陶瓷物理力学性能
- 格式:ppt
- 大小:3.65 MB
- 文档页数:75
陶瓷的力学性能陶瓷材料的化学健大都为离子键和共价健,健合牢固并有明显的方向性,同一般的金属相比,其晶体结构复杂而表面能小。
因此,它的强度、硬度、弹性模量、耐磨性、耐蚀性和耐热性比金属优越,但塑性、韧性、可加工性、抗热震性及使用可靠性却不如金属。
因此搞清陶瓷的性能特点及其控制因素,不论是对研究开发还是使用设计都具有十分重要的意义。
本节主要讨论弹性、硬度、强度、韧性及其组织结构因素、环境因素的影响。
一.弹性性能1.弹性和弹性模量陶瓷材料为脆性材料,在室温下承载时几乎不能产生塑性变形,而在弹性变形范围内就产生断裂破坏。
因此,其弹性性质就显得尤为重要。
与其他固体材料一样。
陶瓷的弹性变形可用虎克定律来描述。
陶瓷的弹性变形实际上是在外力的作用下原子间里由平衡位置产生了很小位移的结果。
弹性模量反映的是原子间距的微小变化所需外力的大小。
表11.3给出一些陶瓷在室温下的弹性模量。
2.温度对弹性模量的影响由于原子间距和结合力随温度的变化而变化,所以弹性核量对温度变化很敏感、当温度升高时。
原子间距增大,由成j变为d,(见图11.2)而该处曲线的斜率变缓,即弹性模量降低。
因此,固体的弹性模量一般均随温度的升高而降低。
图11.3给出一些陶瓷的弹性模量随温度的变化情况。
一般来说,热膨胀系数小的物质,往往具有较高的弹性模量。
3.弹性模量与熔点的关系物质熔点的高低反映其原子间结合力的大小。
一般来说,弹性模量与熔点成正比例关系。
不同种类的陶瓷材料样性模量之间大体上有如下关系氧化物<氯化物<硼化挪<碳化物。
泊松比也是描述陶瓷材料弹性变形的重要参数。
表11.4给出一些陶瓷材料和金属的泊松比。
可以看出除BeO与MgO外大多数陶瓷材料的泊松比都小于金属材制的泊松比。
4.弹性模量与材料致密度的关系陶瓷材料的致密度对其弹性模量影响很大。
图11.5给出AL2O3陶瓷的弹性模量随气孔率的变化及某些理论计算值的比较。
Fros指出弹性模量与气孔率之间将会指数关系E=E0exp(-BP)式中B--常数。
陶瓷材料的力学性能特点
陶瓷材料是一类使用广泛的非金属材料,具有许多独特的力学性能特点。
相较于金属材料,陶瓷材料的硬度更高、耐磨性更好,但同时也具有脆性大、抗张强度低等特点,这使得陶瓷材料在工程应用中具有独特的优势和局限性。
强度和硬度
陶瓷材料的强度主要是指其破坏前的抗压、抗弯等性能。
一般而言,陶瓷材料的强度很高,具有很好的抗压性能,可以承受较大的外部压力。
而陶瓷材料的硬度通常也比较高,能够抵抗表面的划伤和磨损。
脆性
然而,陶瓷材料的脆性也是其在工程应用中需要考虑的重要问题。
陶瓷材料的断裂韧性很差,一旦受到较大冲击或弯曲力,则容易发生破裂。
这种脆性特点使得在设计和制造过程中需要特别小心处理,避免在使用过程中出现意外的破损情况。
热稳定性
另外,陶瓷材料还具有较好的耐高温性能,能够在高温下保持稳定的物理性质和力学性能。
这种热稳定性使得陶瓷材料在高温环境下有广泛的应用,比如航空航天领域的热屏障涂层、高温陶瓷窑炉等。
导热性和电绝缘性
陶瓷材料通常具有较高的绝缘性能,能够有效地阻止热量和电流的传导。
这使得陶瓷材料在电子元器件、绝缘材料等领域有着重要的应用。
同时,某些陶瓷材料也具有较好的导热性能,可用于制造散热元件等产品。
总的来说,陶瓷材料作为一类特殊的非金属材料,具有独特的力学性能特点。
在工程应用中,我们需要充分了解和利用陶瓷材料的各项性能,同时也要注意其脆性等缺点,以确保其在各个领域中都能发挥最佳的作用。
1。
陶瓷的力学性能包括哪些内容
陶瓷作为一种常见材料,在工程领域中有着广泛的应用。
其独特的力学性能是其被广泛使用的重要原因之一。
陶瓷的力学性能主要包括硬度、抗弯强度、抗压强度、韧性等几个方面。
硬度
陶瓷通常具有较高的硬度,这使得陶瓷在抗磨损方面表现突出。
陶瓷的硬度主要取决于其晶体结构和化学成分。
硬度高意味着陶瓷在磨擦和表面损耗方面有着良好的表现,使其在耐磨领域得到广泛应用。
抗弯强度
陶瓷的抗弯强度是指陶瓷在受到弯曲载荷时抵抗变形和破坏的能力。
由于陶瓷在工程上通常用于承受一定的弯曲应力,其抗弯强度是评估其在这种情况下表现的重要参数。
抗压强度
陶瓷的抗压强度是指陶瓷在受到压缩载荷时抵抗破坏的能力。
在一些工程应用中,陶瓷可能需要承受来自各个方向的压力,因此抗压强度是评估陶瓷材料综合承载能力的重要指标之一。
韧性
尽管陶瓷通常以其高硬度和脆性著称,但某些陶瓷材料也具有一定的韧性。
韧性是指材料抵抗断裂的能力,而不是材料硬度。
在一些需要承受冲击或振动载荷的工程应用中,具有一定韧性的陶瓷材料表现出色。
综上所述,陶瓷的力学性能主要包括硬度、抗弯强度、抗压强度和韧性等方面。
根据不同的工程需求,选择合适的陶瓷材料可以充分发挥其优异的力学性能,实现更广泛的应用。
1。
陶瓷特点实验报告陶瓷是一种非金属材料,由多种天然矿石经过高温烧制而成。
其特点主要体现在以下几个方面:1. 物理性质:陶瓷具有硬度高、耐磨损、抗腐蚀等特点。
由于其内部结构致密,分子间结合力强,因此其硬度通常较高,不易被刮破。
同时,陶瓷表面光滑硬度高,不易受到摩擦磨损。
此外,陶瓷对酸、碱、盐等化学物质的侵蚀能力较强,具有很好的抗腐蚀性。
2. 热性能:陶瓷具有较高的熔点和较低的导热性能。
由于其内部结构致密且分子间结合力强,使得陶瓷能够耐受高温,不易被熔化,且不易导热。
这也使得陶瓷在高温环境中有较好的稳定性,不易变形和破裂。
3. 电性能:陶瓷具有优异的绝缘性能。
由于其内部结构具有很少的自由电子,因此陶瓷是一种很好的绝缘材料,能够有效地阻止电流的传导。
陶瓷还具有较低的介电常数和较高的介电强度,能够承受较大的电压。
4. 导热性能:陶瓷的导热性能较差。
由于其内部结构中分子之间的相互作用较强,能量传导速度较慢,导热性能较差。
这使得陶瓷在热对流和热传导方面表现出很好的绝缘特性。
5. 光学性能:陶瓷具有良好的透光性和折射率。
不同种类的陶瓷材料对光的透射性能和折射率略有不同。
一般来说,陶瓷对可见光具有良好的透光性,并且能够调节一定的折射率。
综上所述,陶瓷具有硬度高、耐磨损、抗腐蚀、热稳定性好、绝缘性能良好、导热性能差等特点。
这些特点使得陶瓷在许多领域具有广泛的应用,如航空航天、环境保护、生物医药、电子器件等。
在今后的发展中,陶瓷的性能还有望得到进一步的提升,为人类社会的发展做出更大的贡献。
「陶瓷材料的力学性能检测方法」陶瓷材料是一种类型的无机非金属材料,具有硬度高、耐磨损、抗腐蚀等特点,在许多领域都有广泛的应用。
然而,由于其特殊的物理和化学性质,陶瓷材料的力学性能检测相对较为复杂。
本文将介绍一些常用的陶瓷材料力学性能检测方法。
1.弹性模量测定弹性模量是衡量材料刚性的重要指标,可以反映材料在受力时的变形能力。
常用的弹性模量测试方法有压缩试验、拉伸试验和弯曲试验。
其中,拉伸试验可以通过拉伸杆比天平来确定材料的弹性模量。
2.拉伸强度和抗压强度测定拉伸强度和抗压强度是评价材料抗拉性能和抗压性能的指标。
拉伸试验可以通过引伸计和力传感器来测量材料在拉伸过程中的载荷和伸长量,从而计算出拉伸强度。
而抗压试验可以通过压力传感器来测量材料受到的压缩应力,从而计算出抗压强度。
3.硬度测试硬度是评价材料抗外力作用下抵抗表面变形和损坏的能力。
陶瓷材料的硬度测定方法有洛氏硬度试验、维氏硬度试验和显微硬度试验等。
其中,洛氏硬度试验是最常用的方法,通过在材料表面施加一定载荷并测量印痕的大小来确定硬度值。
4.断裂韧性测试断裂韧性是衡量材料在受到应力时抵抗断裂的能力,特别适用于陶瓷材料的力学性能评价。
常用的断裂韧性测试方法有缺口冲击试验、三点弯曲试验和压瓷强度试验等。
其中,缺口冲击试验被广泛应用于陶瓷材料的断裂韧性测试,通过在标准试样上制造缺口并施加冲击载荷来测定材料的断裂韧性。
5.耐磨试验耐磨性是评价材料抗磨损能力的指标。
常用的耐磨试验方法有滑动磨损试验、砂轮磨损试验和磨料磨损试验等。
这些试验方法均通过在材料表面施加一定的磨损载荷并测量磨损量来评估材料的耐磨性能。
总之,陶瓷材料的力学性能检测方法是多样化且复杂的,需要根据具体材料的特性和使用环境的需求来选择合适的测试方法。
以上介绍的几种方法是其中常用的方法,可以为陶瓷材料的力学性能评价提供一定的参考。
陶瓷物理知识点总结陶瓷物理知识点总结导言陶瓷是一种广泛应用于许多领域的材料,具有优越的物理性能和化学稳定性。
本文将介绍陶瓷的物理知识点,包括结构、导电性、热性能和光学特性等方面。
通过深入了解陶瓷的物理性质,我们能更好地理解其应用和制备过程。
一、陶瓷的结构陶瓷的结构是指其由离子、分子或原子组成的晶体结构。
陶瓷一般具有离子晶体和共价晶体两种结构类型。
离子型陶瓷由阴阳离子组成,如氧化物陶瓷。
共价型陶瓷由共价键连接的原子组成,如碳化硅陶瓷。
这两种结构类型决定了陶瓷的物理性质。
二、陶瓷的导电性陶瓷是一种绝缘体,其导电性很低。
这是由于陶瓷的结构中存在大量的离子或共价键,并且这些离子或键在晶格中排列得十分有序,使得电子很难在陶瓷中移动。
因此,陶瓷在电绝缘、绝缘体、电介质和电绝缘等方面有着广泛的应用。
三、陶瓷的热性能陶瓷具有较好的热性能,具体表现在以下几个方面。
首先,陶瓷的热导率较低,表明它是一种良好的绝热材料。
其次,陶瓷能够承受高温环境,具有较高的熔点,稳定性好。
此外,陶瓷的热膨胀系数相对较低,能够抵抗温度梯度引起的热应力,具有较好的抗热冲击性能。
四、陶瓷的光学特性陶瓷在光学方面有着广泛的应用,主要体现在以下几个方面。
首先,陶瓷具有高透明性,可以作为透明窗户或透镜材料使用。
其次,陶瓷对于不同波长的光有不同的吸收、散射和反射特性,具有选择性吸收和选择性反射的功能。
此外,陶瓷还可以通过调整成分和结构来改变其光学性质,实现特定的光学功能。
五、其他物理性质除了上述介绍的几个主要物理性质之外,陶瓷还具备其他特殊的物理性质。
例如,陶瓷具有较高的硬度和刚性,能够抵抗磨损和外力影响。
此外,陶瓷的化学惰性好,不易被化学物质侵蚀。
这些特殊的物理性质使得陶瓷在实际应用中起到重要的作用。
结论陶瓷作为一种特殊的材料,具备许多独特的物理性质,包括结构、导电性、热性能和光学特性等方面。
了解这些物理知识点,可以更好地理解陶瓷的应用和制备过程。
陶瓷材料力学性能的检测方法为了有效而合理的利用材料,必须对材料的性能充分的了解。
材料的性能包括物理性能、化学性能、机械性能和工艺性能等方面。
物理性能包括密度、熔点、导热性、导电性、光学性能、磁性等。
化学性能包括耐氧化性、耐磨蚀性、化学稳定性等。
工艺性能指材料的加工性能,如成型性能、烧结性能、焊接性能、切削性能等。
机械性能亦称为力学性能,主要包括强度、弹性模量、塑性、韧性和硬度等。
而陶瓷材料通常来说在弹性变形后立即发生脆性断裂,不出现塑性变形或很难发生塑性变形,因此对陶瓷材料而言,人们对其力学性能的分析主要集中在弯曲强度、断裂韧性和硬度上,本文在此基础上对其力学性能检测方法做了简单介绍。
1.弯曲强度弯曲实验一般分三点弯曲和四点弯曲两种,如图1所示。
四点弯曲的试样中部受到的是纯弯曲,弯曲应力计算公式就是在这种条件下建立起来的,因此四点弯曲得到的结果比较精确。
而三点弯曲时梁各个部位受到的横力弯曲,所以计算的结果是近似的。
但是这种近似满足大多数工程要求,并且三点弯曲的夹具简单,测试方便,因而也得到广泛应用。
图1 三点弯曲和四点弯曲示意图由材料力学得到,在纯弯曲且弹性变形范围内,如果指定截面的弯矩为M,该截面对中性轴的惯性矩为I,那么距中性轴距离为y点的应力大小为:zzI My=σ 在图1-1的四点弯曲中,最大应力出现在两加载点之间的截面上离中性轴最远的点,其大小为:=•⎪⎭⎫⎝⎛•=zI y a P max max 21σ⎪⎩⎪⎨⎧圆形截面 16矩形截面 332DPa bh Pa π 其中P 为载荷的大小,a 为两个加载点中的任何一个距支点的距离,b 和h 分别为矩形截面试样的宽度和高度,而D 为圆形截面试样的直径。
因此当材料断裂时所施加载荷所对应的应力就材料的抗弯强度。
而对于三点弯曲,最大应力出现在梁的中间,也就是与加载点重合的截面上离中性轴最远的点,其大小为:=•⎪⎭⎫⎝⎛•=zI y a P l max max 4σ⎪⎩⎪⎨⎧圆形截面 8矩形截面 2332DPl bh Pl π 式中l 为两个支点之间的距离(也称为试样的跨度)。
陶瓷的性能测试的实验原理陶瓷的性能测试实验原理可以从不同的性能指标来进行考察,主要包括力学性能、热学性能、导电性能、耐冷热震性能等。
以下是对陶瓷不同性能指标的实验原理进行详细介绍。
一、力学性能测试实验原理:1. 强度测试:通过加载试样施加不同的力,测量产生破坏时的最大负荷或将试样带到某个应力,确定其抗拉(Bending)、抗压(Compression)等强度指标。
可以通过机械试验机进行测试。
2. 硬度测试:利用压痕法、刮痕法等,在试样表面施加力,确定其表面硬度。
最常用的硬度测试方法有洛氏硬度试验和维氏硬度试验。
3. 断裂韧性测试:通过施加载荷使试样发生断裂,测量试样断裂前后的应力和应变关系,计算出断裂韧性指标。
常用的实验方法有缺口冲击实验、三点弯曲实验和拉伸实验等。
二、热学性能测试实验原理:1. 热膨胀系数测试:通过在试样温度升高(或降低)时测量试样的长度或体积的变化,计算出热膨胀系数。
实验中一般采用膨胀仪或热差示波器等设备进行测量。
2. 热导率测试:通过测量单位时间内单位面积上的热流量和温度差,计算出热导率。
可以通过热导仪或热差示波器进行测试。
3. 热震稳定性测试:将试样置于高温区域,然后迅速将其置于低温区域,通过观察试样的热震破坏情况,评估其热震稳定性能。
实验中通常采用热震实验台或热震实验炉进行。
三、导电性能测试实验原理:1. 电阻率测试:通过测量试样两端的电压和流经试样的电流,计算出试样的电阻率。
实验中常用的设备有电阻测量仪和四探针法等。
2. 介电常数测试:通过施加交变电场,测量在不同频率下试样的电容和电导,计算出试样的介电常数。
常用的实验方法有平行板电容法和维诺尔桥法等。
四、耐冷热震性能测试实验原理:1. 热震试验:将试样置于高温区域,然后迅速将其置于低温区域,通过观察试样的热震破坏情况,评估其耐冷热震性能。
实验中通常采用热震实验台或热震实验炉进行。
2. 热震循环试验:通过不断循环加热和冷却试样,观察试样的循环寿命,评估其耐冷热震性能。
陶瓷力学性能检测之断裂韧性检测一、概述陶瓷材料及制品在人们的生产生活中发挥着重要的作用,因其重要性,陶瓷检测也显得重要。
下面就陶瓷的化学性能、力学性能等方面做一下简单介绍,供企业个人做为参考。
陶瓷材料的检测性能包括物理性能、化学性能、热学性能、电学性能等方面,其中物理性能、化学性能和力学性能是其主要的检测重点。
物理性能包括密度、熔点、导热性、导电性、光学性能、磁性等。
化学性能包括耐氧化性、耐磨蚀性、化学稳定性等。
而陶瓷材料通常来说在弹性变形后立即发生脆性断裂,不出现塑性变形或很难发生塑性变形,因此对陶瓷材料而言,人们对其力学性能的分析主要集中在弯曲强度、断裂韧性和硬度上,下文主要以科标检测为例来介绍下陶瓷力学性能中弯曲强度检测的相关原理,科标检测专业提供相应的陶瓷材料检测,检测结果精准,出具报告,因此有一定的参考价值!二、断裂韧性应力集中是导致材料脆性断裂的主要原因之一,而反映材料抵抗应力集中而发生断裂的指标是断裂韧性,用应力强度因子(K)表示。
尖端呈张开型(I型)的裂纹最危险,其应力强度因子用K I表示,恰好使材料产生脆性断裂的K I称为临界应力强度因子,用K IC表示。
金属材料的K IC一般用带边裂纹的三点弯曲实验测定,但在陶瓷材料中由于试样中预制裂纹比较困难,因此人们通常用维氏硬度法来测量陶瓷材料的断裂韧性。
陶瓷等脆性材料在断裂前几乎不产生塑性变形,因此当外界的压力达到断裂应力时,就会产生裂纹。
以维氏硬度压头压入这些材料时,在足够大的外力下,压痕的对角线的方向上就会产生裂纹,如图2-1所示。
裂纹的扩展长度与材料的断裂韧性K IC 存在一定的关系,因此可以通过测量裂纹的长度来测定K IC 。
其突出的优点在于快速、简单、可使用非常小的试样。
如果以P C 作为可使压痕产生雷文的临界负荷,那么图中显示了不同负荷下的裂纹情况。
由于硬度法突出的优点,人们对它进行了大量的理论和实验研究。
推导出了各种半经验的理论公式。
陶瓷材料的力学性能分析引言:陶瓷材料是一种被广泛应用于工业和日常生活中的材料。
与金属材料相比,陶瓷材料具有优异的抗腐蚀性、绝缘性能和高温稳定性。
然而,由于其脆性和低韧性,陶瓷材料在受力时容易发生破裂。
因此,对陶瓷材料的力学性能进行分析非常重要,既有助于优化其设计和优化,又能提高其可靠性和耐用性。
1. 弹性模量的分析:弹性模量是衡量材料在受力时的刚度的物理量。
对于陶瓷材料来说,其分子结构通常较密,键合力较强。
因此,陶瓷材料通常具有高弹性模量。
例如,氧化铝在室温下的弹性模量约为380 GPa,而钢的弹性模量则约为200 GPa左右。
这说明,相同荷载下陶瓷材料通常会产生更小的变形,表现出更好的刚度。
2. 抗弯强度的分析:抗弯强度是衡量材料抵抗弯曲破坏的能力。
由于陶瓷材料的脆性特性,其抗弯强度相较于金属材料较低。
陶瓷材料在弯曲时容易出现裂纹扩展,导致材料的破坏。
因此,设计陶瓷结构或组件时需要注意避免过大的应力集中和裂纹扩展。
3. 硬度的分析:硬度是衡量材料抵抗局部变形或划痕的能力。
陶瓷材料通常具有较高的硬度,这是由于其结构中离子键的特性决定的。
离子键通常具有较高的键能量,使得陶瓷材料表现出较高的硬度。
通常采用维氏硬度测试来评估陶瓷材料的硬度。
4. 破裂韧性的分析:破裂韧性是衡量材料在受到应力时不发生破坏的能力。
陶瓷材料由于其脆性特性,破裂韧性较低。
破裂韧性的分析包括测量陶瓷材料的断裂韧性,研究材料的断裂过程等。
改善陶瓷材料的破裂韧性是提高其可靠性和耐久性的关键。
5. 应力分析与模拟:应力分析与模拟是通过对陶瓷材料施加特定荷载,进行力学性能分析的一种方法。
通过模拟不同应力条件下的材料行为,可以精确地预测材料的破坏点以及应力分布等。
这有助于设计出更优越的陶瓷材料结构。
结论:陶瓷材料的力学性能分析对于材料的设计和应用具有重要意义。
通过分析弹性模量、抗弯强度、硬度和破裂韧性等参数,我们可以更好地理解陶瓷材料在受力时的行为,并采取相应的措施来改善其性能。
陶瓷材料的组织结构和力学性能分析陶瓷作为一种广泛应用的材料,在各个领域都有重要的作用。
陶瓷具有优异的化学稳定性和耐高温性能,因此常被用于制作高温材料、耐磨材料以及电子材料等。
本文将对陶瓷材料的组织结构和力学性能进行分析。
首先,对于陶瓷材料的组织结构,需要了解陶瓷的基本成分和表面形貌。
陶瓷主要由非金属元素组成,如氧、氮、硼等。
在微观层面上,陶瓷晶体结构可以分为单晶和多晶,这直接影响其物理性质和化学性质。
此外,陶瓷的表面形貌决定了其力学性能和表面活性。
表面粗糙度越小,则材料的疲劳寿命和抗摩擦性能越好。
其次,陶瓷材料的组织结构对其力学性能有着重要的影响。
在应力作用下,陶瓷材料晶体结构中的离子发生位移或位错的移动,从而引发塑性变形或断裂。
一般情况下,陶瓷材料的强度较高,但韧性较差。
这主要是由于陶瓷的结构中具有很多微观裂纹,这些裂纹容易导致材料的破裂。
因此,提高陶瓷材料的韧性是一个重要的课题。
陶瓷材料的力学性能主要包括抗拉强度、硬度、韧性等指标。
抗拉强度是材料抵抗拉伸应力的能力,硬度是材料抵抗表面划伤的能力,而韧性则反映材料抵抗断裂的能力。
一般来说,陶瓷的抗拉强度较高,硬度也较高,但韧性较低。
在实际应用中,陶瓷材料常常通过控制其组织结构来调节其力学性能。
例如,通过添加适量的增韧相或改变烧结工艺,可以提高陶瓷材料的韧性。
此外,研究人员还通过基于陶瓷材料的多尺度模拟来深入理解其组织结构与力学性能之间的关系。
这种方法将实验数据与计算方法相结合,能够预测和解释陶瓷材料的宏观性质。
通过模拟可以更好地理解陶瓷材料的变形机制和断裂行为,为设计和制造具有特定性能的陶瓷材料提供理论依据。
总之,陶瓷材料的组织结构与力学性能之间存在着密切的关系。
了解陶瓷材料的组织结构可以帮助我们更好地理解其力学性能。
通过调控组织结构,可以改变陶瓷材料的力学性能,从而满足不同领域的需求。
此外,多尺度模拟方法为研究陶瓷材料提供了新的途径。
通过深入研究陶瓷材料的组织结构和力学性能,有助于推动陶瓷材料在各个领域的进一步应用和发展。
陶瓷的力学性能陶瓷材料的化学健大都为离子键和共价健,健合牢固并有明显的方向性,同一般的金属相比,其晶体结构复杂而表面能小。
因此,它的强度、硬度、弹性模量、耐磨性、耐蚀性和耐热性比金属优越,但塑性、韧性、可加工性、抗热震性及使用可靠性却不如金属。
因此搞清陶瓷的性能特点及其控制因素,不论是对研究开发还是使用设计都具有十分重要的意义。
本节主要讨论弹性、硬度、强度、韧性及其组织结构因素、环境因素的影响。
一.弹性性能1.弹性和弹性模量陶瓷材料为脆性材料,在室温下承载时几乎不能产生塑性变形,而在弹性变形范围内就产生断裂破坏。
因此,其弹性性质就显得尤为重要。
与其他固体材料一样。
陶瓷的弹性变形可用虎克定律来描述。
陶瓷的弹性变形实际上是在外力的作用下原子间里由平衡位置产生了很小位移的结果。
弹性模量反映的是原子间距的微小变化所需外力的大小。
表11.3给出一些陶瓷在室温下的弹性模量。
2.温度对弹性模量的影响由于原子间距和结合力随温度的变化而变化,所以弹性核量对温度变化很敏感、当温度升高时。
原子间距增大,由成j变为d,(见图11.2)而该处曲线的斜率变缓,即弹性模量降低。
因此,固体的弹性模量一般均随温度的升高而降低。
图11.3给出一些陶瓷的弹性模量随温度的变化情况。
一般来说,热膨胀系数小的物质,往往具有较高的弹性模量。
3.弹性模量与熔点的关系物质熔点的高低反映其原子间结合力的大小。
一般来说,弹性模量与熔点成正比例关系。
不同种类的陶瓷材料样性模量之间大体上有如下关系氧化物<氯化物<硼化挪<碳化物。
泊松比也是描述陶瓷材料弹性变形的重要参数。
表11.4给出一些陶瓷材料和金属的泊松比。
可以看出除BeO与MgO外大多数陶瓷材料的泊松比都小于金属材制的泊松比。
4.弹性模量与材料致密度的关系陶瓷材料的致密度对其弹性模量影响很大。
图11.5给出AL2O3陶瓷的弹性模量随气孔率的变化及某些理论计算值的比较。
Fros指出弹性模量与气孔率之间将会指数关系E=E0exp(-BP)式中B--常数。