数据结构_最小生成树讲义
- 格式:ppt
- 大小:905.50 KB
- 文档页数:26
数据结构最小生成树克鲁斯卡尔算法代码以下是克鲁斯卡尔算法的实现代码:```python# 定义边的类class Edge:def __init__(self, src, dest, weight):self.src = srcself.dest = destself.weight = weight# 定义图的类class Graph:def __init__(self, vertices):self.V = verticesself.edges = []def add_edge(self, src, dest, weight):edge = Edge(src, dest, weight)self.edges.append(edge)# 查找顶点的根节点def find(self, parent, i):if parent[i] == i:return ireturn self.find(parent, parent[i])# 合并两个集合def union(self, parent, rank, x, y):xroot = self.find(parent, x)yroot = self.find(parent, y)if rank[xroot] < rank[yroot]:parent[xroot] = yrootelif rank[xroot] > rank[yroot]:parent[yroot] = xrootelse:parent[yroot] = xrootrank[xroot] += 1# 使用克鲁斯卡尔算法计算最小生成树def kruskal(self):result = []i = 0e = 0 # 已选择的边的数量# 按权重对边进行排序self.edges = sorted(self.edges, key=lambda x:x.weight)parent = []rank = []# 初始化每个顶点的父节点和秩for node in range(self.V):parent.append(node)rank.append(0)while e < self.V - 1:# 选择权重最小的边edge = self.edges[i]i += 1x = self.find(parent, edge.src)y = self.find(parent, edge.dest) # 判断是否形成环路if x != y:e += 1result.append(edge)self.union(parent, rank, x, y) return result# 测试代码g = Graph(4)g.add_edge(0, 1, 10)g.add_edge(0, 2, 6)g.add_edge(0, 3, 5)g.add_edge(1, 3, 15)g.add_edge(2, 3, 4)result = g.kruskal()for edge in result:print(f"{edge.src} -- {edge.dest} == {edge.weight}")```这段代码实现了克鲁斯卡尔算法,其中`Graph`类表示图,`Edge`类表示边。
考研数据结构图的必背算法及知识点Prepared on 22 November 20201.最小生成树:无向连通图的所有生成树中有一棵边的权值总和最小的生成树问题背景:假设要在n个城市之间建立通信联络网,则连通n个城市只需要n—1条线路。
这时,自然会考虑这样一个问题,如何在最节省经费的前提下建立这个通信网。
在每两个城市之间都可以设置一条线路,相应地都要付出一定的经济代价。
n个城市之间,最多可能设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少呢分析问题(建立模型):可以用连通网来表示n个城市以及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价。
对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。
即无向连通图的生成树不是唯一的。
连通图的一次遍历所经过的边的集合及图中所有顶点的集合就构成了该图的一棵生成树,对连通图的不同遍历,就可能得到不同的生成树。
图G5无向连通图的生成树为(a)、(b)和(c)图所示:G5G5的三棵生成树:可以证明,对于有n个顶点的无向连通图,无论其生成树的形态如何,所有生成树中都有且仅有n-1条边。
最小生成树的定义:如果无向连通图是一个网,那么,它的所有生成树中必有一棵边的权值总和最小的生成树,我们称这棵生成树为最小生成树,简称为最小生成树。
最小生成树的性质:假设N=(V,{E})是个连通网,U是顶点集合V的一个非空子集,若(u,v)是个一条具有最小权值(代价)的边,其中,则必存在一棵包含边(u,v)的最小生成树。
解决方案:两种常用的构造最小生成树的算法:普里姆(Prim)和克鲁斯卡尔(Kruskal)。
他们都利用了最小生成树的性质1.普里姆(Prim)算法:有线到点,适合边稠密。
时间复杂度O(N^2)假设G=(V,E)为连通图,其中V为网图中所有顶点的集合,E为网图中所有带权边的集合。
prim 数据结构算法“Prim 数据结构算法”是一种用于解决最小生成树问题的经典算法。
在本文中,我们将逐步回答关于Prim 算法的问题,以帮助读者更好地理解和应用这一算法。
第一步:什么是最小生成树问题?最小生成树问题是指在一个连通图中找到一个树,使得该树包含了图中的所有顶点,且边的权重之和最小。
这个树被称为最小生成树。
第二步:Prim 算法的原理是什么?Prim 算法基于贪心策略,从某个顶点开始,逐步选择与当前树相关联的最小权重的边,并加入到最小生成树中,直到包含了图中的所有顶点。
第三步:Prim 算法的具体步骤是什么?1. 初始化一个空的最小生成树;2. 选择一个起始顶点,并将其添加到最小生成树中;3. 重复以下步骤直到所有顶点都包含在最小生成树中:a. 通过选择与当前最小生成树相连的边中权重最小的边,找到一个新的顶点;b. 将这个新的顶点添加到最小生成树中。
第四步:Prim 算法的实现细节是什么?1. 使用一个数组来记录每个顶点是否已经包含在最小生成树中;2. 使用一个数组来记录每个顶点到最小生成树的距离,初识状态下可以设置为一个较大的值;3. 每次从未包含在最小生成树中的顶点中选择一个距离最近的顶点,并将其添加到最小生成树中;4. 更新新添加的顶点与其他未添加的顶点的距离。
第五步:Prim 算法的复杂度是多少?Prim 算法的时间复杂度主要取决于查找距离最近的顶点的操作。
一种常见的实现方式是使用最小堆来存储顶点和距离,这样每次查找最小距离的时间复杂度为O(log n)。
而对于含有n 个顶点和m 条边的图,Prim 算法的时间复杂度为O((n + m) log n)。
第六步:Prim 算法适用于什么问题?Prim 算法适用于解决有权重的连通图中的最小生成树问题。
它在网络设计、电子电路布线等领域有着广泛的应用。
总结:Prim 数据结构算法是一种解决最小生成树问题的经典算法。
它基于贪心策略,通过选择与当前最小生成树相关联的最小权重的边,并逐步构建最小生成树。
最小生成树的算法王洁引言:求连通图的最小生成树是数据结构中讨论的一个重要问题.在现实生活中,经常遇到如何得到连通图的最小生成树,求最小生成树不仅是图论的基本问题之一 ,在实际工作中也有很重要的意义,,人们总想寻找最经济的方法将一个终端集合通过某种方式将其连接起来 ,比如将多个城市连为公路网络 ,要设计最短的公路路线;为了解决若干居民点供水问题 ,要设计最短的自来水管路线等.而避开这些问题的实际意义 ,抓住它们的数学本质 ,就表现为最小生成树的构造。
下面将介绍几种最小生成树的算法。
一,用“破圈法”求全部最小生成树的算法1 理论根据1.1 约化原则给定一无向连通图 G =(V ,E )( V 表示顶点,E 表示边),其中 V={ 1v , 2v ,3v …… n v },E= { 1e , 2e , 3e …… n e }对于 G 中的每条边 e ∈ E 都赋予权ω(i e )>0,求生成树 T = (V ,H ),H ⊆ E ,使生成树所有边权最小,此生成树称为最小生成树.(1) 基本回路将属于生成树 T 中的边称为树枝,树枝数为n -1,不属于生成树的边称为连枝.将任一连枝加到生成树上后都会形成一条回路.把这种回路称为基本回路,记为()cf e 。
基本回路是由 T 中的树枝和一条连枝构成的回路.(2) 基本割集设无向图 G 的割集 S (割集是把连通图分成两个分离部分的最少支路集合) ,若 S 中仅包含有T 中的一条树枝,则称此割集为基本割集,记为()S e 。
基本割集是集合中的元素只有一条是树枝,其他的为连枝.(3) 等长变换设T=(V,H),为一棵生成树,e ∈ H, 'e ∈ E, 'e ∉ H,当且仅当'e ∈()cf e ,也就是说e ∈()S e ,则'T =T ⊕{e, 'e }也是一棵生成树。
当()e ω='()e ω时,这棵生成树叫做等长变换。
数据结构之最⼩⽣成树Prim算法普⾥姆算法介绍 普⾥姆(Prim)算法,是⽤来求加权连通图的最⼩⽣成树算法 基本思想:对于图G⽽⾔,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U⽤于存放G的最⼩⽣成树中的顶点,T存放G的最⼩⽣成树中的边。
从所有uЄU,vЄ(V-U) (V-U表⽰出去U的所有顶点)的边中选取权值最⼩的边(u, v),将顶点v加⼊集合U中,将边(u, v)加⼊集合T中,如此不断重复,直到U=V为⽌,最⼩⽣成树构造完毕,这时集合T中包含了最⼩⽣成树中的所有边。
代码实现1. 思想逻辑 (1)以⽆向图的某个顶点(A)出发,计算所有点到该点的权重值,若⽆连接取最⼤权重值#define INF (~(0x1<<31)) (2)找到与该顶点最⼩权重值的顶点(B),再以B为顶点计算所有点到改点的权重值,依次更新之前的权重值,注意权重值为0或⼩于当前权重值的不更新,因为1是⼀当找到最⼩权重值的顶点时,将权重值设为了0,2是会出现⽆连接的情况。
(3)将上述过程⼀次循环,并得到最⼩⽣成树。
2. Prim算法// Prim最⼩⽣成树void Prim(int nStart){int i = 0;int nIndex=0; // prim最⼩树的索引,即prims数组的索引char cPrims[MAX]; // prim最⼩树的结果数组int weights[MAX]; // 顶点间边的权值cPrims[nIndex++] = m_mVexs[nStart].data;// 初始化"顶点的权值数组",// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
for (i = 0; i < m_nVexNum; i++){weights[i] = GetWeight(nStart, i);}for (i = 0; i < m_nVexNum; i ++){if (nStart == i){continue;}int min = INF;int nMinWeightIndex = 0;for (int k = 0; k < m_nVexNum; k ++){if (weights[k]!= 0 && weights[k] < min){min = weights[k];nMinWeightIndex = k;}}// 找到下⼀个最⼩权重值索引cPrims[nIndex++] = m_mVexs[nMinWeightIndex].data;// 以找到的顶点更新其他点到该点的权重值weights[nMinWeightIndex]=0;int nNewWeight = 0;for (int ii = 0; ii < m_nVexNum; ii++){nNewWeight = GetWeight(nMinWeightIndex, ii);// 该位置需要特别注意if (0 != weights[ii] && weights[ii] > nNewWeight){weights[ii] = nNewWeight;}}for (i = 1; i < nIndex; i ++){int min = INF;int nVexsIndex = GetVIndex(cPrims[i]);for (int kk = 0; kk < i; kk ++){int nNextVexsIndex = GetVIndex(cPrims[kk]);int nWeight = GetWeight(nVexsIndex, nNextVexsIndex);if (nWeight < min){min = nWeight;}}nSum += min;}// 打印最⼩⽣成树cout << "PRIM(" << m_mVexs[nStart].data <<")=" << nSum << ": ";for (i = 0; i < nIndex; i++)cout << cPrims[i] << "";cout << endl;}3. 全部实现#include "stdio.h"#include <iostream>using namespace std;#define MAX 100#define INF (~(0x1<<31)) // 最⼤值(即0X7FFFFFFF)class EData{public:EData(char start, char end, int weight) : nStart(start), nEnd(end), nWeight(weight){} char nStart;char nEnd;int nWeight;};// 边struct ENode{int nVindex; // 该边所指的顶点的位置int nWeight; // 边的权重ENode *pNext; // 指向下⼀个边的指针};struct VNode{char data; // 顶点信息ENode *pFirstEdge; // 指向第⼀条依附该顶点的边};// ⽆向邻接表class listUDG{public:listUDG(){};listUDG(char *vexs, int vlen, EData **pEData, int elen){m_nVexNum = vlen;m_nEdgNum = elen;// 初始化"邻接表"的顶点for (int i = 0; i < vlen; i ++){m_mVexs[i].data = vexs[i];m_mVexs[i].pFirstEdge = NULL;}char c1,c2;int p1,p2;ENode *node1, *node2;// 初始化"邻接表"的边for (int j = 0; j < elen; j ++){// 读取边的起始顶点和结束顶点p1 = GetVIndex(c1);p2 = GetVIndex(c2);node1 = new ENode();node1->nVindex = p2;node1->nWeight = pEData[j]->nWeight;if (m_mVexs[p1].pFirstEdge == NULL){m_mVexs[p1].pFirstEdge = node1;}else{LinkLast(m_mVexs[p1].pFirstEdge, node1);}node2 = new ENode();node2->nVindex = p1;node2->nWeight = pEData[j]->nWeight;if (m_mVexs[p2].pFirstEdge == NULL){m_mVexs[p2].pFirstEdge = node2;}else{LinkLast(m_mVexs[p2].pFirstEdge, node2);}}}~listUDG(){ENode *pENode = NULL;ENode *pTemp = NULL;for (int i = 0; i < m_nVexNum; i ++){pENode = m_mVexs[i].pFirstEdge;if (pENode != NULL){pTemp = pENode;pENode = pENode->pNext;delete pTemp;}delete pENode;}}void PrintUDG(){ENode *pTempNode = NULL;cout << "邻接⽆向表:" << endl;for (int i = 0; i < m_nVexNum; i ++){cout << "顶点:" << GetVIndex(m_mVexs[i].data)<< "-" << m_mVexs[i].data<< "->"; pTempNode = m_mVexs[i].pFirstEdge;while (pTempNode){cout <<pTempNode->nVindex << "->";pTempNode = pTempNode->pNext;}cout << endl;}}// Prim最⼩⽣成树void Prim(int nStart){int i = 0;int nIndex=0; // prim最⼩树的索引,即prims数组的索引char cPrims[MAX]; // prim最⼩树的结果数组int weights[MAX]; // 顶点间边的权值cPrims[nIndex++] = m_mVexs[nStart].data;// 初始化"顶点的权值数组",// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
克鲁斯卡尔算法最小生成树生成c++克鲁斯卡尔算法是一种用于求解最小生成树的经典算法。
下面将展示如何使用C++实现克鲁斯卡尔算法来生成最小生成树。
在使用克鲁斯卡尔算法之前,我们需要定义一些数据结构来表示图和边。
首先,我们可以使用一个二维数组来表示图,其中每个元素表示两个节点之间的边权重。
然后,我们可以使用一个结构体来表示边,包含起点、终点和权重这三个属性。
接下来,我们可以按照以下步骤来实现克鲁斯卡尔算法:1. 创建一个并查集(Union-Find)数据结构来帮助判断两个节点是否连通。
2. 将图中的所有边按照权重从小到大进行排序。
3. 创建一个空的最小生成树。
4. 遍历排序后的边,对于每条边,如果它连接的两个节点不在同一个连通分量中,则将这条边加入最小生成树,并将这两个节点合并到同一个连通分量中。
5. 重复步骤4,直到最小生成树中有V-1条边(V为图中的节点数),或者遍历完所有的边为止。
下面是用C++实现克鲁斯卡尔算法的代码示例:```c++#include <iostream>#include <vector>#include <algorithm>using namespace std;struct Edge {int src, dest, weight;};struct Graph {int V, E;vector<Edge> edges;};bool compare(Edge a, Edge b) {return a.weight < b.weight;}int findParent(vector<int>& parent, int i) {if (parent[i] == -1)return i;return findParent(parent, parent[i]);}void unionSet(vector<int>& parent, int x, int y) {int xset = findParent(parent, x);int yset = findParent(parent, y);parent[xset] = yset;}void KruskalMST(Graph graph) {vector<Edge> result;vector<int> parent(graph.V, -1);sort(graph.edges.begin(), graph.edges.end(), compare); int i = 0, j = 0;while (i < graph.V - 1 && j < graph.E) {Edge nextEdge = graph.edges[j++];int x = findParent(parent, nextEdge.src);int y = findParent(parent, nextEdge.dest);if (x != y) {result.push_back(nextEdge);unionSet(parent, x, y);i++;}}cout << 'Edges in Minimum Spanning Tree:' << endl;for (i = 0; i < result.size(); i++) {cout << result[i].src << ' - ' << result[i].dest << ' , Weight: ' << result[i].weight << endl;}}int main() {Graph graph;graph.V = 4;graph.E = 5;graph.edges.push_back({0, 1, 10});graph.edges.push_back({0, 2, 6});graph.edges.push_back({0, 3, 5});graph.edges.push_back({1, 3, 15});graph.edges.push_back({2, 3, 4});KruskalMST(graph);return 0;}```上述代码会输出最小生成树中的边以及它们的权重。
数据结构和算法学习笔记⼋:带权连通图的最⼩⽣成树⼀.简介: 对于⼀个n个顶点的连通图,其最⼩⽣成树是指将所有顶点连接起来的权值之和的最⼩树,树中包含n个顶点和n-1条边.最⼩⽣成树常见的⽣成算法有普⾥姆算法和克鲁斯卡尔算法,它们分别基于顶点的⾓度和边的⾓度⽣成最⼩⽣成树. 声明:对于本⽂中实现图结构的各种类,详见:⼆.两种算法简介 1.普⾥姆算法:普⾥姆算法基于顶点实现,基本思路是将所有已经纳⼊到最⼩⽣成树中的顶点存储起来,然后遍历当前的最⼩⽣成树的端点,找出权值最⼩且不会闭环的边并延伸最⼩⽣成树,然后将新的顶点纳⼊到最⼩⽣成树中(和其他已经纳⼊到树中的顶点⼀起存储起来) 2.克鲁斯卡尔算法:克鲁斯卡尔算法基于边实现,⾸先将所有边按照权值由⼩到⼤排序,然后再从⼩到达依次遍历所有边,⼀⼀判断当前边加⼊最⼩⽣成树中后是否会形成环路,在不形成环路的情况下将此边加⼊最⼩⽣成树,并将顶点存储起来.顶点的存储结构类似于倒置的树,根节点在最下⽅.在最⼩⽣成树的⽣成过程中可能会同时存在多颗顶点树,但是最终所有顶点树会汇聚成⼀颗.三.代码实现(c#)/************************************* 创建⼈:movin* 创建时间:2021/7/4 19:55:02* 版权所有:个⼈***********************************/using System;using System.Collections.Generic;using System.Text;namespace GraphCore{///<summary>///最⼩⽣成树算法///</summary>public class MinimumCostSpanningTreeUtil{///<summary>///计算最⼩⽣成树-普⾥姆算法///要求参数必须是⼀个连通图,此处没有校验参数graph是否是连通图的过程,可⾃⾏添加///</summary>///<param name="graph"></param>///<param name="findAEdgeCallBack">找到⼀条边后的回调函数,参数为边的两个关联点下标和权值</param>public static void MiniSpanTree_Prim(AdjacencyMatrixGraph graph,Action<int,int,int> findAEdgeCallBack = null){//数组lowcast,数组的长度和顶点的个数⼀致,数组中每个下标的值和顶点⼀⼀对应//lowcast的作⽤有两个,以lowcast[1] = 5为例,意思是当前已经找过的顶点中到1顶点的最短路径权值为5//所以作⽤⼀是某下标对应值不为0时代表当前已经⽣成的部分最⼩⽣成树到某下标对应顶点的权值最⼩的边的权值//作⽤⼆是某下标对应值为0时代表此下标对应顶点已经在最⼩⽣成树中,不再参与继续⽣成最⼩⽣成树int[] lowcast = new int[graph.Count];//数组adjvex,这个数组作⽤是对应记录lowcast中最⼩权值边的另⼀个依附顶点下标(⼀个依附顶点下标就是lowcast下标)int[] adjvex = new int[graph.Count];lowcast[0] = 0;//从0号顶点开始⽣成最⼩⽣成树,⾸先将0号顶点对应位置置为0//adjvex[0] = 0;//这句代码加不加都ok,0号位已经加⼊最⼩⽣成树,这个值也就⽤不上了//初始化lowcast数组的其他下标值for(int i = 1;i < lowcast.Length; i++){//当前最⼩⽣成树中只有0号顶点,所以以0号顶点到i号顶点的边的权值就是当前的最⼩边权值lowcast[i] = graph.adjacencyMatrix[0, i];//这些边的另⼀个依附顶点当然是0号顶点adjvex[i] = 0;}//开始计算最⼩⽣成树,结果存储到result中int min = int.MaxValue;//⽤来存储找到的最⼩权值边的权值的临时变量int tempIndex = 0;//⽤来存储即将加⼊最⼩⽣成树的边的顶点(也就是即将加⼊最⼩⽣成树的顶点)的临时变量,另⼀个顶点存储在adjvex数组中//循环length-1次,每次将⼀个顶点和⼀条边加⼊最⼩⽣成树中for(int i = 1;i < graph.Count; i++){//循环在当前的lowcast中找到⾮0的最⼩值(到没有找过的顶点中的最⼩边)min = int.MaxValue;tempIndex = 0;for(int j = 1;j < lowcast.Length; j++){if(lowcast[j] != 0 && lowcast[j] < min){min = lowcast[j];tempIndex = j;}}//找到边后调⽤回调函数if(findAEdgeCallBack != null){findAEdgeCallBack(tempIndex, adjvex[tempIndex], lowcast[tempIndex]);}//更新lowcast数组lowcast[tempIndex] = 0;//每次延申了最⼩⽣成树后需要将lowcast中的值更新,⽅便下次继续延申最⼩⽣成树//刚才将下标为tempIndex的顶点和⼀条边加⼊了最⼩⽣成树,接下来只需要更新这个顶点相关的边即可for(int j = 1;j < lowcast.Length;j++){//判断顶点tempIndex和顶点j之间的边//j顶点不在最⼩⽣成树中且这条边的权值⽐lowcast中记录的最⼩权值要⼩时//更新到顶点j的最⼩权值边的权值,并且记录到顶点j的最⼩权值边的另⼀个顶点为tempIndexif(lowcast[j] != 0 && lowcast[j] > graph.adjacencyMatrix[tempIndex, j]){lowcast[j] = graph.adjacencyMatrix[tempIndex, j];adjvex[j] = tempIndex;}}}}///<summary>///计算最⼩⽣成树-克鲁斯卡尔算法///要求参数必须是连通图///</summary>///<param name="graph"></param>///<param name="findAEdgeCallBack">找到⼀条边后的回调函数,参数为边的两个关联点下标和权值</param>public static void MinSpanTree_Kruskal(EdgesetArrayGraph graph, Action<int, int, int> findAEdgeCallBack = null){//将边集数组排序SortEdgeNode(graph.edgeNodes);//声明⼀个数组,数组下标对应顶点下标//数组中值为-1时代表对应顶点还没有加⼊最⼩⽣成树//当某个顶点被加⼊最⼩⽣成树后,将数组中对应的下标的值修改,修改后的值指向下⼀个加⼊最⼩⽣成树的顶点下标//如vertices[5] = 7代表5号顶点和7号顶点都在最⼩⽣成树中,其中5号顶点的下⼀个顶点是7号顶点//在构建最⼩⽣成树的过程中会通过这个数组检验当前边添加进数组是否会构成环//分析后⾯的代码可以知道,最终数组中length-1个值会被修改,刚好对应添加到最⼩⽣成树中的length-1条边int[] vertices = new int[graph.edgeNodes.Length];//数组初始值都为-1for (int i = 0; i < vertices.Length; i++){vertices[i] = -1;}//下⾯构建最⼩⽣成树//循环遍历所有边,⼀⼀校验是否可以加⼊最⼩⽣成树for (int i = 0; i < graph.edgeNodes.Length; i++){EdgesetArrayEdgeNode node = graph.edgeNodes[i];int startIndex = GetNextVertex(vertices, node.headIndex);int endIndex = GetNextVertex(vertices, node.tailIndex);//检验是否成环,不成环则这条边可以加⼊最⼩⽣成树if (startIndex != endIndex){vertices[startIndex] = endIndex;if(findAEdgeCallBack != null){findAEdgeCallBack(node.headIndex, node.tailIndex, node.weight);}}}}///<summary>///在vertices中,顶点之间的先后次序最终的存储⽅式类似于⼀颗倒过来的树,根顶点在最下⽅,存储时会⼀直向下找,直到找到根顶点,存储时会将下⼀个存储到最⼩⽣成树中的顶点挂到根顶点下⽅成为新///查找时看此顶点是否有后继顶点,如果有那么继续查找后继顶点的后继顶点...以此类推,直到某个顶点对应下标值为-1,即没有后继顶点,返回这个顶点下标///如果两个顶点之间会构成环路,那么它们所在的顶点的后继中⼀定会有相同的顶点,最终查找下去得到的值为顶点相同///</summary>///<param name="vertices"></param>///<param name="index"></param>///<returns></returns>private static int GetNextVertex(int[] vertices,int index){while(vertices[index] != -1){index = vertices[index];}return index;}///<summary>///将给定边集数组按照从⼩到达排序///采⽤选择排序///</summary>///<param name="graph"></param>private static void SortEdgeNode(EdgesetArrayEdgeNode[] edgeNodes){for (int i = 0; i < edgeNodes.Length; i++){int minIndex = i;for (int j = i + 1; j < edgeNodes.Length; j++){if(edgeNodes[minIndex].weight > edgeNodes[j].weight){minIndex = j;}}if(minIndex != i){EdgesetArrayEdgeNode temp = edgeNodes[i];edgeNodes[i] = edgeNodes[minIndex];edgeNodes[minIndex] = temp;}}}}}。
最小生成树c语言全文共四篇示例,供读者参考第一篇示例:最小生成树(Minimum Spanning Tree)是图论中的一个重要概念,它表示一个无向连通图的子图,该子图是该连通图的一棵树,包含图中的所有顶点,并且具有最小的权值总和。
在计算机科学领域中,最小生成树的算法被广泛应用在网络设计、通信传输、电力分配等领域,具有重要的实际意义。
Prim算法和Kruskal算法是两种常用的最小生成树算法。
Prim算法基于贪心策略,在每一步选择连接已经选取的顶点和未选取的顶点之间权值最小的边,直到所有顶点都被选取为止。
而Kruskal算法则是基于并查集实现的,首先将所有的边按照权值排序,然后按照权值从小到大的顺序逐个考虑,如果该边连接的两个端点不在同一个集合中,就将它和这两个端点所在的集合合并,直到生成最小生成树。
在本文中,我们将介绍使用C语言实现Prim算法和Kruskal算法的方法,并通过一个具体的例子来说明如何计算最小生成树。
我们来看看Prim算法的实现:```c#include <stdio.h>#include <stdlib.h>#define MAXV 10000#define INF 1000000int graph[MAXV][MAXV];int visited[MAXV];int parent[MAXV];int key[MAXV];int prim(int n) {int i, j, u, v, min, mincost = 0; for (i = 0; i < n; i++) {key[i] = INF;visited[i] = 0;}key[0] = 0;parent[0] = -1;for (i = 0; i < n; i++) {min = INF;u = -1;for (j = 0; j < n; j++) {if (!visited[j] && key[j] < min) {min = key[j];u = j;}}if (u == -1) return -1;return mincost;}上面的代码实现了Prim算法,通过输入图的顶点数和边数,以及每条边的起点、终点和权值,计算得到最小生成树的最小权值总和。
第四章图4.1图的概念1.图的定义图是由一个顶点集V和一个弧集R构成的数据结构。
2.图的重要术语;(1)无向图:在一个图中,如果任意两个顶点构成的偶对(v,w)∈E是无序的,即顶点之间的连线是没有方向的,则称该图为无向图。
(2)有向图:在一个图中,如果任意两个顶点构成的偶对(v,w)∈E是有序的,即顶点之间的连线是有方向的,则称该图为有向图。
(3)无向完全图:在一个无向图中,如果任意两顶点都有一条直接边相连接,则称该图为无向完全图。
在一个含有n个顶点的无向完全图中,有n(n-1)/2条边。
(4)有向完全图:在一个有向图中,如果任意两顶点之间都有方向互为相反的两条弧相连接,则称该图为有向完全图。
在一个含有n个顶点的有向完全图中,有n(n-1)条边。
(5)稠密图、稀疏图:若一个图接近完全图,称为稠密图;称边数很少(e<nlogn)的图为稀疏图。
(6)顶点的度、入度、出度:顶点的度(degree)是指依附于某顶点v的边数,通常记为TD(v)。
在有向图中,要区别顶点的入度与出度的概念。
顶点v的入度是指以顶点为终点的弧的数目,记为ID(v);顶点v出度是指以顶点v为始点的弧的数目,记为OD(v)。
TD(v)=ID(v)+OD(v)。
(7)边的权、网图:与边有关的数据信息称为权(weight)。
在实际应用中,权值可以有某种含义。
边上带权的图称为网图或网络(network)。
如果边是有方向的带权图,则就是一个有向网图。
(8)路径、路径长度:顶点vp到顶点vq之间的路径(path)是指顶点序列vp,vi1,vi2,…,vim,vq.。
其中,(vp,vi1),(vi1,vi2),…,(vim,.vq)分别为图中的边。
路径上边的数目称为路径长度。
(9)简单路径、简单回路:序列中顶点不重复出现的路径称为简单路径。
除第一个顶点与最后一个顶点之外,其他顶点不重复出现的回路称为简单回路,或者简单环。
(10)子图:对于图G=(V,E),G’=(V’,E’),若存在V’是V的子集,E’是E的子集,则称图G’是G的一个子图。