当前位置:文档之家› 减水剂对混凝土性能影响的研究

减水剂对混凝土性能影响的研究

减水剂对混凝土性能影响的研究
减水剂对混凝土性能影响的研究

减水剂对混凝土性能影响的研究

1 引言

混凝土外加剂是在混凝土、水泥净桨或砂浆拌合时、拌合前或额外拌合中掺入,用以改善混凝土性能的化学物质。非特殊情况,加入量一般不超过水泥质量的5%。目前,针对混凝土工程的各种特殊要求,已经研制出了许多种能满足各式各样要求的外加剂,将它们以适当方式加到混凝土中就可以达到一些预期的效果。根据这些外加剂的作用,可分为减水剂、速凝剂、缓凝剂、引气利、防水剂、粘结剂、膨胀剂、阻锈剂、消泡剂、脱模剂、着色剂、防潮剂等等。

这些混凝土外加剂按其主要功能可分为四类:

(1)改善混凝土拌合物流变性能的外加剂,包括减水剂、引气剂和泵送剂等。

(2)调节混凝土凝结时间、硬化性能的外加剂,包括缓凝剂、早强剂和速凝剂等。

(3)改善混凝土耐久性的外加剂,包括引气剂、防水剂和阻锈剂等。

(4)改善混凝土其它性能的外加剂,包括粘结剂、膨胀剂、阻锈剂、消泡剂、脱模剂、着色剂、防潮剂等等。

本文先介绍几种常用的外加剂,再着重对混凝土减水剂的分类、作用机理、现状及发展加以阐述。此外,本文还针对目前常用的几种检测混凝土初终凝时间的方法,分析了其优点和不足。并提出了一种新的检测方法——收缩率测定法。

2混凝土外加剂

2.1外加剂的分类

对外加剂可按其功能和化学成分分类。

按功能分类,有改善混凝土拌和物流变性能的,有调节混凝土凝结时间和硬化性能的,有改善混凝土耐久性能的;按化学成分分类,有无机类、有机类、有机无机复合类共三类。2.1.1 混凝土减水剂

减水剂能在不影响和易性的条件下使给定混凝土的拌和用水量减少,在不影响用水量的条件下使混凝土拌和物的和易性增加。此类减水剂可分为普通减水剂和高效减水剂。

①普通减水剂:要求减水率>5%,龄期为3-7天的混凝土抗压强度提高10%,龄期为28天的混凝土抗压强度提高5%以上。常用的普通减水剂有木质素磺酸钙减水剂。

②高效减水剂:能大幅度地减少拌和用水量或显著提高混凝土的流动度。要求减水率>10% ,龄期为3天的混凝土抗压强度提高25%以上,龄期为28天的混凝土抗压强度提高巧%以上。目前常用的有聚烷基芳基磺酸盐类和密胺类减水剂。

减水剂对新拌棍凝土性能的影响主要有和易性的改善,拌和用水量的减水以及含气量有所增加,凝结时间有所延长和水泥水化放热速度减缓。

减水剂对硬化混凝土性能的影响主要有强度的提高,变形能力的增强,抗渗能力的提高和耐冻融性能的提高,且对钢筋无危害,有减缓混凝土中钢筋锈蚀的作用。

2.1.2 缓凝剂

缓凝剂的种类:

①普通缓凝剂:能延长混凝土凝结时间的外加剂。

②缓凝减水剂:兼有缓凝和减水功能的外加剂。

③缓凝高效减水剂:兼有缓凝和显著减水功能的外加剂。

④缓凝引气减水剂:兼有缓凝、引气和减水功能的外加剂。

⑤缓凝引气高效减水剂:兼有缓凝、引气和显著减水功能的外加剂。

缓凝外加剂能延长混凝土的凝结时间,使新拌混凝土在较长时间内保持塑性,有利于浇筑成型和提高施工质量及降低水泥初期的水化热。

缓凝外加剂主要用于炎热气候下施工的混凝土、大体积混凝土及需长时间停放或长距离运输的混凝土。缓凝剂及缓凝减水剂不宜用于日最低气温5℃以下施工的混凝土,也不宜单独用于有早强要求的混凝土及蒸养混凝土;缓凝高效减水剂不宜用于日最低气温为0℃以下施工的混凝土。缓凝剂及缓凝减水剂的品种及其掺量,应根据混凝土的凝结时间、运输距离、停放时间、强度等要求来确定,严禁过量掺人。过量掺人将导致棍凝土凝结时间显著推迟,早期强度降低,甚至不凝、假凝。缓凝剂和缓凝减水剂一般先配成适当浓度的溶液,加放拌和在水中使用。配制的溶液应定期检查,防止浓度不均而造成质量事故。缓凝剂及缓凝减水剂可与其他外加剂复合使用。配制溶液时应注意其共溶性,确定混合后不发生絮凝、沉淀等不良现象时方可先混合,否则应分别配制成溶液并分别加放在搅拌机内。掺缓凝剂的混凝土在终凝后才能浇水养护。

2.1.3 早强剂

早强外加剂分类:

①普通早强剂:加速混凝土早期强度发展的外加剂。一般不具有或具有较小的减水功能,对混凝土后期强度影响不大。

②早强减水剂:兼有早强和减水功能的外加剂。能提高混凝土的早期强度,具有一定的减水功能,且能使混凝土后期强度和耐久性能有所提高。

③早强高效减水剂:兼有早强和显著减水功能的外加剂。能显著提高混凝土的早期强度、和易性、后期强度及耐久性。

早强外加剂适用于日最低气温不低于一5℃环境下的混凝土施工。大多数产品为复合载体故必须以干粉掺人使用,并适当延长搅拌时间。掺加时应加在水泥里,不得加在潮湿的砂石上,以免造成硫酸钠与集料表面的水接触后结块,搅拌时不易分散,使混凝土干裂。当粉剂中有结块和粗粒时,必须粉碎,通过30目筛筛后方可使用。宜以体积法计量,这可避免产品受潮造成掺量不准。早强加外剂不得用于含有活性骨料的混凝土结构。

2.1.4 混凝土防冻剂

是能使混凝土在负温下硬化,并在规定养护条件下达到预期性能的外加剂。

防冻剂分类:(按掺量能塑化效果分类)

①高效防冻剂:系减水剂>12%(一般为20%),掺量小于或等于水泥质量的5%,适用于日最低气温为-15℃—20℃的防冻剂。

②普通防冻剂:系减水率较小及掺量较大的防冻剂。

防冻剂的适用范围:目前国内防冻剂产品适用的气温范围为-20℃—O℃,在更低的气温下施工时可采用其他冬季施工措施,如暖棚法、综合蓄热法等。掺防冻剂混凝土采用一层塑料薄膜、两层草袋或其他用品覆盖养护时,在日气温-5℃一+5℃正负温交替条件下,可使用早强剂或早强减水剂;日最低气温为-15℃、-20℃时可分别采用规定温度为-10℃或-15℃的防冻剂;氯盐类防冻剂适用于无筋混凝土工程;氯盐钢筋类防冻剂适用于允许掺用氯盐的钢筋混凝土工程;无氯盐类防冻剂可用于钢筋混凝土和预应力混凝土。但硝酸盐、亚硝酸盐、碳酸盐类外加剂不得用于预应力混凝土及镀锌钢材或与铁相接触部位的钢筋混凝土结构。含有六价铬盐、亚硝酸盐等有毒防冻剂,禁止用于饮水工程及与食品相接触的工程。

2.1.5 混凝土膨胀剂

能使混凝土产生一定体积膨胀的外加剂。

膨胀剂的种类:

①硫铝酸、钙类膨胀剂,其掺量一般为水泥质量的8%一15%;

②氧化钙类,这类膨胀剂的掺量为水泥质量的3%-5%;

③复合膨胀剂;

④金属类膨胀剂,铝粉膨胀剂一般掺量为水泥质量的1/100000。

一般用在标号为32.5MPa及以上的硅酸盐水泥和普通硅酸盐水泥中。采用其他水泥时须经过试验。膨胀混凝土(砂浆)的配合比设计与普通混凝土(砂浆)相同。每1m3所用膨胀剂的质量与1m3实际水泥质量之和,作为每1m3混凝土(砂浆)水泥的质量。铁屑膨胀剂的质量不计算在水泥用量内。膨胀剂的实际掺量须通过试验确定。膨胀混凝土(砂浆)宜采用机械搅拌,必须搅拌均匀,一般比普通混凝土(砂浆)的搅拌时间需延长30s以上。膨胀混凝土(砂浆)必须在潮湿状态下养护14天以上,或用喷涂养护剂养护;在日最低气温低于+5℃时,可采用40℃热水搅拌并采用保温措施;膨胀混凝土(砂浆)可采用蒸气养护。

2.1 混凝土减水剂

减水剂是混凝土外加剂中应用最广泛、效果最显著的一种掺拌材料,它的主要作用是改善混凝土拌和物的流变性能。在混凝土中添加减水剂,能够减少用水量,提高混凝土强度,增大混凝土的流变性,同时还能节约水泥用量。

2.2.1 减水剂的发展历史

近代混凝土减水剂的发展已有60多年的历史。20世纪30年代初,美国、英国、日本等已经在公路、隧道、地下工程中使用木质素磺酸盐类减水剂。到60年代,混凝土减水剂得到了较快发展。1962年,日本的服部健一等将萘磺酸甲醛高缩合物用作减水剂。几乎在

同时,前德意志联邦共和国研制成功了三聚氰胺磺酸盐甲醛缩聚物减水剂。另外,同时出现的还有多环芳烃磺酸盐甲醛

缩合物减水剂。

目前国外对萘系、三聚氰胺系等高效减水剂的研究和应用已日趋完善,不少科研机构已开始转向对聚梭酸盐系高性能减水剂的开发与研究。90年代,日本在该领域投人了大量的人力与资源,并获得了成功,开发出了一系列性能较为优异的聚羧酸盐系减水剂。1995年以后,聚羧酸盐系减水剂在日本的使用量超过了萘系减水剂。

聚羧酸盐系高效减水剂是直接用有机化工原料通过接酯共聚反应合成的高分子表面活性剂,它不仅能吸附在水泥颗粒表面上,使水泥颗粒表面带电而互相排斥,而且还因具有支链的位阻作用,从而对水泥分散的作用更强、更持久.因此,聚羧酸盐系减水剂被认为是目前最高效的新一代减水剂。

2.2.2 混凝土减水剂的分类

按功能分类

(1)按塑化效果分类:分为普通减水剂(减水率在5%以上)和高效减水剂(减水率在12%以上)。

(2)按引气量分类:分为引气减水剂(含气量3.5—5.5%)和非引气减水剂(含气量<3%,一般在2%左右)。

(3)按混凝土的凝结时间和早期强度分类:分为标准型、缓凝型和早强型减水剂。标准型可以使混凝土的初凝及终凝时间缩短不大于1h,延长不超过2h;早强型兼具减水和提高混凝土的早期强度的作用。缓凝型初凝时间延长至少1h,但不小于3.5h;终凝时间延长不超过3.5h。

按化学成分分类:

(1)木质素磺酸盐类:应用较普遍的为木质素磺酸钙,它是阴离子表面活剂。其掺量为水泥质量的0.2—0.3%,减水率为5—15%,28d抗压强度提高10—15%,在水泥用量不变,强度相近条件下,可节约水泥5—1帆。适用于日最低气温十5Y以上的各种预制及现浇混凝土、钢筋混凝土及预应力混凝土、大体积混凝土、泵送混凝土、防水泥凝土、大模板施工用混凝土及滑模施工用混凝土,但不宜用于蒸养混凝土。

(2)聚烷基芳族磺酸盐类:为阴离子高效减水剂。国内现生产的有MF(β—.荼磺酸甲醛缩合物的钠盐)、MF(甲基荼磺酸甲醛缩合物钠盐)及FDN、JN、UNF、SN一2等均属此类。常用量为水泥质量的0.5—1%,减水率为10—25%;28d抗压强度提高15—50%。

(3)三聚氰胺甲树脂磺酸盐类:属阴离子型,系早强、非引气型的高效减水剂。如国产SM减水剂,磺化三聚氰胺树脂(SM)。掺量为水泥质量的0.5—1.0%,减水率为10—27%,28d 抗压强度提高30—50%。适用于蒸养混凝土、高强混凝土、早强混凝土及流态混凝土。

常用的还有糖蜜类和腐殖酸类减水剂。

2.2.3 减水剂的作用机理

由于水泥颗粒粒径绝大部分在7μm-80μm范围内,属于微细粒粉体颗粒范畴。对于水泥—水体系,水泥颗粒及水泥水化颗粒表面为极性表面,具有较强的亲水性。微细的水泥颗粒具有较大的比表面能(固液界面能),为了降低固液界面总能量,微细的水泥颗粒具有自发凝聚成絮团趋势,以降低体系界面能,使体系在热力学上保持稳定性。同时.在水泥水化初期,C3A颗粒表面荷正电,而C3S和C2S颗粒表面荷负电,正负电荷的静电引力作用也促使水泥颗粒凝聚形成絮团结构(如图1所示)。

由于水泥颗粒的絮凝结构会使10%-30%的自由水包裹其中,从而严重降低了混凝土拌合物的流动性。减水剂掺入的主要作用就是破坏水泥颖粒的絮凝结构,使其保持分散状态,释放出包裹于絮团中的自由水,从而提高新拌混凝土的流动性。

作为水泥颗粒分散剂的减水剂,大部分是相对分子量较低的聚合物电解质,其相对分子量在1500一100000范围内。这些聚合物电解质的碳氢链上都带有许多极性基官能团,极性基团的种类通常有一SO3、一COO-及一OH等。这些极性基团与水泥颗粒或水化水泥颗粒的极性表面具有较强的亲合力。带电荷的减水剂(具有一SO3、一COO一等极性基的阴离子表面活性物质)通过范德华力或静电引力或化学键力吸附在水泥颗粒表面;带极性基(如一OH、一O-)的非离子减水剂也能通

过范德华力和氢键的共同作用吸附在水泥颗粒表面。没有与水泥颗粒表面作用的极性基则随碳氢链伸入液相(见图2所示)。

图2

水泥颗粒或水泥水化颗粒作为固体吸附剂,由于本身性质和结构的复杂性,使减水剂在其表面的吸附既有物理吸附,也有化学吸附。并且吸附作用可以发生在毛细孔、裂缝及气孔的所有表面上。减水剂在水泥颗粒表面的吸附过程要比一般的溶液吸附过程复杂得多。并且在水泥—水分散体系中,水泥粒子吸附减水剂的同时,还伴随着水泥的水化过程。

减水剂掺入新拌混凝土中,能够破坏水泥颗粒的絮凝结构,起到分散水泥顺位及水泥水化颗粒的作用,从而释放絮凝结构中的自由水,增大混凝土拌合物的流动性。虽然,减水剂的种类不同,其对水泥颗粒的分散作用机理也不尽相同,但是,概括起来,减水剂分散减水机理基本上包括以下五个方面。

(一)降低水泥颗粒固液界面能

减水剂通常为表面活性剂(异极性分子),性能优良的减水剂在水泥—水界面上具有很强的吸附能力。减水剂吸附在泥颗粒表面能够降低水泥颗粒固液界面能,降低水泥—水分散体系总能量,从而提高分散体系的热力学稳定性,这样有利于水泥颗粒的分散。因此,不但减水剂的极性基种类、数量影响其减水作用效果,而且减水剂的非极性基的结构特征,碳氢链长度也显著影响减水剂的性能。

(二)静电斥力作用

新拌混凝土中掺入减水剂后,减水剂分子定向吸附在水泥颗粒表面,部分极性基团指向液相。由于亲水极性基团的电离作用,使得水泥颗粒表面带上电性相同的电荷,并且电荷量随减水剂浓度增大而增大直至饱和,从而使水泥颗粒之间产生静电斥力,使水泥颗粒絮凝结构解体,颗粒相互分散,释放出包裹于絮团中的自由水,从而有效地增大拌合物的流动性。带磺酸根(一SO3)的离子型聚合物电解质减水剂.静电斥力作用较强;带羧酸根离子(一COO-)的聚合物电解质减水剂,静电斥力作用次之;带羟基(一OH)和醚基(一O一)的非离子型表面活性减水剂,静电斥力作用最小。以静电斥力作用为主的减水剂(如萘磺酸盐甲醛缩合物、三聚氰胺磺酸盐甲醛缩合物等)对水泥颗粒的分散减水机理如图3所示。

图3

(三)空间位阻作用

聚合物减水剂吸附在水泥颗粒表面,则在水泥颗粒表面形成一层有一定厚度的聚合物分子吸附层。当水泥颗粒靠近,吸附层开始重叠,即在颗粒之间产生斥力作用,重叠越多,斥力越大。这种由于聚合物吸附层靠近重叠而产生的阻止水泥颗粒接近的机械分离作用力,称之为空间位阻斥力。一般认为所有的离子聚合物都会引起静电斥力和空间位阻斥力两种作用力,它们的大小取决于溶液中离子的浓度,以及聚合物的分子结构和摩尔质量.线型离子聚合物减水剂(如萘磺酸盐甲醛缩合物、三聚氰胺磺酸盐甲醛缩合物)吸附在水泥颗粒表面,能显著降低水泥颗粒的ξ负电位(绝对值增大),因而其以静电斥力为主分散水泥颗粒,其空间位阻斥力较小。具有枝链的共聚物高效减水剂(如交叉链聚丙烯酸、羧基丙烯酸与丙烯酸酯共聚物、含接枝聚环氧乙烷的聚丙烯酸共聚物等等)吸附在水泥颗粒表面,虽然其使水泥颗粒的ξ负电位降低较小,因而静电斥力较

小,但是由于其主链与水泥颗粒表面相连,枝链则延伸进入液相形成较厚的聚合物分子吸附层,从而具有较大的空间位阻斥力作用,所以,在掺量较小的情况下便对水泥颗粒具有显著的分散作用。以空间位阻作用为主的典型接枝梳状共聚物对水泥颗粒的分散减水机理如图4所示。

图4

(四)水化膜润滑作用

减水剂大分子含有大量极性基团,如木质素磺酸盐含有磺酸基(一SO3),羟基(一0H)、和醚基(一O一)、萘磺酸盐甲醛缩合物和三聚氰胺磺酸盐甲醛缩合物含有磺酸基,氨基磺酸盐甲醛缩合物含有磺酸基和胺基(一NH2):聚胺酸盐减水剂含有羟基(一CO一)和醚基。这些极性基因具有较强的亲水作用,特别是羟基、胺基和醚基等均可与水形成氢键,故其亲水性更强。因此,减水剂分子吸附在水泥颗粒表面后,由于极性基的亲水作用,可使水泥颗粒表面形成一层具有一定机械强度的溶剂化水膜。水化膜的形成可破坏水泥颗粒粒的絮凝结构,释放包裹于其中的拌和水,使水泥颗粒充分分散,并提高了水泥颗粒表面的润湿性,同时对水泥颗粒及骨料颗粒拉的相对运动具有润滑作用,所以在宏观上表现为新拌混凝土流动性增大。(五)引气隔离“滚珠”作用

木质素磺酸盐、腐植酸盐、聚羧酸系及氨基磺酸盐系等减水剂,由于能降低液气界面张力故具有一定的引气作用。这些减水剂掺入混凝土拌合物中,不但能吸附在固液界面上,而且能吸附在液气界面上,使混凝土拌合物中易于形成许多微小气泡。减水剂分子定向排列在气泡的液气界面上,使气泡表面形成一层水化膜,同时带上与水泥颗粒相同的电荷。气泡与气泡之间,气泡与水泥颗粒之间均产生静电斥力,对水泥颗粒产生隔离作用,从而阻止水泥颗粒凝聚。而且气泡的滚珠和浮托作用,也有助于新拌混凝土中水泥颗粒、骨料颗粒之间的相对滑动。因此,减水剂所具有的引气隔离“滚珠”作用可以改善混凝土拌合物的和易性。

2.2高效减水剂

混凝土外加剂中,最引人注目的是高效减水剂。高效减水剂的发展已有近40年的历史。1962年,日本的服部健一等将萘高效减水剂中占有重要的地位。1963年,原联邦德国研制成功三聚氰胺磺酸盐甲醛缩合物。由于这两种外加剂对水泥有强的分散作用,性能较普通减水剂有明显提高,因而被称为高效减水剂。高效减水剂的问世,是继钢筋混凝土、预应力钢筋混凝土之后,在混凝土改性上的第三次突破。正是高效减水剂的出现,高强混凝土和流态混凝土才成为现实。它的开发促进了混凝土的高强、超高强化,改善了混凝土的施工,实现了大体积的现代化的高速高效文明施工,因而促进了混凝土技术的迅猛发展。

高效减水剂对水泥有强烈分散作用,能大大提高水泥拌和物的流动性和混凝土坍落度,同时大幅度降低用水量,显著改善新拌混凝土的工作性能和混凝土各龄期强度。

萘对混凝土凝结时间的影响因高效减水剂的品种而异,蔡萘磺酸甲醛缩合物和三聚氰胺磺酸盐甲醛缩合物基本上不影响混凝土的凝结时间;氨基磺酸盐甲醛缩合物和聚梭酸类高效减水剂则对混凝土有缓凝作用,能提高混凝土的抗渗抗冻融及耐腐蚀性,增强耐久性。

控制混凝土坍落度损失的能力因高效减水剂的品种而异,萘磺酸甲醛缩合物和三聚氰胺磺酸盐甲醛缩合物加快混凝土坍落度损失;氨基磺酸盐甲醛缩合物和聚羧酸类高效减水剂则对混凝土坍落度损失有良好的抑制作用。

2.3.1 高效减水剂的种类

目前合成的高效减水剂都属于阴离子型高分子表面活性剂,按其活性基团阴离子的不同,可分为两大类:聚磺酸盐和聚梭酸盐。聚磺酸盐高效减水剂包括萘磺酸盐、三聚氰胺磺酸盐和氨基磺酸盐缓凝高效减水剂。聚胺酸盐类高效减水剂是(甲基)丙烯酸与其它单体的共聚物。2.3.2 高效减水剂对混凝土性能的影响

(一)对新拌混凝土性能的影响

a. 减水作用

高效减水剂比普通减水剂具有较高的减水率,普通减水剂的减水率一般低于10%,高效减水剂的减水率在20%一30%之间。高效减水剂减水率的高低决定于其化学结构、分子的构型、分子量大小和分子量分布。在相同掺量的情况下,聚羧酸盐类高效减水剂具有较高的减水率。

b.引气性

减水剂对混凝土引气作用的影响与其水溶液表面张力的大小有一定关系,降低水的表面张力的能力越大,引气作用越强。

c.凝结时间

高效减水剂对混凝土凝结时间的影响决定于高效减水剂的化学结构,萘系和三聚氰胺系高效减水剂对混凝土没有缓凝作用,甚至使得混凝土的凝结时间稍稍提前;但氨基磺酸盐和聚羧酸盐类高效减水剂则是缓凝性高效减水剂。

d.离析和泌水

高效减水剂对不同水泥的适应性不同,但高效减水剂的掺人,可有效减小甚至消除离析和泌水现象的发生。

e.坍落度和坍落度损失

在拌制混凝土时,高效减水剂的掺人,可以大幅度提高新拌混凝土的坍落度,坍落度随时间的变化决定于所用高效减水剂的类型、掺人量、温度和所用水泥的类型。用萘系和三聚氮胺高效减水剂拌制混凝土的坍落度损失快,在30一60min内因掺人高效减水剂而获得的坍落度会损失掉。

(二)对硬化混凝土性能的影响

a.强度

而改善水泥的水化程度。二者综合效果是显著提高混凝土各个龄期的强度。掺高效减水剂的混凝土的抗压强度、抗弯强度和静态弹性模量较之空白混凝土都有不同程度的提高。

b.收缩和徐变

高效减水剂用于减少混凝土用水量而提高强度或节约水泥时,混凝土收缩值小于空白混凝土;用于增加坍落度而改善和易性时,收缩值略高于或等于空白混凝土,但也不会超过技术标准规定限值lx10-4。高效减水剂对混凝土徐变的影响与对收缩影响的规律相同,只是当掺高效减水剂而不节约水泥,抗压强度明显提高时,徐变显著减小。

(三)对混凝土耐久性的影响

a.冻融性

高效减水剂由于减水率高和微量的引气性,使得混凝土的抗冻融性有显著提高。

b.硫酸盐侵蚀

Brooks和Colepardi研究了掺加了高效减水剂的混凝土和空白混凝土在硫酸镁溶液中放置800d后的某些性能(重量、长度、静态模量)变化,实验结果显示,塑化混凝土的抗硫酸盐侵蚀的能力与空白混凝土相比并不逊色。

(四)对钢筋混凝土性能的影响

a.对钢筋和混凝土粘接力的影响

Collepardi和Corradi研究了高效减水剂对钢筋和混凝土粘接力的影响,得出高效减水剂的加入可显著提高钢筋和混凝土间的粘接力,可使普通混凝土中直滑钢筋和混凝土7d的粘接力由1.2MPa提高到8.5MPa,弯曲钢筋和混凝土7d的粘接力由15.0MPa提高到27.5MPa。

b.对钢筋锈蚀的影响

将掺加高效减水剂的塑化钢筋混凝土在水中放置一年,然后在室外放置4年后,研究钢筋的锈蚀情况,实验结果显示高效减水剂的加人几乎抑制了钢筋的锈蚀。

2.3.3 高效减水剂的适用范围

高效减水剂适用于配制高强或超高强混凝土、流态自密实混凝土、泵送混凝土和要求分散性保持好(即坍落度损失小)的商品预拌混凝土等。

(一)高流态自密实混凝土

高流态自密实混凝上的一个显著特点是不用振捣而能自密实。它是由20世纪70年代初前西德发明并首先用之于工程的流态混凝土。这种混凝土在国外得到了极其迅猛的发展。我国也己有自密实免振捣混凝土的工程实际应用。目前人们对高流动免振捣混凝土的认识可以归纳为:这种混凝土是通过外加剂胶结材料和粗细骨料的选择和配合比设计,使混凝土拌和物屈服值减小且又具有足够的塑性粘度,粗细骨料能悬浮于水泥浆体中不离析、不泌水,在不用或基本不用振捣的成型条件下,能充分填充模板和钢筋之问的空隙,形成密实而均匀的混凝土结构。它的工作性能应达到:坍落度250一270mm,扩展度550-700mm。不经振捣的高流动自密实混凝土,在硬化后表面的结构十分致密,渗透性低,使其耐久性好得多。用硬化后强度等级相同的普通混凝土和高性能不振捣混凝土时测其干缩率,后者的同龄期干缩率较小。取以相同用水量拌合的这两种混凝土在硬化后进行真空脱水实验,后者的脱水量也小得多。两种实验同时证明了高流动不振捣高性能混凝土的表面致密性好。

(二)高性能泵送混凝土

高强混凝土最先大量应用在高层建筑中,而泵施工工艺也是由于高层建筑施工的需要而得到发展和推广的。掺高效减水剂的流态混凝土,随着时间增长,坍落度逐渐减小,对于泵送混凝土,要求在2h内保持一定的坍落度,以保证新拌混凝土从搅拌站运到施工现场进行浇灌所要求的流动性或工作性。对于萘系减水剂和三聚氛胺类高效减水剂,其塑化的混凝土坍落度损失太快,不适合单独应用于泵送混凝土,必须和缓凝剂、引气剂等其它组分配合使用,才能获得满意的效果。氨基磺酸类和聚梭酸盐类高效减水剂具有良好的抑制混凝土坍落度损失的能力,可单独应用于泵送混凝土。

(三)高强混凝土

高效减水剂的问世推动了高强混凝土的发展,少量高效减水剂的加人,可使保持一定坍落度的混凝土用水量减少20%以上,这样在普通条件下就可以配制60一120MPa的混凝土。通常将强度为62-83MPa称为高强混凝土,83一103MPa为超高强混凝土。配制高强混凝土要求水灰比至少在0.3以下,没有高效减水剂的存在,在如此小的水灰比下,要制得具有可操作工作度的混凝土是不可能的。

3.3.3 减水剂的高性能化途径

展望未来,高性能减水剂的研究已成为混凝土材料科学中的一个重要分支,并推动着整个混凝土材料从低技术向高技术发展。每一项混凝土技术的特殊要求都需要开发最优的外加剂,每一系列有很多不同的化学组成,几种化学外加剂常常同时用于一种混凝土,因此,得到最优减水剂的途径有以下三种:

(一)几种减水剂组分的物理复合

通过复合手段,添加其它助剂以克服高效减水剂自身的缺点,虽然复合多功能外加剂性能得不到根本性的改变,但在各国现在仍然认为这是很实用的途径。我国的高效泵送剂大多数是通过高效减水剂、普通减水剂、引气剂、缓凝剂、增稠剂等几种组分复合而成,具有较高减水率和一定的保持混凝土塌落度性能,其性能与日本的缓凝型用于普通、高强混凝土的高性能AE减水剂相似,广泛用于C20--C60商品混凝土的生产。近10年来,中国在混凝土技术方面取得了明显的进步。现在已普遍应用混凝土结构的为C30, C40等级混凝土,C50, C60高性能混凝土的工程应用范围不断扩大,C80混凝土已在预应力管桩构件中使用,也有少量C80高强泵送混凝土在工程中应用。

(二)减水剂分子结构改性

通过改变减水剂分子的某些参数优化NSF,MSF,如分子量、分子分布、磺化程度等,或将其它系列减水剂部分替代NSF, MSF,而获得性能与掺量之间更加线性化的效果,更好地保持混凝土的塌落度,但还存在一些小的缺点,如在引气、缓凝、泌水等方面不易控制。(三)新型多功能高效减水剂设计

目前,世界许多国家都在致力于研究开发新型高效减水剂。根据已有的外加剂知识,从聚合物分子设计的角度优化设计高性能减水剂,使其具有很高的减水率和长时间保持混凝土塌落度的性能,可以达到一定的引气量,在相当宽的范围内可以自由设定使用量。从混凝土的强度、工作性、耐久性、价格等方面综合考虑,通过合成方法可以研制性能独特、无污染的新型高效减水剂。氨基磺酸系、聚梭酸系减水剂是完全不同于NSF, MSF的新型减水剂,它与不同水泥有相对更好的相容性,具有更高的减水率和保持混凝土高流动性的功能。氨基磺酸系高效减水剂产品碱含量极低,减水率高、保持混凝土流动性时间长,生产合成工艺也相对简单,污染小,是有利于环保的新型材料;聚梭酸类减水剂则主要通过不饱和单体在引发剂作用下共聚,将带活性基团的侧链接枝到聚合物的主链上,使其同时具有高效减水、控制塌落度损失和抗收缩、不影响水泥的凝结硬化等作用。随着合成与表征聚合物减水剂及其化学结构与性能关系的研究不断深入,21世纪的减水剂将进一步向高性能多功能化、生态化、国际标准化的方向发展。

3 混凝土初终凝时间检测方法

目前,大多数混凝土工程都是采用逐层浇筑的施工方法,因此混凝土的初终凝时间等技术指标对于工程的进度就显得尤为重要。在试验室.目前测量混凝土层面初凝时间的方法有:贯

人阻力法、拔出强度法、改良维卡针法、电学法、声波法和热量法等。在施工现场,国内外普遍采用的初凝时间控制方法是时间控制法和度时值法,也有采用贯人阻力法的。随着人们对混凝土水化过程的不断研究和深入了解,测量混凝土初终凝的方法也越来越多,但总体来说还是各有其优点和不足。下面将选择几种典型测量方法逐一介绍。

3.1 电阻率法

水泥基材料的电阻率会随水泥水化时间的变化而改变,因此可用来描述水泥基材料水化过程、判断矿物外加剂和化学外加剂等对水泥水化的影响。通过测定新拌水泥浆、砂浆或混凝土的电阻率,并绘制电阻率随时间变化的特征曲线,可以确定水泥基材料的凝结硬化特征,为水泥水化研究提供了测定手段。用物理的电阻率法测定水泥水化的历史可以追溯到30年代。用电阻率法测定水泥水化过程有直流电阻率法和交流电电极法。直流电电极法是将两个电极插入新拌水泥基材料中,并输入直流电压,通过电极来测水泥基材料的电阻率。交流电电极法也是将两个电极插入或夹在新拌水泥基材料上,用1000Hz的高频交流电替代直流电来测电阻率。但是,离子的定向迁移会在水泥基材中产生极化现象,同时电极与水泥基材料间会产生开裂和接触电阻的问题,影响测量结果的准确性。

近来研制了一种无接触电阻率测定仪,该仪器采用变压器原理,它消除了电极,彻底解决了传统方法的接触问题。用该仪器测试了不同水灰比水泥浆的电阻率,并绘制了电阻率随时间变化的特征曲线|D(t)一t,用电阻率特征曲线分析了水泥凝结硬化过程,同时分别测定了这

些样品的初凝和终凝时间。

该方法采用无接触电阻率测量仪和维卡仪(Vicar needle)。信号发生器将50Hz交流电流变为1000Hz交流电流,再经过放大器将交流电流放大,通过变压器来改变电路中的交流电压。

变压器的初级线圈是由多匝线圈组成,次级线圈是相当于一匝的环形模具,在次级线圈上施加了环电压。将新拌水泥基材料倒入模具中,通过小电流传感器和计算机测定并记录样品不同时间的环电流,最后计算出样品对应的电阻率P。

采集到水泥的电阻率随时间的变化过程,对曲线进行分析,就能够得到水泥的初凝时间。

用电阻率来测定水泥的初凝时间,结果较为直观。但由于采用的是电学方法,不免会涉及到电流极化和通电发热等问题,而且测量方法较为复杂,费时费力。

3.2 电动势法

利用电化学原理,将水泥浆和一对电极组成原电池.通过测量水泥水化过程中溶液浓度变化所引起的电动势变化情况,直接检测水泥凝结状况。测量混凝土的初凝时间。

由于水泥矿物成分的水化反应均生成凝胶和碱性物质Ca(OH),并将自由水分子变为结晶水。随着水化反应的继续,水泥浆中的Ca(OH)溶液浓度越来越大,而自由水分子越来越少.当自由水分子少到一定程度,包有凝胶体的颗粒逐渐接近并黏结在一起,水泥浆开始失去塑性,开始初凝。

用水泥浆和两个电极组成一个原电池,原电池电位等于正、负电极电位之差,而正、负电极电位变化由两个因素决定:(1)在电极电位达到平衡电位以前,电极反应和溶液浓度变化均

会引起电极电位变化;(2)在电极电位达到平衡电位以后,溶液浓度变化引起电极电位变化起主要作用,即是说,电极电位的变化反映了溶液浓度的变化。测量水化过程中溶液离子浓度的变化引起电动势变化的情况,对电动势曲线微分,突变点就能表征水泥的凝结时间。该方法测量准确性较高,但同样存在电学影响和操作不便等不足。

3.3 贯入阻力法

贯入阻力法就是通常所采用的国标方法,它通过测定混凝土水化过程中力学强度的变化来确定混凝土的初终凝时间。

取需测量的混凝土拌和物,用5mm筛筛出砂浆,将砂浆置于砂浆式样筒并振捣,然后用贯入阻力仪测定贯入阻力。当贯入阻力数值分别达到3.5MPa和28MPa时,对应的水化时间即为混凝土的初终凝时间。

贯入阻力法测量混凝土初终凝时间,方法简便快捷,结果直观。但由于测量式样是剔除掉粗骨料后的砂浆,其性质难免会与混凝土拌和物有差异,且由于实验误差和测量数据本身的波动性,所以该方法还存在较大的不足。

4 收缩率法测定混凝土的初终凝时间

由于混凝土的初终凝时间对于工程施工具有重要意义,因此有必要寻找到一种既准确直观,又简便快速的检测方法。收缩率法,就是利用混凝土水化过程中的收缩性在初终凝时间会发生突变,通过对收缩率曲线微分,其突变点就能表征混凝土的初终凝时间。

4.1 测试原理

混凝土的凝结过程中,水泥中的硅酸二钙,硅酸三钙,铁铝酸钙等熟料成分与水发生水化作用。随着水化过程的不断进行,水分消耗而导致混凝土发生收缩。在水化初期,反应进行的较为缓慢,混凝土的收缩率变化也很慢。胶凝体中多数为未水化的水泥和砂,它们通过拌和水而相互粘结在一起,这时水化生成的晶体很少,但是由于拌和水已经和砂浆中各种材料充分混合,水已经形成网状结构把砂浆中各种材料包裹起来。此时,水的消耗不大,因此收缩率的变化也不大。然后,水首先和胶凝材料中的细小颗粒发生水化反应,乳白色细小晶体开始生成,且随时间延长晶体逐渐增多,而胶凝材料中较大尺寸的颗粒周围仍旧被水膜包裹。此后,大量的细小颗粒发生水化反应,大量细小的晶体颗粒形成,同时大的胶凝颗粒也和包裹水发生反应,水分大量消耗,混凝土的收缩率的变化也开始加快。

在这之后直到混凝土达到初凝之前,粒径较小的未水化胶凝颗粒继续水化,,大粒径胶凝颗粒也在渗透水作用下内部继续水化,之后水化反应有明显的减缓,晶体形成速度也明显减弱。因此,混凝土在初凝时间,收缩率的加速会有一个突变。用它就能够表征初凝时间。

此后,水化速率明显减慢,直至混凝土达到终凝,水化过程基本结束,混凝土的收缩不在加速。

4.2 收缩率的测定

按图5中的配比拌制混凝土30L,装入三块加装了挡板和杆件的长方形模具中,编号1,2,3,用振动台震动,然后加装千分表。将试块放入20度实验室环境下养护。

取同一批次混凝土拌和物,用3.3所述的贯入阻力法测量初终凝时间,以作参考。

水泥矿渣硅粉水砂石外加剂纤维205 184 21 131 706 1153 6.15 1

图5 混凝土配合比

4.3 数据分析

图6 试块收缩率水化时间的关系

图7 对1号试块的收缩率曲线的微分

图8 对2号试块的收缩率曲线的微分

图9 对3号试块的收缩率曲线的微分

图7,8,9分别对1,2,3号试块的收缩率进行了一次微分和二次微分。一次微分曲线的峰值对应的时间即为初凝时间,而二次微分曲线的斜率开始趋向为1的时间就是终凝时间。由图形处理所得的1,2,3号试块的初凝时间为11h,10h,10.5h;终凝时间为17.5h,18.5h,18h。而由贯入阻力法测定的该组混凝土的初凝时间为13.3h,终凝时间为16.5h。

为了对比实验结果,按图5配合比,不加减水剂和纤维,另做一组3块混凝土试块。实验步骤与前次完全相同。实验结果见图10,11,12,13。

图10 试块收缩率水化时间的关系

由图形处理所得的4,5,6号试块的初凝时间为均为4h;终凝时间为7h,7h,7.5h。而由贯入阻力法测定的该组混凝土的初凝时间为4.5h,终凝时间为6.2h。

图12 对5号试块的收缩率曲线的微分

根据实验数据可以看出,由收缩率法测定的混凝土初终凝时间与贯入阻力法测得的数据基本吻合。

5 结论

收缩率法测量混凝土初终凝时间较为准确,方便快捷直观。但当混凝土的成分较为复杂时,如添加各种外加剂后,测量的结果就会有所偏差。这可能与纤维,外加剂等在混凝土的水化过程中其了特殊作用有关。因此,收缩率法得出的结论可能还需要相关的系数来修正。相关的研究还需要进一步的深入。

聚羧酸高性能减水剂标准型说明书

聚羧酸高性能减水剂标 准型说明书 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

森普牌S P Y J-1型聚羧酸系高性能减水剂(标准型) 产品说明书 森普牌SPYJ-1型聚羧酸系高性能减水剂(标准型)是目前国内外最新的引领产品。它与常用的聚羧酸系高性能减水剂相比,具有减水率高、掺量低、与水泥适应好、坍落度损失小和无污染等特点。同时具有改善新拌混凝土各种性能指标和提高工作性等多种作用。本产品为无色透明液体,无毒、无腐蚀性、不易燃、对钢筋无锈蚀作用、对人体健康无害。 本产品目前参照执行GB/T8076-2008《混凝土外加剂》、GB/T8077-2012《混凝土外加剂匀质性试验方法》、TB/T3275-2011《铁路混凝土》、GB18582-2008《室内装饰装修材料内墙涂料中有害物质限量》标准。 一、技术性能 1.增强效果:与基准混凝土同坍落度和等水泥用量的前提下,减水率≥25%,混凝土各龄期强度均有显着提高,1天抗压强度比≥170%,3天抗压强度比≥160%,7天抗压强度比≥150%,28天抗压强度比≥140%。 2.泵送性能:具有显着的可泵性。与基准混凝土相比,在同水灰比的前提下,净增坍落度≥100mm,1小时坍落度经时变化量(用于配制泵送混凝土时)≤80mm。 3.工作性能:具有改善新拌混凝土的和易性、保水性和泌水性等操作性能。 4.表面光洁:掺用本产品的混凝土,具有粘聚性强、含气量少和泌水率小等特点,能有效改善高架、高速公路、桥梁等各类清水混凝土表面光洁美观。 5.特效功能:在配制高强混凝土时,其弹性模量、抗渗性、抗收缩、抗徐变和耐久性等高性能指标均可满足指标要求 二、匀质指标 根据产品的性能指标和用户的要求,符合国家、行业及企业标准。 三、应用范围 本产品适用于各类泵送混凝土、大体积混凝土、高层建筑、高架、高速公路、桥梁、水工混凝土及地下、水下灌注混凝土等。特别适应于重点工程和有特殊要求的混凝土。 四、使用方法 1.本产品掺量范围1.0~1.2%(以胶凝材料量计),可根据与水泥的适应性、气温的变化和混凝土坍落度等要求,在推荐范围内调整确定最佳掺量。 2.按计量,直接掺入混凝土搅拌机中使用。 3.在计算混凝土用水量时,应扣除液剂中的水量。 4.在使用本产品时,应按混凝土试配事先检验与水泥的适应性。 五、注意事项 1.在水泥变更品种或新进水泥时,应做与水泥兼容性检验。 2.对于要求缓凝的混凝土,应按混凝土试配事先检验凝结时间。 3.必须按试验配合比正确掺量,浇筑混凝土时,应严格按施工规范操作。 4.在与其他外加剂合用时,宜先检验其兼容性。 5.在冬季施工期间,为了提高混凝土早期强度,应适当调整混凝土的水泥用量。 6.与常规混凝土工程一样,必须按施工规范加强养护。 7.使用本产品,应提前1~3天通知厂方。 六、包装贮存

浅谈影响型钢混凝土结构抗震性能的因素

浅谈影响型钢混凝土结构抗震性能的因素 浅谈影响型钢混凝土结构抗震性能的因素 摘要:由于型钢混凝土具有刚度大,防火、防腐性能好及重量轻、延性好等优点,因此在土木工程中具有广阔的应用前景。从抗震性能来讲,型钢混凝土结构适用于抗震烈度为6度至9度的多层、高层和一般构筑物。本文总结出了影响型钢混凝土结构抗震性能的六大因素:轴压比、剪跨比、型钢含量和型钢形式、 配箍率、混凝土强度、型钢的锚固形式。 关键字:型钢混凝土;轴压比;剪跨比;配箍率;型钢的锚固形式 中图分类号:TU528文献标识码: A 文章编号: 型钢混凝土组合结构是一种优于钢结构和钢筋混凝土结构的新 型结构,它分别继承了钢结构和钢筋混凝土结构的优点,克服了两者的缺点而产生的一种新型结构体系。型钢混凝土结构充分利用钢(抗拉性能好)和混凝土(抗压性能好)的特点,按照最佳几何尺寸,组成最优的组合构件,这种组合构件具有刚度大的特点,与钢结构相比,防火、防腐性能好,具有较大的抗扭和抗倾覆能力,而且,与钢筋混凝土结构相比,具有重量轻,构件延性好,增加净空高度和使用面积,同时缩短施工期,节约模板,特别是在高层和超高层建筑及桥梁结构中使用组合构件,更加体现了它的承载能力高和能克服混凝土结构施工困难的特点。 由于型钢混凝土结构具有上述特点,因此在土木工程中具有广阔的应用前景。从抗震角度来讲,型钢混凝土结构适用于抗震烈度为6度至9度的多层、高层和一般构筑物。 通过实验,总结出了影响型钢混凝土抗震性能的主要因素为: 1、轴压比 实验和工程实践表明,轴压比是影响型钢混凝土偏心受压构件破坏形式、延性、变形能力和抗震性能的最重要因素。当轴压比超过一定限值时,无论配箍率如何提高,框架柱的延性都不能得到明显改善,

影响混凝土强度的主要因素

影响混凝土强度的主要因素 1.影响混凝土强度的因素很多,从内因来说主要有水泥强度、水灰比和骨料质量。 水泥强度和水灰比: 混凝土的强度主要来自水泥石以及与骨料之间的粘结强度。水泥强度越高,则水泥石自身强度及与骨料的粘结强度就越高,混凝土强度也越高。试验证明,混凝土与水泥强度成正比关系。水泥完全水化的理论需水量约为水泥重的23%左右,但实际拌制混凝土时,为获得良好的和易性,水灰比大约在0.40--0.65之间,多余水分蒸发后,在混凝土内部留下孔隙,且水灰比越大,留下的孔隙越大,使有效承压面积减少,混凝土强度也就越小。另一方面,多余水分在混凝土内的迁移过程中遇到粗骨料时,由于受到粗骨料的阻碍,水分往往在其底部积聚,形成水泡,极大地削弱砂浆与骨料的粘结强度,使混凝土强度下降。因此,在水泥强度和其他条件相同的情况下,水灰比越小,混凝土强度越高,水灰比越大,混凝土强度越低。但水灰比太小,混凝土过于干稠,使得不能保证振捣均匀密实,强度反而降低。试验证明,在相同的情况下,混凝土的强度( Mpa)与水灰比呈有规律的曲线关系,而与灰水比则成线性关系。 2 影响强度的其它因素

为了使混凝土能达到预定的强度,还必须在施工中搅拌均匀、捣固密实,养护良好并使之达到规定的龄期。 (一)施工条件的影响:施工条件是确保混凝土结构均匀密实、硬化正常、达到设计要求强度的基本条件。在施工过程中必须把拌合物搅拌均匀,浇注后必须捣固密实,且经良好的养护才能使混凝土硬化后达到预定的强度。采用机械搅拌比人工搅拌的拌合物更均匀,同时采用机械捣固的混凝土更密实,因此机械捣固可适用于更低水灰比的拌合物;能获得更高的强度。改进施工工艺性能也能提高混凝土强度,如采用分次投料搅拌工艺、高速搅拌机搅拌、高频或多频振捣器振捣、二次振捣工艺都会有效的提高混凝土的强度。 (二)养护条件的影响:为了获得质量良好的混凝土,混凝土成型后必须在一定的养护条件下(包括养护温度)进行养护,目的是保证水泥水化的正常进行,以达到预定的强度和其他性能。周围环境湿度是保证水泥正常水化、混凝土顺利成型的一个重要条件。在适当的湿度下,水泥能正常水化,使混凝土强度充分发展。如果湿度不足,混凝土表面会发生失水干燥现象,迫使内部水分向表面迁移,造成混凝土结构疏松、干裂,不但降低强度,而且还将影响混凝土的耐久性能。环境温度对水泥水化作用的影响是显著的。养护温度高,可以加快水泥水化速度,混凝土早期强度高;反之,混凝土在低温下强度发展相应迟缓,尤其温度在冰点以下

影响混凝土强度的主要因素

影响混凝土强度的主要因素 硬化后的混凝土在未受到外力作用之前,由于水泥水化造成的化学收缩和物理收缩引起砂浆体积的变化,在粗骨料与砂浆界面上产生了分布极不均匀的拉应力,从而导致界面上形成了许多微细的裂缝。另外,还因为混凝土成型后的泌水作用,某些上升的水分为粗骨料颗粒所阻止,因而聚集于粗骨料的下缘,混凝土硬化后就成为界面裂缝。当混凝土受力时,这些预存的界面裂缝会逐渐扩大、延长并汇合连通起来,形成可见的裂缝,致使混凝土结构丧失连续性而遭到完全破坏。强度试验也证实,正常配比的混凝土破坏主要是骨料与水泥石的粘结界面发生破坏。所以,混凝土的强度主要取决于水泥石强度及其与骨料的粘结强度。而粘结强度又与水泥强度等级、水灰比及骨料的性质有密切关系,此外混凝土的强度还受施工质量、养护条件及龄期的影响。 1)水灰比 水泥强度等级和水灰比是决定混凝土强度最主要的因素。也是决定性因素。 水泥是混凝土中的活性组成,在水灰比不变时,水泥强度等级愈高,则硬化水泥石的强度愈大,对骨料的胶结力就愈强,配制成的混凝土强度也就愈高。如常用的塑性混凝土,其水灰比均在0.4~0.8之间。当混凝土硬化后,多余的水分就残留在混凝土中或蒸发后形成气孔或通道,大大减小了混凝土抵抗荷载的有效断面,而且可能在孔隙周围引起应力集中。因此,在水泥强度等级相同的情况下,水灰比愈小,水泥石的强度愈高,与骨料粘结力愈大,混凝土强度也愈高。但是,如果水灰比过小,拌合物过于干稠,在一定的施工振捣条件下,混凝土不能被振捣密实,出现较多的蜂窝、孔洞,将导致混凝土强度严重下降。参见图3—1。 图3—1混凝土强度与水灰比的关系 a)强度与水灰比的关系 b)强度与灰水比的关系 2)骨料的影响 当骨料级配良好、砂率适当时,由于组成了坚强密实的骨架,有利于混凝土强度的提高。如果混凝土骨料中有害杂质较多,品质低,级配不好时,会降低混凝土的强度。 由于碎石表面粗糙有棱角,提高了骨料与水泥砂浆之间的机械啮合力和粘结力,所以在原材料、坍落度相同的条件下,用碎石拌制的混凝土比用卵石拌制的混凝土的强度要高。 骨料的强度影响混凝土的强度。一般骨料强度越高,所配制的混凝土强度越高,这在低水灰比和配制高强度混凝土时, 特别明显。骨料粒形以三维长度相等或相近的球形或立方体

减水剂对混凝土质量的影响

减水剂对混凝土质量的影响 XX 湖南城建职业技术学院,材检0901班 摘要:混凝土外加剂有很多种类,主要按其功能分类,有高性能减水剂、高效减水剂、普通减水剂、引气减水剂、泵送剂、早强剂、缓凝剂和引气剂等。高性能减水剂是近年开发的新型外加剂,目前主要使用品种为聚羧酸盐类产品,它具有“流状”的结构特点,根据其组成的分子设计引入不同功能团,控制成分比例和反应条件可生产出具有各种不同性能和特性的高性能型、早强型、标准型和缓凝高性能型等减水剂。 关键词:减水剂;应用;性能 1.前言 随着科学技术的发展,人们对混凝土的性能提出了各种新的更高的要求。从上世纪40年代开始推广混凝土外加剂以来,它的发展不但从微观亚微观层次改变了硬化混凝土的内部结构,并且在工艺过程改变了新拌混凝土的结构。 减水剂又称分散剂或塑化剂,是最常用和最重要的外加剂。使用它时能在不影响混凝土和易性的条件下使新拌混凝土的用水量减少。它的主要成分是表面活性剂,它对新拌混凝土所起的作用也主要是表面活性作用。 减水剂可以减少混凝土的拌合物的用水量,提高混凝土的强度和耐久性、抗渗性;改善混凝土的工作性,提高施工速度和施工质量,满足机械化施工要求,减少噪声及劳动强度,节约水泥用量等。 2.减水剂对新拌混凝土流变性质的影响 要制备流动性质好的新拌混凝土,必须拆开降低水泥颗粒间阻碍流动的粘滞结构,使水泥颗粒在水介质中充分分散。影响水泥胶融的性质很多,如水泥的矿物组成,水泥颗粒的形状尺寸,矿物结晶的完整程度以及操作条件和环境因素等。上述各种因素直接或间接地控制

着浆体中水泥颗粒的稳定性。介质条件不同就有可能改变浆体中水泥颗粒所带电荷的数值,即改变颗粒间的静电斥力。 当新拌混凝土中适量加入减水剂后,水泥颗粒所带的电位增大,而水泥颗粒间的电性斥力大大增加,导致新拌混凝土的粘度下降,这样就促使整个分散体系的稳定性提高,流动性得到改善。 另外,水泥浆体从稀释到凝聚状态之间还存在着一个存在于两者之间的中间状态,即触变状态。这是由于水泥净浆中的凝聚结构在剪切速率增大的情况下再度分散引起的。具体表现为剪切速率增大时阻力减小,粘度减小。即浆体静止不同时成凝聚状态,若一经搅拌或摇动已凝聚的浆体又重新获得流动性。一般在水泥浆体中掺入适量减水剂能促使新拌混凝土显示出较强的触变性。这是由于水泥颗粒表面对减水剂的吸附溶剂化膜层的形成以及电位的提高等原因,若稍加振动又会表现出较好的流动性。不加减水剂的新拌混凝土的触变性要弱很多。 3.减水剂对新拌混凝土和易性的影响 影响新拌混凝土和易性的因素很多,主要是水泥,集料,用水量,外加剂的性质和用量,温度等因素。当其它条件相同时和易性则与减水剂的种类和掺量有一定关系。新拌混凝土的和易性通常用塌落度值测定来衡量。混凝土拌制后到浇灌需要有一段运输等候停放时间,往往使混凝土和易性变差,造成施工困难。实验证明掺用减水剂能改善混凝土的初始和易性,但往往其坍落度损失要比不掺减水剂的基准混凝土要大些,其原因有: ⑴水泥中矿物吸附减水剂能力有强弱。水泥中主要矿物吸附减水剂能力顺序为C3A >C4AF>C3S>C2S,一加水搅拌,就促使较多分散剂涌聚到水泥颗粒表面,整个液相中减水剂浓度下降,当浇灌时,对水泥起分散作用的减水剂量渐显不足,因而坍落度随时间而逐渐减小。 ⑵气泡外溢及水分蒸发。即使是非引气性减水剂在掺入混凝土中时也有一定气派引入,而在运输等过程中气泡不断外溢消散,并伴随着水分蒸发,高效减水剂表现的尤为显著。 ⑶掺入减水剂后由于分散、湿润等作用,使水泥初期水化速度过快,水化产物增多,固体量增加,整个体系粘度增加,致使坍落度值下降较快,高温条件下更甚。

GB8076-2008混凝土外加剂规范

目次 前言…………………………………………………………………………………………………………………引言…………………………………………………………………………………………………………………1范围……………………………………………………………………………………………………………2规范性引用文件………………………………………………………………………………………………3术语和定义……………………………………………………………………………………………………4代号……………………………………………………………………………………………………………5要求……………………………………………………………………………………………………………6试验方法………………………………………………………………………………………………………7检验规则………………………………………………………………………………………………………8产品说明书、包装、贮存及退货……………………………………………………………………………附录A(规范性附录)混凝土外加剂性能检验用基准水泥技术条件………………………………………附录B(规范性附录)混凝土外加剂中氯离子含量的测定方法(离子色谱法)…………………………附录C(资料性附录)混凝土外加剂…………………………………………………………………… 表1受检混凝土性能指标………………………………………………………………………………………表2匀质性指标…………………………………………………………………………………………………表3试验项目及所需数量………………………………………………………………………………………表4外加剂测定项目……………………………………………………………………………………………

对混凝土外加剂对混凝土性能的影响研究

对混凝土外加剂对混凝土性能的影响研究 【摘要】混凝土外加剂的应用越来越广泛,外加剂对混凝土性能的影响也得到了业内人士的广泛重视。本文从混凝土外加剂的定义和作用出发,探讨了减水剂对混凝土性能的影响分析、引气剂对混凝土性能的影响分析以及应用外加剂时应注意的问题,为外加剂的应用提供参考。 【关键词】混凝土;外加剂;减水剂;引气剂 1、混凝土外加剂的定义和作用 为了提高新拌混凝土的性能,通常在混凝土搅拌前或搅拌中加入混凝土外加剂(一般掺量不大于5%)。外加剂是改善混凝土质量的辅助材料,其作用效果因其种类而不同,下面详细介绍常用外加剂的作用及其效果:①普通减水剂、高效减水剂及高性能减水剂的作用有以下几个方面:a.可以很好的增强新拌混凝土的易浇注性和粘聚性;b.节约水泥用量,在混凝土坍落度一定时,由于外加剂的使用可以很好的增加其强度,减少成本;c.增加混凝土的耐久性,在水泥用量及混凝土坍落度一定时,减水剂可以很好的提高混凝土的耐久性,从而增强了混凝土强度,增加建筑的使用寿命;d.增加混凝土的流动性,减水剂的使用可以在水泥及混凝土用水量一定时,很好的增强其流动性,使混凝土更容易搅拌均匀,

更方便浇注施工。②引气剂及引气减水剂的作用:加入引气剂的混凝土内部裹含有均匀的微小气泡,这些气泡非常稳定,可以增加混凝土的抗化学腐蚀能力,同时又可以使混凝土的保水性及粘聚性增强。 2、减水剂对混凝土性能的影响分析 2.1作用机理 混凝土减水剂主要是由阴离子型的表面活性剂组成的。将其加入混凝土之后,新拌混凝土的塑化作用加强,从而优化了混凝土的性能。与传统的混凝土相比,加入减水剂使混凝土具有分散、润滑及空间位阻作用。1)分散作用:水泥加水拌合后,由于水泥颗粒分子引力的作用,使水泥浆形成絮凝结构,使一部分的拌合水被包裹在水泥颗粒之中,不能参与自由流动和润滑作用,从而影响了混凝土拌合物的流动性,当加入减水剂后,由于减水剂分子能定向吸附于水泥颗粒表面,使水泥颗粒表面带有同一种电荷,形成静电排斥作用,促使水泥颗粒相互分散,絮凝结构破坏,释放出被包裹部分水,从而有效地增加混凝上拌合物的流动性。2)润滑作用:减水剂中的亲水性很强,因此水泥颗粒表面的减水剂能与水分子形成一层稳定的溶剂化水膜,这层水膜具有很好的润滑作用,能有效降低水泥颗粒间的滑动阻力,从而使混凝土流动性进一步提高。3)空间位阻作用:减水剂结构中具有亲水性的支链,伸展于水溶液中,从而在所吸附的水泥

聚羧酸高性能减水剂缓凝型说明书

森普牌SPYJ-3型聚羧酸系高性能减水剂(缓凝型) 产品说明书 森普牌SPYJ-3型聚羧酸系缓凝高性能减水剂是目前国内外最新的引领产品。它与常用的聚羧酸系高性能减水剂缓凝型相比,具有减水率高、掺量低、与水泥适应性好、坍落度损失小和无污染等特点。同时具有改善新拌混凝土各种性能指标和提高工作性等多种作用。本产品为无色透明液体,无毒、无腐蚀性、不易燃、对钢筋无锈蚀、对人体健康无害。 本产品目前参照执行GB/T8076-2008《混凝土外加剂》、GB/T8077-2012《混凝土外加剂匀质性试验方法》、TB/T3275-2011《铁路混凝土》、GB18582-2008《室内装饰装修材料内墙涂料中有害物质限量》标准。 一、技术性能 1.增强效果:与基准混凝土同坍落度和等水泥用量的前提下,减水率≥25%,混凝土各龄期强度均有显着提高,7天抗压强度比≥140%,28天抗压强度比≥130%。 2.泵送性能:具有显着的可泵性。与基准混凝土相比,在同水灰比的前提下,净增坍落度≥100mm,1小时坍落度经时变化量(用于配制泵送混凝土时)≤60mm。 3.缓凝效果:能显着增大混凝土的流动性,改善操作性,可延缓水泥水化放热峰值,避免施工结合层冷缝现象,有效提高其抗裂防水性能。 4.工作性能:具有显着改善新拌混凝土的和易性、保水性和泌水性等操作性能。 5.表面光洁:掺用本产品的混凝土,具有粘聚性强、含气量少和泌水率小等特点,能有效改善高架、高速公路、桥梁等各类清水混凝土表面的光洁和美观 6.张拉抗折:本产品具有先缓凝后早强的功能,在确保掺量的前提下,可满足混凝土的3d (除凝结时间) 张拉和28d抗折强度的要求 7.特效功能:在配制高强混凝土时,其弹性模量、抗渗性、抗收缩、抗徐变和耐久性等高性能指标均可满足要求。 二、匀质指标 根据产品的性能指标和用户的要求,符合国家、行业及企业标准。 三、应用范围 本产品适用于各类泵送混凝土、大体积混凝土、高架、高速公路、桥梁、水工混凝土。特别适用于重点工程和有特殊要求的混凝土。 四、使用方法 1.本产品掺量范围~%(以胶凝材料量计),可根据与水泥的适应性、气温的变化和混凝土坍落度等要求,在推荐范围内调整确定最佳掺量。 2.按计量,直接掺入混凝土搅拌机中使用。 3.在计算混凝土用水量时,应扣除液剂中的水量。 4.在使用本产品时,应按混凝土试配事先检验与水泥的适应性。 五、注意事项 1.在水泥变更品种或新进水泥时,应做与水泥兼容性检验。 2.对于要求缓凝的混凝土,应按混凝土试配事先检验凝结时间。 3.必须按试验配合比正确掺量,浇筑混凝土时,应严格按施工规范操作。 4.在与其他外加剂合用时,宜先检验其兼容性。 5.在冬季施工期间,为了提高混凝土早期强度,应适当调整混凝土的水泥用量。 6.与常规混凝土工程一样,必须按施工规范加强养护。 7.使用本产品,应提前1~3天通知厂方。 六、包装贮存 1.可采用灌车运装;塑料桶1000kg/桶;也可根据用户要求做特殊包装。 2.本产品质保期壹年,在质保期内如有沉淀,经搅匀后使用,不影响效果。

影响混凝土质量的主要因素

影响混凝土质量的主要因素 摘要:在我国的土建工程施工中,掌握影响混凝土质量的主要因素,切实控制施工质量,对促进我国混凝土施工技术等具有重要意义。本文对施工中影响混凝土的施工质量的因素进行了探讨有足够的重视。关键词:土建工程混凝土质量控制 2008年以来,随着国家对实体经济刺激政策的逐步落地生根,我国的基础设施建设和固定资产投资进入一个高速发展的阶段。混凝土作为基础设施建设的主要建筑材料,其质量好坏,直接影响结构物的安全和造价。因此在施工中必须对混凝土的施工质量有足够的重视和有效地控制。 1.混凝土的强度及影响因素 混凝土是由水泥、水、细骨料、化学外加剂、矿物质等材料按照一定比例配合而成,经过均匀拌制,振捣密实成型及养护硬化而成的人工石材。混凝土质量的关键指标之一是抗压强度,混凝土抗压强度与混凝土用水水泥的强度成正比。当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。所以混凝土施工必须核对、选好水泥标号。 影响混凝土抗压强度的主要因素是水泥强度和水灰比,因此要提高混凝土的质量,关键是控制好水泥和混凝土的水灰比两个主要环节。另外,粗骨料对混凝土强度也有一定影响,当石质强度相等时,碎石表面比卵石表面粗糙,它与水泥砂浆的粘结性比卵石强,当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度

比卵石强。因此我们一般对混凝土的粗骨料控制在3.2cm左右,细骨料品种对混凝土强度影响程度比粗骨料小,所以混凝土公式内没有反映砂种柔效,但砂的质量对混凝土质量也有一定的影响。因此,砂石质量必须符合混凝土各标号用砂石质量标准的要求。由于施工现场砂石质量变化相对较大,因此现场施工人员必须保证砂石的质量要求,并根据现场砂含水率及时调整水灰比,以保证混凝土配合比,不能把实验配比与施工配比混为一谈。混凝土强度只有在温度、湿度条件下才能保证正常发展,应按施工规范的规定予在养护、气温高低对混凝土强度发展有一定的影响。冬季要保温防冻害,夏季要防暴晒脱水。 2.混凝土标号与混凝土平均强度及其标准差的关系 混凝土标号是根据混凝土标准强度总体分布的平均值减去1.645倍标准值确定的。这样可以保证混凝土确定均有95%的保证率,低于该标准值的概率不大于5%,充分保证了建筑物的安全,从此推定,抽样检查的几组试件的混凝土平均确定一定大于等于混凝土设计标号。通过公式计算可以看出,施工人员不但要使混凝土平均确定大于混凝土标号,更重要的是千方百计的减少混凝土确定的变异性,即要尽量使混凝土标准差降到较低值,这样,既保证了工程质量,也降低了工程造价。 3.混凝土质量控制的有效措施 3.1原材料的质量要保证 混凝土是由水泥、水、细骨料、化学外加剂、矿物质混合材料,

影响高性能混凝土工作性能的因素.

随着科学技术和生产力的发展,高性能混凝土应用越来越广泛,如高速铁路、高层建筑,跨海大桥、海底隧道等,高性能混凝土具有独特的优越性,高工作性、高耐久性,在工程中安全使用寿命、经济合理性、环境条件的适应性等方面产生了明显的效益。 高性能混凝土的工作性能主要是保证混凝土结构成型时无原始缺陷,从而保证混凝土的耐久性。良好的工作性能是使混凝土质量均匀、获得高性能,从而安全可靠的前提。 高性能混凝土的工作性能主要包括三部分内容: 1. 流动性:表征拌和物流动的难易程度。 2. 粘聚性:拌和物在搅拌、运输、泵送、浇注、振实过程中不容易出现泌水和离析分层的性能。 3. 可泵性:拌和物在泵压下在管道中移动摩擦阻力和弯头阻力之和的倒数。 影响高性能混凝土的工作性能的因素: 一、砂 砂的粗细程度、细颗粒含量、级配均严重影响高性能混凝土的工作性,高性能混凝土应采用细度模数在 2.6-3.0之间的 II 区砂, 细颗粒含量 0.315mm 筛以下达到15%, 含泥量控制在 2%以下。往往受资源的局限不容易找到上述要求的砂,偃师西梁场使用的砂细度模数在 2.8-3.3之间满足Ⅰ区和Ⅱ区颗粒级配,但 0.315mm 筛以下颗粒含量在 5%以内,混凝土施工过程中经常出现堵管、爆管现象。在保证混凝土的抗压强度、弹性模量、耐久性的前提下,通过提高砂率和细砂与粗砂掺配的方法,满足了混凝土的工作性。二、碎石 碎石的粒径、形状、级配对混凝土所需的水泥浆量有重大影响,从而影响混凝土的工作性能。高性能混凝土应选择针片状含量少、级配良好、石粉含量少的碎石。颗粒级配良好可以减少混凝土所需水泥浆量。高性能混凝土碎石中的泥和石

减水剂对混凝土性能影响

减水剂对混凝土性能影响的研究 1 引言 混凝土外加剂是在混凝土、水泥净桨或砂浆拌合时、拌合前或额外拌合中掺入,用以改善混凝土性能的化学物质。非特殊情况,加入量一般不超过水泥质量的5%。目前,针对混凝土工程的各种特殊要求,已经研制出了许多种能满足各式各样要求的外加剂,将它们以适当方式加到混凝土中就可以达到一些预期的效果。根据这些外加剂的作用,可分为减水剂、速凝剂、缓凝剂、引气利、防水剂、粘结剂、膨胀剂、阻锈剂、消泡剂、脱模剂、着色剂、防潮剂等等。 这些混凝土外加剂按其主要功能可分为四类: (1)改善混凝土拌合物流变性能的外加剂,包括减水剂、引气剂和泵送剂等。 (2)调节混凝土凝结时间、硬化性能的外加剂,包括缓凝剂、早强剂和速凝剂等。 (3)改善混凝土耐久性的外加剂,包括引气剂、防水剂和阻锈剂等。 (4)改善混凝土其它性能的外加剂,包括粘结剂、膨胀剂、阻锈剂、消泡剂、脱模剂、着色剂、防潮剂等等。 本文先介绍几种常用的外加剂,再着重对混凝土减水剂的分类、作用机理、现状及发展加以阐述。此外,本文还针对目前常用的几种检测混凝土初终凝时间的方法,分析了其优点和不足。并提出了一种新的检测方法——收缩率测定法。 2混凝土外加剂 2.1外加剂的分类 对外加剂可按其功能和化学成分分类。

按功能分类,有改善混凝土拌和物流变性能的,有调节混凝土凝结时间和硬化性能的,有改善混凝土耐久性能的;按化学成分分类,有无机类、有机类、有机无机复合类共三类。2.1.1 混凝土减水剂 减水剂能在不影响和易性的条件下使给定混凝土的拌和用水量减少,在不影响用水量的条件下使混凝土拌和物的和易性增加。此类减水剂可分为普通减水剂和高效减水剂。 ①普通减水剂:要求减水率>5%,龄期为3-7天的混凝土抗压强度提高10%,龄期为28天的混凝土抗压强度提高5%以上。常用的普通减水剂有木质素磺酸钙减水剂。 ②高效减水剂:能大幅度地减少拌和用水量或显著提高混凝土的流动度。要求减水率>10% ,龄期为3天的混凝土抗压强度提高25%以上,龄期为28天的混凝土抗压强度提高巧%以上。目前常用的有聚烷基芳基磺酸盐类和密胺类减水剂。 减水剂对新拌棍凝土性能的影响主要有和易性的改善,拌和用水量的减水以及含气量有所增加,凝结时间有所延长和水泥水化放热速度减缓。 减水剂对硬化混凝土性能的影响主要有强度的提高,变形能力的增强,抗渗能力的提高和耐冻融性能的提高,且对钢筋无危害,有减缓混凝土中钢筋锈蚀的作用。 2.1.2 缓凝剂 缓凝剂的种类: ①普通缓凝剂:能延长混凝土凝结时间的外加剂。 ②缓凝减水剂:兼有缓凝和减水功能的外加剂。 ③缓凝高效减水剂:兼有缓凝和显著减水功能的外加剂。 ④缓凝引气减水剂:兼有缓凝、引气和减水功能的外加剂。 ⑤缓凝引气高效减水剂:兼有缓凝、引气和显著减水功能的外加剂。

KD-J标准型高性能减水剂

KD-J标准型高性能减水剂 KD-J标准型高性能减水剂(HPWR-S)是目前国内外最新的引领产品。本产品为淡黄色透明液体。主要成分为羧酸聚合物,不含甲醛、无毒、不燃、对人体无害、对钢筋无锈蚀。与传统的高效减水剂相比,具有高减水率、高早强、高增强、低坍损、低收缩、更环保的特点。尤其适用于配制高早强、高耐久、高流态、高强度的混凝土及对外观质量要求高的清水混凝土。 一、匀质性指标 根据产品的性能指标和用户的要求,符合国家、行业及企业标准。 二、主要技术性能 1、高减水率:在适当的掺量下,减水率可达35%以上,非常适合配制高强混凝土及流态混凝土,可省水泥25%以上。 2、高早强、高增强:与空白混凝土相比,3d抗压强度提高50~100%,28d抗压强度提高40~80%,90d抗压强度提高30~50%。 3、适应性好:与水泥、掺合料的相容性好,混凝土坍落度保持性能好,且几乎不受温度变化的影响。因可激发粉煤灰、矿粉等掺合料的活性,所以可大幅度提高掺合料的用量。 4、低收缩:28d收缩率比萘系高效减水剂降低20%以上,更好降低混凝土出现裂缝的机率。 5、高工作性能:混凝土和易性、粘聚性好,不离析、不泌水,从而具有更高的泵送性。 6、表面光洁:混凝土表面无泌水线、无大气泡、色差小,混凝土外观质量好,适合外观质量要求高的清水混凝土。 7、高耐久性:本产品总碱量极低,氯分子甚微,对钢筋无锈蚀危害,低温时不盐析、不结晶,引气量适中,显著改善混凝土的抗渗性能。 8、更环保:本品不含甲醛,对人体健康无害,对环境无任何污染。 9、缓凝效果显著:可大幅度延长混凝土凝结时间,延缓水泥放热峰值,避免施工冷缝,提高抗裂防水性能。 三、适用范围 1、适用高速铁路、客运专线、工业与民用建筑、道路、桥梁、港口码头、机场等工程建设的预制和现浇混凝土、钢筋混凝土及预应力混凝土。 2、尤其适用于配制高早强、高耐久、高流态、高强度的混凝土及对外观质量要求高的清水混凝土。 四、使用方法及注意事项 1、掺量为胶凝材料用量的0.6~3.5%(按重量计)。 2、本产品不得与萘磺酸系减水剂复配,当与其它外加剂产品(如缓凝剂、 阻锈剂等)同时使用时,应预先进行混凝土相容性试验,更换外加剂时应清 洗储罐。 3、养护:混凝土终凝后应立即开始覆盖和保湿养护。 4、参照GB50119-2013《混凝土外加剂应用技术规定》有关规定施工。 五、包装、储存 1、本品为液体,可用塑料桶及铁桶包装,也可采用罐车装运。 2、在原装时,避免阳光直晒,且在+5~+35℃环境中存放,保质期为12个月。 注:本产品介绍的技术资料以科学为依据,现提供的资料适用于一般情况,不保证

影响混凝土强度因素

影响混凝土强度因素; 1、原材料 水泥强度,包括早期与后期 掺合料,品种与活性 砂石,砂石得级配与含泥量、针片状等含量 外加剂,有得外加剂就是早强,有得缓凝,但不影响后期强度,部分外加剂引气量高会影响强度。 2、配合比 合理得调整水灰比与砂率。 3、养护 养护温度,温度高则强度高,温度低则强度低,当然不不能用火烤,高于60多度混凝土水化产物会分解得,导致强度降低。 4、周边环境 有无腐蚀性得介质存在,如酸碱盐等 我说点现场需具体考虑得: 天气,需考虑就是否下雨,降温。 人员配制,如果砼工劳动力不足,会影响浇筑质量。 掺与料,现在都就是商混,掺与料,水灰比都不需要工长操心了,只要控制如丹落度与禁止工人往砼里加水,基本上就相当于控制住了砼质量。 浇筑方案,大体积砼如果浇筑,一层砼,先浇什么后浇什么都要有方案。 养护要跟上。 收面,找平,做好,就OK了影响因素与控制措施 混凝土内部得温度与混凝土厚度及水泥品种、用量有关。混凝土越厚,水泥用量越大,水化热越高得水泥,其内部温度越高,形成温度应力越大,产生裂缝得可能性越大。 对于大体积混凝土,其形成得温度应力与其结构尺寸相关,在一定尺寸范围内,混凝土结构尺寸越大,温度应力也越大,因而引起裂缝得危险性也越大,这就就是大体积混凝土易产生温度裂缝得主要原因。因此防止大体积混凝土出现裂缝最根本得措施就就是控制混凝土内部与表面得温度差。 3、1混凝土原材料及配合比得选用 (1)尽量选用低热或中热水泥,减少水泥用量。 大体积钢筋混凝土引起裂缝得主要原因就是水泥水化热得大量积聚,使混凝土出现早期升温与后期降温,产生内部与表面得温差。减少温差得措施就是选用中热硅酸盐水泥或低热矿渣硅酸盐水泥,在掺加泵送剂或粉煤灰时,也可选用矿渣硅酸盐水泥。再有,可充分利用混凝土后期强度,以减少水泥用量。改善骨料级配,掺加粉煤灰或高效减水剂等来减少水泥用量,降低水化热。 (2)掺加掺合料 大量试验研究与工程实践表明,混凝土中掺入一定数量优质得粉煤灰后,不但能代替部分水泥,而且由于粉煤灰颗粒呈球状具有滚珠效应,起到润滑作用,可改善混凝土拌合物得流动性、粘聚性与保水性,从而改善了可泵性。 特别重要得效果就是掺加原状或磨细粉煤灰后,可以降低混凝土中水泥水化热,减少绝热条件下得温度升高。在混凝土中掺加一定量得具有减水、增塑、缓凝等作用得外加剂,改善混凝土拌合物得流动性、保水性,降低水化热,推迟热峰得出现时间。

影响混凝土质量的主要因素

影响混凝土质量的主要因素 来工程质量受到越来越多的社会关注。预拌混凝土有利于采用先进的工艺技术,实行专业化生产管理,产品质量好、材料消耗少、工效高、成本较低,又能改善劳动条件,减少环境污染等优势,在施工占有越来越大的比重。由于生产地点与使用地点不同,在施工中必须掌握影响混凝土质量的主要因素,切实控制施工质量。 随着改革开放进程的不断深化我国的建筑业取得了快速的发展。混凝土作为主要的建筑材料,其质量优劣,直接影响到结构物的使用安全及人民生命财产安全。在施工中我们必须对混凝土的施工质量有足够的重视。预拌混凝土是时代发展和市场经济下的产物,由于其优质、高效、环保等特点备受施工企业青睐。近年来,全国各地预拌混凝土厂家犹如雨后春笋建成投产,在为国家建筑业增添活力的同时,也出现了许多值得重视和解决的问题。 1、预拌混凝土质量的外部因素 随着市场竞争愈来愈激烈,生产厂家为生存相互压价,最终导致预拌混凝土质量普遍下降,最近几年较大的工程质量事故的事例屡屡见诸报端。再者生产与施工管理两张皮,预拌混凝土的生产、运输、浇筑成型等环节的质量要求在国家或地方规范、标准中均有相关规定。但在实际过程中,往往出现供需双方管理界限问题,因质量造成的责任纠纷不断,厂家指责施工方浇筑方法不正确,养护不及时,施工方指责厂家产

品不合格,运输超时等。 以上问题的应采用系统的方法加以解决。宏观上积极呼吁地方政府对本地的经济发展规模,对预拌混凝土搅拌站项目要有积极的政策导向,避免出现生产力过剩现象。政府应对企业生产过程中的产品质量起到有效监督、协调等作用。其次,建筑施工企业与混凝土厂家签订合同时,不应局限于合同负责人之间理论性的谈判及笼统模糊的约定,应该要求双方负责现场管理、具有实践经验的技术人员参加,使合同条款具有实用、全面、约束力强、便于责任追溯等特点。 2、预拌混凝土质量的技术性因素 混凝土质量要求是一种综合性指标,根据工程特点,结构设计不仅对混凝土的强度等级提出明确要求,具备相应的变形性能、耐久性等,而且在施工过程中还需混凝土具有和易性。混凝土抗压强度与混凝土所用水泥的强度成正比,按公式计算,当水灰比相等时,高强度等级水泥比低强度等级水泥配制出的混凝土抗压强度高许多。所以预拌混凝土生产时应严格执行技术要求,切勿用错水泥标号及用量。实践中,不少厂家为降低成本,想方设法降低水泥用量,为在数据上使混凝土试块抗压强度符合要求,采用非统计方法评定,但如采用统计方法评定时却不合格,希望工程技术、质量管理人员及监理单位注意此类问题。 由上述可知,影响混凝土抗压强度的主要因素是水泥强度和水灰比,

减水剂的作用机理普通混凝土减水剂的作用机理

减水剂的作用机理普通混凝土减水剂的作用机理减水剂的作用机理 减水剂作用机理 混凝土中加入减水剂后,能够打破这种絮凝结构,把颗粒之间的自由水分释放出来。其作用机理如下: 1、吸附分散作用机理 吸附分散作用是指:1、同性电荷的相斥作用;2、浆体间的润滑作用,氢链缔合;极性微气泡。 2、空间位阻效应 空间位组效应是指减水剂的主链、支链、侧链形成梳状吸附网络。聚多元磷酸体系有良好的分散性主要得益于空间位组效应和犹豫本身所带电荷所引起的静电排斥作用。 .gygor. 8880型速凝剂/水泥速凝剂/782型速凝剂

8880型水泥速凝剂为庐江矾矿速凝剂厂主要产品;该速凝剂吸取国外现进的低碱速凝剂配方;质量优良;并通过ISO9001:2000认证;它广泛用于各种混凝土施工建 设中;8880型混凝土粉状速凝剂是经过精心选料、室内试验、微观分析由 中国建筑研究所研制的一种新型复合外加剂,适用于铁路、公路、 军工、地铁、城市、地下空间建筑,各类型隧道、矿山、井巷、护坡及抢 险加固工程的喷射砼施工,拥有广泛的应用领域。 主要技术性能: 1、凝结时间:初凝1~5min,终凝5~10min,适宜掺量为胶凝材料用量的3—5%; 2、碱金属含量 3、细度:8mm孔筛,筛余物小于10%;

4、喷射砼早期强度高,其28天龄期抗压强度保存率达80—100%; 5、喷料粘聚性好,对钢筋无锈蚀作用,提高抗渗标号,凝结 快,一次喷层厚,喷拱可达130mm,喷壁可达200mm以上。 使用方法: 先按喷射混凝土配比把所喷物料搅拌均匀,在喷射时随机添加 速凝剂。建议您在使用前选择适宜掺量及凝结时间的测定试 验。 注意事项: 1,请不要在物料搅拌时添加该品,因石子、砂子含有大量的水份,速凝剂短期时间内吸水在未喷射时分解其速凝成份,影响凝结时间,降低混凝土强度,将导致喷射砼的不良效果。

减水剂对混凝土的影响

减水剂对混凝土的影响 摘要:目前,随着建筑业的不断发展,对混凝土的技术性能提出了更高的要求,如:高强度、速凝、低水化热、抗冻、抗渗、密实性。要使混凝土具备这些性能,只有使用高性能外加剂。本文通过几种外加剂对抗压强度的比和减水率计算,得出UNF-5和MZY-A1为本混凝土体系下较好的外加剂,并推测了两种外加剂的作用机理。本文对实际生产具有指导意义。 关键词:减水剂;混凝土;抗压强度;减水率;作用机理 引言 混凝土是世界上用量最大、应用最广泛的建筑材料。随着新结构和新工艺的发展,混凝土向着具有调凝、降低水化热、高强和高耐久性等性能;同时还要求制备能耗低、成本低、适于快速施工方向发展。减水剂技术也己成为混凝土向绿色混凝土、高科技领域发展的关键技术[1-2]。高效减水剂对水泥颗粒的分散性强烈、减水率高、坍落度损失小、早强效果好[3]。掺这类外加剂可以使混凝土拌合物的流动性大大提高,或者在保持相同流动性的情况下大幅度减少混凝土拌合物的用水量,同时可使混凝土具有高耐久性,因而可以制得高流动性、高强度等高性能混凝土[4-6],这对于大体积混凝土工程、海上建筑设施、轻质高强混凝土构件和制品等具有十分重大的意义。减水剂的应用已成为混凝土技术发展的一个重要的里程碑[7-10]。由于外加剂种类繁多,如何选取混凝土体系的外加剂成为当代困扰混凝土发展的问题。混凝土抗压强度和减水率能反映外加剂的两个重要指标。 1原材料及仪器 水泥:保定太行和益水泥厂,普通硅酸盐水泥(P·O 42.5)。 细集料:易县十里铺。 粗集料:易县半壁店。 水:自来水。 外加剂:MZY-A1、UNF-5、EP、FSS-V、CC-2、UNF-1。 SJD60型强制式单卧轴混凝土搅拌机:上海英松工矿设备仪器有限公司 YES-2000A型数显式液压压力试验机:济南天辰试验机制造有限公司 NYL-300型压力试验机:无锡建筑材料仪器机械厂

高效减水剂的作用及原理

高效减水剂的作用及原理 时间:2009-07-20 00:04来源:砼建外加剂网作者:砼建公司点击:151次 高效减水剂是指在混凝土和易性及水泥用量不变条件下,能减少拌合用水量、提高混凝土强度;或在和易性及强度不变条件下,节约水泥用量的外加剂。与普通减水剂相比,减水及增强作用都较强。 高效减水剂的作用可以有效地减少了混凝土的的塌落度损失,改善混凝土的工作度,提高流动性,在高性能混凝土中发挥重要的作用,只是至今为止仍旧没有一个完美的理论来解释高效减水剂的作用机理,但有几个理论为大家普遍认同。 1)静电斥力理论 水泥水化后,由于离子间的范德华力作用以及水泥水化矿物、水泥主要矿物在水化过程中带不同电荷而产生凝聚,导致了混凝土产生絮凝结构。高效减水剂大多属阴离子型表面活性剂,掺入到混凝土中后,减水剂中的负离子-SO—、-COO—就会在水泥粒子的正电荷Ca2+矿的作用下而吸附于水泥粒子上,形成扩散双电层(Zel。a电位)的离子分布,在表面形成 扩散双电层的离子分布,使水泥粒子在静电斥力作用下分散,把水泥水化过程中形成的空间网架结构中的束缚水释放出来,使混凝土流动化。Zeta电位的绝对值越大,减水效果就越好。随着水泥的进一步水化,电性被中和,静电斥力随之降低,范德华力的作用变成主导,对于萘系、三聚氰胺系高效减水剂的混凝土,水泥浆又开始凝聚,塌落度经时损失比较大,所以掺入这两类减水剂的混凝土所形成的分散是不稳定的。而对于氨基磺酸、多羧酸系高效减水剂,由于其与水泥的吸附模型不同,粒子间吸附层的作用力不用于前两类,其发挥分散作用的主导因素不是Zeta电位,而是一种稳定的分散。 2)立体位阻效应 掺有高效减水剂的水泥浆中,高效减水剂的有机分子长链实际上在水泥微粒表面是呈现各种吸附状态的。不同的吸附态是因为高效减水剂分子链结构的不同所致,它直接影响到掺有该类减水剂混凝土的坍落度的经时变化。有研究表明萘系和三聚氰胺系减水剂的吸附状态是棒状链,因而是平直的吸附,静电排斥作用较弱。其结果是Zeta电位降低很快,静电衡容易随着水泥水化进程的发展受到破坏,使范德华引力占主导,坍落度经时变化大。而氨基磺酸类高效减水剂分子在水泥微粒表面呈环状、引线状和齿轮状吸附,它使水泥颗粒之问的静电斥力呈现立体的交错纵横式,立体的静电斥力的Zeta电位经时变化小,宏观表现为分散性更好,坍落度经时变化小。而多羧酸系接枝共聚物高效减水剂大分子在水泥颗粒表面的吸附状态多呈齿形。这种减水剂不但具有对水泥微粒极好的分散性而且能保持坍落度经时变化很小。原因有三:其一是由于接枝共聚物有大量羧基存在.具有一定的螫合能力,加之链的立体静电斥力构成对粒子问凝聚作用的阻碍;其二是因为在强碱性介质例如水泥浆体中,接枝共聚链逐渐断裂开,释放出羧酸分子,使上述第一个效应不断得以重视;其三是接枝共聚物Zeta电位绝对值比萘系和三聚氰胺系减水剂的低,因此要达到相同的分散状态时,所需要的电荷总量也不如萘系和三聚氰胺系减水剂那样多。对于有侧链的聚羧酸减水剂和氨基磺酸盐系高效减水剂,通过这种立体排斥力,能保持分散系统的稳定性。 3)润滑作用 高效减水剂的极性亲水基团定向吸附于水泥颗粒表面,多以氢键形式与水分子缔合,再加上水分子之问的氢键缔合,构成了水泥微粒表面的一层稳定的水膜,阻止水泥颗粒问的直接接触,增加了水泥颗粒间的滑动能力,起到润滑作用,从而进一步提高浆体的流动性。水泥浆巾的微小气泡,同样对减水剂分的定向吸附极性基团所包裹,使气泡与气泡及气泡 与水泥颗粒问也因同电性相斥而类似在水泥微粒间加入许多微珠,亦起到润滑作用,提高流动性。 2 与水泥的适应性问题

相关主题
文本预览
相关文档 最新文档