数据结构_最小生成树讲义
- 格式:ppt
- 大小:905.50 KB
- 文档页数:26
数据结构最小生成树克鲁斯卡尔算法代码以下是克鲁斯卡尔算法的实现代码:```python# 定义边的类class Edge:def __init__(self, src, dest, weight):self.src = srcself.dest = destself.weight = weight# 定义图的类class Graph:def __init__(self, vertices):self.V = verticesself.edges = []def add_edge(self, src, dest, weight):edge = Edge(src, dest, weight)self.edges.append(edge)# 查找顶点的根节点def find(self, parent, i):if parent[i] == i:return ireturn self.find(parent, parent[i])# 合并两个集合def union(self, parent, rank, x, y):xroot = self.find(parent, x)yroot = self.find(parent, y)if rank[xroot] < rank[yroot]:parent[xroot] = yrootelif rank[xroot] > rank[yroot]:parent[yroot] = xrootelse:parent[yroot] = xrootrank[xroot] += 1# 使用克鲁斯卡尔算法计算最小生成树def kruskal(self):result = []i = 0e = 0 # 已选择的边的数量# 按权重对边进行排序self.edges = sorted(self.edges, key=lambda x:x.weight)parent = []rank = []# 初始化每个顶点的父节点和秩for node in range(self.V):parent.append(node)rank.append(0)while e < self.V - 1:# 选择权重最小的边edge = self.edges[i]i += 1x = self.find(parent, edge.src)y = self.find(parent, edge.dest) # 判断是否形成环路if x != y:e += 1result.append(edge)self.union(parent, rank, x, y) return result# 测试代码g = Graph(4)g.add_edge(0, 1, 10)g.add_edge(0, 2, 6)g.add_edge(0, 3, 5)g.add_edge(1, 3, 15)g.add_edge(2, 3, 4)result = g.kruskal()for edge in result:print(f"{edge.src} -- {edge.dest} == {edge.weight}")```这段代码实现了克鲁斯卡尔算法,其中`Graph`类表示图,`Edge`类表示边。
考研数据结构图的必背算法及知识点Prepared on 22 November 20201.最小生成树:无向连通图的所有生成树中有一棵边的权值总和最小的生成树问题背景:假设要在n个城市之间建立通信联络网,则连通n个城市只需要n—1条线路。
这时,自然会考虑这样一个问题,如何在最节省经费的前提下建立这个通信网。
在每两个城市之间都可以设置一条线路,相应地都要付出一定的经济代价。
n个城市之间,最多可能设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少呢分析问题(建立模型):可以用连通网来表示n个城市以及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价。
对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。
即无向连通图的生成树不是唯一的。
连通图的一次遍历所经过的边的集合及图中所有顶点的集合就构成了该图的一棵生成树,对连通图的不同遍历,就可能得到不同的生成树。
图G5无向连通图的生成树为(a)、(b)和(c)图所示:G5G5的三棵生成树:可以证明,对于有n个顶点的无向连通图,无论其生成树的形态如何,所有生成树中都有且仅有n-1条边。
最小生成树的定义:如果无向连通图是一个网,那么,它的所有生成树中必有一棵边的权值总和最小的生成树,我们称这棵生成树为最小生成树,简称为最小生成树。
最小生成树的性质:假设N=(V,{E})是个连通网,U是顶点集合V的一个非空子集,若(u,v)是个一条具有最小权值(代价)的边,其中,则必存在一棵包含边(u,v)的最小生成树。
解决方案:两种常用的构造最小生成树的算法:普里姆(Prim)和克鲁斯卡尔(Kruskal)。
他们都利用了最小生成树的性质1.普里姆(Prim)算法:有线到点,适合边稠密。
时间复杂度O(N^2)假设G=(V,E)为连通图,其中V为网图中所有顶点的集合,E为网图中所有带权边的集合。
prim 数据结构算法“Prim 数据结构算法”是一种用于解决最小生成树问题的经典算法。
在本文中,我们将逐步回答关于Prim 算法的问题,以帮助读者更好地理解和应用这一算法。
第一步:什么是最小生成树问题?最小生成树问题是指在一个连通图中找到一个树,使得该树包含了图中的所有顶点,且边的权重之和最小。
这个树被称为最小生成树。
第二步:Prim 算法的原理是什么?Prim 算法基于贪心策略,从某个顶点开始,逐步选择与当前树相关联的最小权重的边,并加入到最小生成树中,直到包含了图中的所有顶点。
第三步:Prim 算法的具体步骤是什么?1. 初始化一个空的最小生成树;2. 选择一个起始顶点,并将其添加到最小生成树中;3. 重复以下步骤直到所有顶点都包含在最小生成树中:a. 通过选择与当前最小生成树相连的边中权重最小的边,找到一个新的顶点;b. 将这个新的顶点添加到最小生成树中。
第四步:Prim 算法的实现细节是什么?1. 使用一个数组来记录每个顶点是否已经包含在最小生成树中;2. 使用一个数组来记录每个顶点到最小生成树的距离,初识状态下可以设置为一个较大的值;3. 每次从未包含在最小生成树中的顶点中选择一个距离最近的顶点,并将其添加到最小生成树中;4. 更新新添加的顶点与其他未添加的顶点的距离。
第五步:Prim 算法的复杂度是多少?Prim 算法的时间复杂度主要取决于查找距离最近的顶点的操作。
一种常见的实现方式是使用最小堆来存储顶点和距离,这样每次查找最小距离的时间复杂度为O(log n)。
而对于含有n 个顶点和m 条边的图,Prim 算法的时间复杂度为O((n + m) log n)。
第六步:Prim 算法适用于什么问题?Prim 算法适用于解决有权重的连通图中的最小生成树问题。
它在网络设计、电子电路布线等领域有着广泛的应用。
总结:Prim 数据结构算法是一种解决最小生成树问题的经典算法。
它基于贪心策略,通过选择与当前最小生成树相关联的最小权重的边,并逐步构建最小生成树。
最小生成树的算法王洁引言:求连通图的最小生成树是数据结构中讨论的一个重要问题.在现实生活中,经常遇到如何得到连通图的最小生成树,求最小生成树不仅是图论的基本问题之一 ,在实际工作中也有很重要的意义,,人们总想寻找最经济的方法将一个终端集合通过某种方式将其连接起来 ,比如将多个城市连为公路网络 ,要设计最短的公路路线;为了解决若干居民点供水问题 ,要设计最短的自来水管路线等.而避开这些问题的实际意义 ,抓住它们的数学本质 ,就表现为最小生成树的构造。
下面将介绍几种最小生成树的算法。
一,用“破圈法”求全部最小生成树的算法1 理论根据1.1 约化原则给定一无向连通图 G =(V ,E )( V 表示顶点,E 表示边),其中 V={ 1v , 2v ,3v …… n v },E= { 1e , 2e , 3e …… n e }对于 G 中的每条边 e ∈ E 都赋予权ω(i e )>0,求生成树 T = (V ,H ),H ⊆ E ,使生成树所有边权最小,此生成树称为最小生成树.(1) 基本回路将属于生成树 T 中的边称为树枝,树枝数为n -1,不属于生成树的边称为连枝.将任一连枝加到生成树上后都会形成一条回路.把这种回路称为基本回路,记为()cf e 。
基本回路是由 T 中的树枝和一条连枝构成的回路.(2) 基本割集设无向图 G 的割集 S (割集是把连通图分成两个分离部分的最少支路集合) ,若 S 中仅包含有T 中的一条树枝,则称此割集为基本割集,记为()S e 。
基本割集是集合中的元素只有一条是树枝,其他的为连枝.(3) 等长变换设T=(V,H),为一棵生成树,e ∈ H, 'e ∈ E, 'e ∉ H,当且仅当'e ∈()cf e ,也就是说e ∈()S e ,则'T =T ⊕{e, 'e }也是一棵生成树。
当()e ω='()e ω时,这棵生成树叫做等长变换。