n﹣m,BC=m﹣n,DC=2+n﹣n=2,由BD=BC或BD=DC得:m﹣n=1或0或4,即可求解;②点E的坐标为(m−nk,m),d=BC+BE=m﹣n+(1−m−nk)=1+(m﹣n)(1−1k),根据点B、C间的距离与点B、E间的距离之和d始终是一个定值,求出k,d的值即可解决问题.【详解】(1)①n=﹣2将点A(3,4)代入一次函数y1=kx+n(n<0)得:3k﹣2=4,解得:k=2,将点A(3,4)代入反比例函数得:m=3×4=12;②由图象可以看出x>3时,y1>y2;故答案为:x>3;(2)①当x=1时,点D、B、C的坐标分别为(1,2+n)、(1,m)、(1,n),则BD=|2+n﹣m|,BC=m﹣n,DC=2+n﹣n=2则BD=BC或BD=DC或BC=CD,即:|2+n﹣m|=m﹣n或|2+n﹣m|=2或m=2+n,即:m﹣n=1或0或4或2,当m﹣n=0时,m=n与题意不符,故m﹣n=1或4或2;②点E的横坐标为:m−n k,当点E在点B左侧时,d =BC +BE =m ﹣n +(1−m−n k )=1+(m ﹣n )(1−1k),m ﹣n 的值取不大于1的任意数时,d 始终是一个定值,当1−1k=0时,此时k =1,从而d =1.当点E 在点B 右侧时,同理BC +BE =(m ﹣n )(1+1k)﹣1,当1+1k=0,k =﹣1时,(不合题意舍去)故k =1,d =1,此时D (1,1+n ),B (1,m ),C (1,n ),y 1=x +n ,∴∠DEB =45°,△DEB 是等腰直角三角形,∴DE =1+n ﹣m ),BC =m ﹣n∵m ﹣n ≤12,∴BC 的最大值为12,∵DE +BC =1,∴DE 的最小值为12.【总结提升】本题是反比例函数综合题目,考查了一次函数解析式的求法、反比例函数解析式的求法、一次函数和反比例函数的图形与性质、函数定值的求法等知识;关键是通过确定点的坐标,求出对应线段的长度,进而求解。
第2课时 反比例函数的图象和性质的综合运用1.使学生进一步理解和掌握反比例函数及其图象与性质;(重点)2.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法;(重点) 3.探索反比例函数和一次函数、几何图形以及图形面积的综合应用.(难点)一、情境导入如图所示,对于反比例函数y =kx(k >0),在其图象上任取一点P ,过P 点作PQ ⊥x 轴于Q 点,并连接OP .试着猜想△OPQ 的面积与反比例函数的关系,并探讨反比例函数y =kx(k ≠0)中k 值的几何意义.二、合作探究探究点一:反比例函数解析式中k 的几何意义如图所示,点A 在反比例函数y =kx的图象上,AC 垂直x 轴于点C ,且△AOC 的面积为2,求该反比例函数的表达式.解析:先设点A 的坐标,然后用点A 的坐标表示△AOC 的面积,进而求出k 的值.解:∵点A 在反比例函数y =k x 的图象上,∴x A ·y A =k ,∴S △AOC =12·k =2,∴k =4,∴反比例函数的表达式为y =4x.方法总结:过双曲线上任意一点与原点所连的线段与坐标轴和向坐标轴作垂线所围成的直角三角形的面积等于|k |的一半.变式训练:见《学练优》本课时练习“课堂达标训练”第1题 探究点二:反比例函数的图象和性质的综合运用 【类型一】 利用反比例函数的性质比较大小若M (-4,y1)、N (-2,y 2)、P (2,y 3)三点都在函数y =kx(k <0)的图象上,则y 1,y 2,y 3的大小关系为( )A .y 2>y 3>y 1B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 1解析:∵k <0,故反比例函数图象的两个分支在第二、四象限,且在每个象限内y 随x 的增大而增大.∵M (-4,y 1)、N (-2,y 2)是双曲线y =kx(k <0)上的两点,∴y 2>y 1>0.∵2>0,P (2,y 3)在第四象限,∴y 3<0.故y 1,y 2,y 3的大小关系为y 2>y 1>y 3.故选B.方法总结:反比例函数的解析式是y =kx(k ≠0),当k <0时,图象在第二、四象限,且在每个现象内y 随x 的增大而增大;当k >0,图象在第一、三象限,且在每个象限内y 随x 的增大而减小.变式训练:见《学练优》本课时练习“课堂达标训练” 第8题 【类型二】 利用反比例函数计算图形的面积如图,直线l 和双曲线y =kx(k >0)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积是S 1,△BOD 的面积是S 2,△POE 的面积是S 3,则( )A .S 1<S 2<S 3B .S 1>S 2>S 3C .S 1=S 2>S 3D .S 1=S 2<S 3解析:如图,∵点A 与点B 在双曲线y =k x 上,∴S 1=12k ,S 2=12k ,S 1=S 2.∵点P 在双曲线的上方,∴S 3>12k ,∴S 1=S 2<S 3.故选D.方法总结:在反比例函数的图象上任选一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k |2,且保持不变.变式训练:见《学练优》本课时练习“课后巩固提升” 第2题 【类型三】 反比例函数与一次函数的交点问题函数y =1-kx的图象与直线y =-x 没有交点,那么k 的取值范围是( )A .k >1B .k <1C .k >-1D .k <-1解析:直线y =-x 经过第二、四象限,要使两个函数没有交点,那么函数y =1-kx的图象必须位于第一、三象限,则1-k >0,即k <1.故选B.方法总结:判断正比例函数y =k 1x 和反比例函数y =k 2x 在同一直角坐标系中的交点个数可总结为:①当k 1与k 2同号时,正比例函数y =k 1x 与反比例函数y =k 2x有2个交点;②当k 1与k 2异号时,正比例函数y =k 1x 与反比例函数y =k 2x没有交点.【类型四】 反比例函数与一次函数的综合问题如图,已知A (-4,12),B (-1,2)是一次函数y =kx +b 与反比例函数y =mx(m <0)图象的两个交点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数的值大于反比例函数的值; (2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB 的面积相等,求点P 的坐标.解析:(1)观察函数图象得到当-4<x <-1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求出一次函数解析式,然后把A 点或B 点坐标代入y =mx可计算出m 的值;(3)设出P 点坐标,利用△PCA 与△PDB 的面积相等列方程求解,从而可确定P 点坐标.解:(1)当-4<x <-1时,一次函数的值大于反比例函数的值;(2)把A (-4,12),B (-1,2)代入y =kx +b 中得⎩⎪⎨⎪⎧-4k +b =12,-k +b =2,解得⎩⎨⎧k =12,b =52,所以一次函数解析式为y=12x +52,把B (-1,2)代入y =mx中得m =-1×2=-2; (3)设P 点坐标为(t ,12t +52),∵△PCA 和△PDB 的面积相等,∴12×12×(t +4)=12×1×(2-12t -52),即得t =-52,∴P 点坐标为(-52,54).方法总结:解决问题的关键是明确反比例函数与一次函数图象的交点坐标所包含的信息.本题也考查了用待定系数法求函数解析式以及观察函数图象的能力.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.反比例函数中系数k 的几何意义; 2.反比例函数图象上点的坐标特征; 3.反比例函数与一次函数的交点问题.本节课主要是要注重提高学生分析问题与解决问题的能力.数形结合思想是数学学习的一个重要思想,也是我们学习数学的一个突破口.在教学中要加强这方面的指导,使学生牢固掌握基本知识,提升基本技能,提高数学解题能力.。