提高奥氏体耐磨钢耐磨性的几种方法
- 格式:pdf
- 大小:126.08 KB
- 文档页数:3
金属材料热处理方法有几种?各有什么特点?金属材料热处理方法有退火、谇火及回火,渗碳、氮化及氰化等。
(1) 退火处理退火处理按工艺温度条件的不同,可分为完全退火、低温退火和正火处理。
①完全退火是把钢材加热到Ac3 (此时铁素体开始溶解到奥氏体中,指铁碳合金平衡图中Ac3,即临界温度)以上20〜30℃,保温一段时间后,随炉温缓冷到400〜500(,然后在空气中冷却。
完全退火适用于含碳量小于0.83%的铸造、锻造和焊接件。
目的是为了通过相变发生重结晶,使晶粒细化,减少或消除组织的不均匀性,适当降低硬度,改善切削加工性,提高材料的韧性和塑性,消除内应力。
② 低温退火是一种消除内应力的退火方法。
对钢材进行低温退火时.先以缓慢速度加热升温至500〜600匸,然后经充分的保温后缓慢降温冷却。
低温退火(消除内应力退火)主要适用于铸件和焊接件,是为了消除零件铸造和焊接过程中产生的内应力,以防止零件在使用工作中变形。
采用这种退火方法,钢材的结晶组织不发生变化。
③ 正火是退火处理中的一种变态,它与完全退火不同之处在于零件的冷却是在静止的空气中,而不是随炉缓慢降温冷却。
正火处理后的晶粒比完全退火更细,增加了材料的强度和韧性,减少内应力,改善低碳钢的切削性能。
正火处理主要适合那些无需调质和淬火处理的一般零件和不能进行淬火和调质处理的大型结构零件。
正火时钢的加热温度为753〜900°C。
(2) 淬火及回火处理淬火可分整体淬火和表面淬火,淬火后的钢一般都要进行回火。
回火是为了消除或降低淬火钢的残余应力,以使淬火后的钢内纟且织趋于稳定。
钢材淬火后为了得到不同的硬度,回火温度可采用几种温度段。
① 淬火后低温回火目的是为了降低钢中残余应力和脆性、而保持钢淬火后的高硬度和耐磨性,硬度在HRC58〜64范围内。
适合于各种工具、渗碳零件和滚动轴承。
回火温度为150〜250匸。
② 淬火后中温回火目的是为了保持钢材有一定的韧性、在此基础上提高其弹性和屈服极限。
复习题一、填空题1.材料力学性能的主要指标有硬度、塑性、冲击韧度、断裂韧性、疲劳强度等2.在静载荷作用下,设计在工作中不允许产生明显塑性变形的零件时,应使其承受的最大应力小于屈服强度,若使零件在工作中不产生断裂,应使其承受的最大应力小于抗拉强度。
3.ReL(σs)表示下屈服强度,Rr0.2(σr0.2)表示规定残余伸长强度,其数值越大,材料抵抗塑性性别能力越强。
4.材料常用的塑性指标有断后伸长率和断面收缩率两种。
其中用断后伸长率表示塑性更接近材料的真实变形。
5.当材料中存在裂纹时,在外力的作用下,裂纹尖端附近会形成一个应力场,用应力强度因子KI来表述该应力场的强度。
构件脆断时所对应的应力强度因子称为断裂韧性,当K I >K I c6密排六方晶格三种。
7.亚共析钢的室温组织是铁素体+珠光体(F+P),随着碳的质量分数的增加,珠光体的比例越来越大,强度和硬度越来越高,塑性和韧性越来越差。
8.金属要完成自发结晶的必要条件是过冷,冷却速度越大,过冷度越大,晶粒越细,综合力学性能越好。
9.合金相图表示的是合金的_成分___ 、组成、温度和性能之间的关系。
10. 根据铁碳合金状态图,填写下表。
11.影响再结晶后晶粒大小的因素有加热温度和保温时间、杂质和合金元素、第二项点、变形程度。
12.热加工的特点是无加工硬化现象;冷加工的特点是有加工硬化现象。
13.马氏体是碳全部被迫固溶于奥氏体的饱和的固溶体,其转变温度范围(共析刚)为+230~-50 。
14.退火的冷却方式是缓慢冷却,常用的退火方法有完全退火、球化退火、扩散退火、去应力退火、等温退火和再结晶退火。
15.正火的冷却方式是空冷,正火的主要目的是细化金属组织晶粒、改善钢的机械性能、消除在锻轧后的组织缺陷。
16.调质处理是指淬火加高温回火的热处理工艺,钢件经调质处理后,可以获得良好的综合机械性能。
17.W18Cr4V钢是高速工具钢,其平均碳含量(Wc)为:1%。
耐磨金属材料的最新研究现状关键词:耐磨材料;锰钢;抗磨白口铸铁;技术进展摘要:耐磨金属材料被广泛地应用于工业生产的各个领域, 而随着科学技术和现代工业的高速发展,由于金属磨损而引起的能源和金属材料消耗增加等所造成的经济损失相当惊人。
近年来,对金属磨损和耐磨材料的研究,越来越引起国内外人们的广泛重视。
本文概述了国内外耐磨金属材料领域研究开发的现状及取得的一系列新进展。
0 引言随着科学技术和现代工业的高速发展,机械设备的运转速度越来越高,受摩擦的零件被磨损的速度也越来越快,其使用寿命越来越成为影响现代设备(特别是高速运转的自动生产线)生产效率的重要因素。
尽管材料磨损很少引起金属工件灾难性的危害,但其所造成的能源和材料消耗是十分惊人的。
据统计,世界工业化发达的国家约30%的能源是以不同形式消耗在磨损上的。
如在美国,每年由于摩擦磨损和腐蚀造成的损失约1000亿美元,占国民经济总收入的4%。
而我国仅在冶金、矿山、电力、煤炭和农机部门,据不完全统计,每年由于工件磨损而造成的经济损失约400亿元人民币[1]。
因此,研究和发展耐磨材料,以减少金属磨损,对国民经济的发展有着重要的意义。
1国外耐磨金属材料的发展国外耐磨材料的生产和应用经过了多年研究与发展的高峰期,现已趋于稳定,并有自己的系列产品和国家标准、企业标准。
经历了从高锰钢、普通白口铸铁、镍硬铸铁到高铬铸铁的几个阶段,目前已发展为耐磨钢和耐磨铸铁两大类。
耐磨钢除了传统的奥氏体锰钢及改性高锰钢、中锰钢以外,根据其含量的不同可分为中碳、中高碳、高碳合金耐磨钢;根据合金元素的含量又可分为低合金、中合金及高合金耐磨钢;根据组织的不同还可分为奥氏体、贝氏体、马氏体耐磨钢。
而耐磨铸铁主要包括低合金白口铸铁和高合金白口铸铁两大类。
二者中最具有代表性的是低铬白口铸铁和高铬白口铸铁,而且这两种材料目前在耐磨铸铁中占有主导地位。
马氏体或贝氏体、马氏体组织的球墨铸铁在制作小截面耐磨件方面也占有一席之地,中铬铸铁则应用较少。
透平空气压缩机机体振动故障的处理毛新玲(新疆八一钢铁集团公司能源中心)摘 要 关键词 对 G BD 52/6Q 型透平空气压缩机机体振动故障原因进行分析, 介绍整个检修过程及存在的问题。
透平空气压缩机 振动 处理概述振动加剧, 声音异常, 于 1999 年 12 月 13 日解体 3# 空压机, 提前进行中修。
经过连续 6 天 14 小时的检 修, 于 1999 年 12 月 19 日试机投入运行。
1 八钢能源中心制氧分厂 1500m 3/h 制氧机主要 配套的透平压缩机共 3 台, 由日本神户生产。
该机的 流量为 10 000m 3 /h , 电机功率 1 250k W , 电机转速 为 1 480 r /m i n 。
3#透平空气压缩机机体于 1999 年 4 月开始出现振动大的现象, 但因生产需要无法停机检修, 暂时 维持运行, 决定于 2000 年再进行大中修。
后因机体解体检查及测定2 1999 年 12 月 13 日进行了透平空压气解体检查, 并进行了原始数据的测量。
3#透平空压机主机设备简图如图 1 所示。
1. 低速轴前滑动轴承;2. 低速轴后滑动轴承;3. 高速轴前滑动轴承;4. 高速轴后滑动轴承;5. 转子前滑动轴承;6. 转子后滑动轴承;7. 增速器;8. 主油泵;9. 低速轴; 10. 叶轮; 11. 转子; 12. 转子推力盘; 13. 高速轴图 1 3# 透平空压机主机设备简图压缩机解体检查测出的原始数据见表 1。
通过全面检查, 发现电机侧转子轴瓦和吸入侧 上轴瓦巴氏合金已破损掉落。
电机侧高速轴瓦下轴 瓦磨损严重, 轴瓦间隙超标, 转子轴颈严重磨损, 其 上划出许多凹槽, 椭圆度已超出技术要求范围以外, 均已不能再继续使用。
从转子 2 付轴瓦的上瓦巴氏合金破损、挤压现象, 可推断出转子的水平度发生了变化。
即转子吸入 侧高于排出侧, 后经高度尺测量, 吸入侧比排出侧高 出 0. 10mm , 转子发生了翘头。
简述钢的奥氏体化过程钢是一种重要的金属材料,广泛应用于建筑、制造、交通等领域。
而钢的性能与其组织结构密切相关,其中奥氏体是钢中最重要的组织之一。
本文将简述钢的奥氏体化过程。
一、什么是奥氏体奥氏体是一种由铁和碳组成的固溶体,具有良好的机械性能和塑性。
在钢中,奥氏体的形态、数量和分布对钢的性能起着决定性的影响。
二、奥氏体的形成钢的奥氏体化过程是指在适当的温度下,铁和碳发生固溶反应,形成奥氏体的过程。
奥氏体的形成与钢中的碳含量、温度等因素密切相关。
1. 碳含量钢中的碳含量越低,奥氏体的形成温度越低。
一般来说,碳含量低于0.8%的钢称为低碳钢,碳含量在0.8%-2.11%之间的钢称为中碳钢,碳含量高于 2.11%的钢称为高碳钢。
在低碳钢中,奥氏体的形成温度较低,而在高碳钢中,奥氏体的形成温度较高。
2. 温度温度是奥氏体形成的另一个重要因素。
在适当的温度下,钢中的碳和铁能够充分反应,形成奥氏体。
一般来说,奥氏体的形成温度在800℃-1000℃之间。
三、奥氏体的相变奥氏体的形成是一个相变过程,主要包括两个阶段:奥氏体的形核和奥氏体的长大。
1. 奥氏体的形核当钢中的温度达到奥氏体的形成温度时,奥氏体的形核开始进行。
形核是指在晶界或晶内形成奥氏体的起始过程。
形核的速度取决于温度和钢中的合金元素含量。
当温度升高或合金元素含量增加时,形核速度加快。
2. 奥氏体的长大奥氏体的长大是指形核后的奥氏体晶粒逐渐长大和增多的过程。
在奥氏体的长大过程中,晶界迁移、晶粒的吞噬和晶粒的再结晶等现象会发生,最终形成具有一定形状和尺寸的奥氏体晶粒。
四、奥氏体的应用奥氏体具有良好的塑性和韧性,因此在钢的制造和加工过程中,通常会通过控制奥氏体的形成来调节钢材的性能。
例如,在焊接过程中,通过控制焊接温度和冷却速度,可以获得不同形态和含量的奥氏体,从而实现钢材的强度和韧性的平衡。
奥氏体还可以通过热处理来改善钢材的性能。
热处理是指将钢材加热到适当的温度,保持一定时间后进行冷却,以改变钢材的组织结构和性能。
奥氏体是指一种具有特定晶体结构和化学成分的金属组织。
在冷却速度较慢的条件下,铁碳合金通常会形成奥氏体组织。
奥氏体主要是由铁和碳组成,碳的含量一般不超过2%。
奥氏体结构的特点是晶粒细小、硬度高、脆性大,并且在热处理过程中会产生强烈的变形。
奥氏体钢则是利用奥氏体组织来设计和制造的一种特殊钢材。
奥氏体钢通常具有高强度、高硬度、良好的耐磨性和耐热性等特点,因而在工程领域有着广泛的应用。
奥氏体钢的基本概念包括奥氏体组织的形成条件、晶粒细化技术、热处理工艺等方面。
在了解奥氏体钢的基本概念之前,我们需要先了解奥氏体的形成条件。
一般而言,金属材料在固态状态下,会经历从液态到固态的凝固过程。
在这个过程中,如果冷却速度足够慢,就会使得金属内部的原子有足够的时间来排列成为规则的晶体结构,这样形成的金属就是奥氏体。
在铁碳合金中,当含碳量低于0.77%时,在适当的冷却速度下就能形成奥氏体组织。
随着工业技术的发展,人们发现了一些方法来改变奥氏体组织的形貌和性能。
通过控制冷却速度、添加合金元素、进行热处理等手段,可以促使奥氏体组织变得更加致密、均匀,甚至是无损耗的。
这就使得奥氏体钢在工程领域获得了广泛的应用。
随着科学技术的不断进步,奥氏体钢的晶粒细化技术也在不断提升。
晶粒细化是指将晶粒的尺寸减小到微观或纳米级别,从而改善金属的力学性能和物理化学性能。
目前,人们已经开发出了许多晶粒细化技术,如热处理、加工变形、等离子体表面强化等,来实现奥氏体钢的晶粒细化。
除了晶粒细化技术,人们还利用热处理工艺来改善奥氏体钢的性能。
热处理是指通过加热和冷却等方式,对金属材料进行加工,改变其组织和性能。
通过热处理,可以使奥氏体钢的强度、硬度、韧性等性能得到提高,从而满足不同工程领域的需求。
奥氏体钢作为一种重要的金属材料,在工程领域有着广泛的应用。
通过深入了解奥氏体的基本概念和相关技术,我们可以更好地设计和制造出符合工程需求的奥氏体钢材料。
希望本篇文章能够为您带来一些启发和帮助。
我国高锰钢的型号1. 引言高锰钢是一种含锰量较高的特种钢材,具有优异的耐磨性、耐蚀性和高温强度等特点。
我国在高锰钢的研发和生产方面取得了显著的成就,形成了一系列具有自主知识产权的高锰钢型号。
本文将介绍我国高锰钢的型号及其特点。
2. 型号分类我国的高锰钢型号根据其化学成分、力学性能和应用领域等因素进行分类。
根据国家标准,我国高锰钢型号主要分为以下几类:2.1 高锰奥氏体耐磨钢高锰奥氏体耐磨钢是一种具有高硬度和高耐磨性的钢材,常用于矿山、建筑、冶金等领域的耐磨零部件制造。
我国的高锰奥氏体耐磨钢主要有以下型号:•Mn13•Mn13Cr2•Mn18•Mn18Cr2这些型号的高锰奥氏体耐磨钢具有较高的硬度和耐磨性,能够在恶劣的工作环境中保持较长的使用寿命。
2.2 高锰奥氏体耐酸钢高锰奥氏体耐酸钢是一种具有抗腐蚀能力的钢材,常用于化工、石油、冶金等领域的耐酸设备制造。
我国的高锰奥氏体耐酸钢主要有以下型号:•Mn13Cr2Ni•Mn13Cr2NiMo•Mn18Cr2NiMo这些型号的高锰奥氏体耐酸钢具有较好的耐蚀性和高温强度,能够在酸性环境中长期稳定工作。
2.3 高锰奥氏体耐磨耐酸钢高锰奥氏体耐磨耐酸钢是一种同时具有高硬度、高耐磨性和抗腐蚀能力的钢材,常用于冶金、矿山、化工等领域的耐磨耐酸设备制造。
我国的高锰奥氏体耐磨耐酸钢主要有以下型号:•Mn13Cr2NiMo•Mn18Cr2NiMo这些型号的高锰奥氏体耐磨耐酸钢具有较高的硬度、耐磨性和耐蚀性,能够在恶劣的工作环境中保持较长的使用寿命。
3. 型号特点我国高锰钢的型号在化学成分、力学性能和应用特点上各有不同,下面将介绍各个型号的特点。
3.1 Mn13Mn13型高锰奥氏体耐磨钢具有较高的硬度和耐磨性,适用于制造矿山设备的耐磨零部件,如破碎机的颚板、锤头等。
其主要特点包括:•化学成分:C≤1.20%,Mn≥12.00%•强度:σb≥685MPa•硬度:HB≥2003.2 Mn13Cr2Mn13Cr2型高锰奥氏体耐磨钢在Mn13的基础上添加了Cr元素,提高了其硬度和耐磨性,适用于制造对抗较严重磨损的零部件。
新型低成本耐磨钢磨损性能与机理研究本文利用美国CETR公司生产的YMT-3H摩擦磨损试验机分别对低成本的SG耐磨钢、Cr15高铬钢、75Mn高锰钢进行了常温“销-盘旋转”模式的摩擦试验,对比分析了三种材料磨损性能与材料组织、硬度以及摩擦速度之间的关系。
结果表明:三种钢材的硬度相差不大,但SG耐磨钢的耐磨损性能接近Cr15钢的耐磨性能,并高于75Mn钢的耐磨性能;三种材料中硬度越高材料耐磨性越差;当三种材料摩擦速度在42~125mm/s的范围内时,随着摩擦速度的增加,磨损速度加快。
标签:低成本;耐磨钢;磨损性能0 引言冷作模具所用钢是由常温下金属变形或成形所构成。
由于常温下材料的抵抗塑性变形能力大因此这类模具在性能上具有较高的硬度、耐磨性、强度及适当的韧性[1]。
随着现代制造业的发展,各种产品越来越注重产品外观设计和个性化定制,具体表现在产品造型愈加复杂、产品更新换代速度越来越快,因此产品冷作模具的更换频率也随之提高。
此外,小截面低质量的冷作模具钢进入低价竞争的恶性循环[2]。
因此在保证产品质量的前提下降低材料成本,成为国内企业提高产品竞争力的重要手段之一[3-4]。
本文以某企業通过降低材料合金成分配比且采用特殊生产工艺研发的一款低成本耐磨钢为研究对象,将其与传统的高铬钢Cr15、高锰钢75Mn进行对比研究。
研究三种材料的组织、硬度、耐磨特性及磨损机理,为该耐磨钢的在电机冲槽模具上的应用提供参考依据。
1 试验材料及方法1.1 材料化学成分及组织状态试验材料分为SG耐磨钢、Cr15钢、75Mn钢三种类型,三种钢材的化学成分见表1-表3。
1.2 试验方法首先利用日本Olympus公司生产的GX51金相显微镜(见图1)获取三种钢材的金相显微组织;然后采用数显布洛维硬度计SHBRV-187.5硬度仪测试三种钢材的硬度值,在测试过程中为了减小测试误差、提高测试数据的准确性,分别在与摩擦磨损式样晶粒取向相同的面上选取5点测量,取其平均值作为测量结果;最后进行摩擦磨损试验,摩擦磨损试验所选试验机为美国CETR公司YMT-3H 摩擦磨损试验机(见图2),试验条件为“销-盘旋转”模式,试样尺寸为φ6.2mm×15mm,每摩擦磨损1min将试样与夹具称重一次。
轴承钢的热处理工艺轴承钢是一种高碳、高铬的合金钢,因其具有高硬度、高耐磨性和良好的耐疲劳性能,广泛应用于制造各种轴承、齿轮等机械零件。
热处理是轴承钢加工过程中的重要环节,通过合理的热处理工艺,可以显著提高轴承钢的性能,延长使用寿命。
本文将介绍轴承钢的热处理工艺。
一、预热处理预热处理是轴承钢热处理的第一步,其目的是消除材料内部的应力,提高材料的稳定性。
预热处理主要包括以下步骤:1.退火:将轴承钢加热到750℃左右,保温一段时间后缓慢冷却至室温。
退火可以消除材料内部的应力,改善材料的塑性和韧性。
2.球化退火:将轴承钢加热到780℃左右,保温一段时间后缓慢冷却至室温。
球化退火可以使钢中的碳化物呈球状分布,提高材料的耐磨性和韧性。
二、淬火处理淬火处理是轴承钢热处理的关键步骤,其目的是提高材料的硬度和耐磨性。
淬火处理主要包括以下步骤:1.加热:将轴承钢加热到奥氏体化温度(通常为850℃左右),保温一段时间,使钢完全奥氏体化。
2.冷却:将钢快速冷却至室温,通常采用油淬或水淬的方式。
油淬是将钢在淬火油中快速冷却,水淬是将钢在水中快速冷却。
淬火可以使钢中的奥氏体转变为马氏体,提高材料的硬度和耐磨性。
三、回火处理回火处理是轴承钢热处理的最后一步,其目的是调整材料的性能,提高其稳定性和韧性。
回火处理主要包括以下步骤:1.加热:将淬火后的轴承钢加热到回火温度(通常为150℃-650℃之间),保温一段时间。
回火温度的选择取决于所需的材料性能。
2.冷却:将加热后的轴承钢缓慢冷却至室温。
回火可以使钢中的马氏体转变为回火组织,降低材料的内应力,提高其稳定性和韧性。
根据不同的使用要求,可以选择不同的回火温度和时间,以获得所需的材料性能。
例如,低温回火可以提高材料的韧性和抗腐蚀性;高温回火可以提高材料的硬度和耐磨性。
总之,轴承钢的热处理工艺是提高其性能的关键环节。
通过合理的预热处理、淬火处理和回火处理,可以显著提高轴承钢的硬度和耐磨性,延长使用寿命。