5-3二次曲线的切线
- 格式:ppt
- 大小:147.50 KB
- 文档页数:7
样条曲线的使用方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】创建高级曲线曲线作为构建三维模型的基础,在三维建模过程中有着不可替代的作用,尤其是在创建高级曲面时,使用基本曲线构造远远达不到设计要求,不能构建出高质量、高难度的三维模型,此时就要利用UG NX中提供的高级曲线来作为建模基础,具体包括样条曲线、双曲线、抛物线、螺旋线等。
样条曲线是指通过多项式曲线和所设定的点来拟台曲线,其形状由这些点来控制。
样条曲线采用的是近似的创建方法,很好地满足了设计的需求,是一种用途广泛的曲线。
它不仅能够创建自由曲线和曲面,而且还能精确表达圆锥曲面在内的各种几何体的统表达式。
在UG NX中,样条曲线包括般样条曲线和艺术样条曲线两种类型。
1.创建一般样条曲线一般样条曲线是建立自由形状曲面(或片体)的基础。
它拟合逼真、彤状控制方便,能够满足很人一部分产品设计的要求。
一般样条曲线主要用来创建高级曲面,广泛应用于汽车、航空以及船舶等制造业。
在“曲线”工具栏中单击“样条”按钮~,打开“样条”对话框,如图5-30所示。
在该对话框中提供了以下4种生成一般样条曲线的方式。
■根据极点该选项是利用极点建立样条曲线,即用选定点建立的控制多边形来控制样条的形状,建立的样条只通过两个端点,不通过中问的控制点。
选择“根据极点”选项,在打开的对话框中选择生成曲线的类型为“多段”,并在“曲线阶次”文本框中输入曲线的阶次,然后根据“点”对话框在绘图区指定点使其生成样条曲线,最后单击“确定”按钮,生成的样条曲线如图5-31所示。
■通过点该选项是通过设置样条曲线的备定义点,生成一条通过各点的样条曲线,它与根据极点生成曲线的最大区别在于生成的样条曲线通过各个控制点。
利用通过点创建曲线和根据极点创建曲线的操作方法类似,其中需要选择样条控制点的成链方式,创建方法如图5-32所示。
■拟合该选项是利用曲线拟合的力式确定样条曲线的各中间点,只精确地通过曲线的端点,对于其他点则在给定的误差范围内尽量逼近。
§5.3 二次曲线的切线一、概念1. 定义1:如果直线与二次曲线交于相互重合的两个点,那么这条直线就叫做二次曲线的切线,这个重合的交点叫做切点;如果直线全部在二次曲线上,我们也称它为二次曲线的切线,直线上的每一个点都可以看作切点.2.定义2:二次曲线F(x, y)=0上满足条件F1(x0, y0)=F2(x0, y0)=0的点(x0, y0)叫做二次曲线的奇异点,简称奇点;二次曲线的非奇异点叫做二次曲线的正常点. 奇点是中心,但中心不一定是奇点.注:(1) 二次曲线有奇点的充要条件是I3= 0,(2) 二次曲线的奇点一定是二次曲线的中心,但反之不然.二、切线求法1.已知切点求切线:设点(x0, y0)是二次曲线F(x, y)=0上的点, 则通过点(x0, y0)的直线方程总可以写成那么此直线成为二次曲线切线的条件,当Φ(X, Y)≠0时∆=[F1(x0, y0)X +F2(x0, y0)Y]2-Φ(X, Y)⋅F(x0, y0)=0.因为点 (x0, y0) 在二次曲线上,所以F(x0, y0)=0;因而上式可化为F1(x0, y0)X +F2(x0, y0)Y=0.当Φ(X, Y)= 0时除了F(x0, y0)=0外,唯一的条件仍然是F1(x0, y0)X +F2(x0, y0)Y=0.(1)如果点(x0, y0)是二次曲线F (x, y)=0的正常点:那么由以上条件得X:Y = F2(x0, y0):(-F1(x0, y0)),因此切线方程为或写成,或 (x-x0)F1(x0, y0)+(y-y0)F2(x0, y0)=0,其中 (x0, y0) 是它的切点;(2)如果点 (x0, y0) 是二次曲线F (x, y)=0的奇异点,即F1(x0, y0)=F2(x0, y0)=0,则切线方向X:Y不能唯一地被确定,从而通过点 (x0, y0)的切线不确定,这时通过点 (x0, y0) 的任何直线都和二次曲线F (x, y)=0相交于相互重合的两点,我们把这样的直线也看成是二次曲线的切线.这样我们就得到定理1:如果点(x0, y0) 是二次曲线F (x, y)= 0的正常点,则通过点(x0, y0)的切线方程是 (x-x0)F1(x0, y0)+(y-y0)F2(x0, y0)=0,(x0, y0)是它的切点.如果点 (x0, y0) 是二次曲线F (x, y)=0的奇异点,则通过点 (x0, y0) 的每一条直线都是二次曲线F (x, y)=0的切线.推论:如果点 (x0, y0) 是二次曲线F (x, y) = 0的正常点,则通过点 (x0, y0) 的切线方程是a11x0x + a12(x0y+xy0)+a22y0y+a13(x+x0)+a23(y+y0)+a33=0.证明:过点(x0, y0) 的切线方程可改写成xF1(x0, y0)+yF2(x0, y0)-[x0F1(x0, y0)+y0F2(x0, y0)]=0,那么xF1(x0, y0)+yF2(x0, y0)+ F3(x0, y0)-[x0F1(x0, y0)+y0F2(x0, y0)+ F3(x0, y0)]=0,则有xF1(x0, y0)+yF2(x0, y0)+ F3(x0, y0)=0,即 x(a11x + a12y+a13)+y(a12x + a22y+a23)+( a13x + a23y+a33)=0,从而得a11x0x + a12(x0y+xy0)+a22y0y+a13(x+x0)+a23(y+y0)+a33=0.2.已知二次曲线外一点,求过此点的切线:设点(x0 , y0)不是二次曲线上的点,即F(x0 , y0)≠0, 则过点(x0 , y0)的直线方程为此直线成为二次曲线上切线唯一条件是Φ(X, Y)≠0且∆=[F1(x0, y0)X +F2(x0, y0)Y]2-Φ(X, Y)⋅F(x0, y0)=0.由此解出X:Y,从而得(两条)切线的方程.例1. 求以下二次曲线在所给点或通过所给点的切线方程.(1)曲线3x2+4xy+5y2-7x-8y-3=0, 在点 (2, 1);(2)曲线x2+xy+y2+x+4y+3=0, 经过点 (-2, -1).解:(1)F (x, y)= 3x2+4xy+5y2-7x-8y-3, F1(x, y)=3x+2y-, F2(x, y)=2x+5y-4,因为 F (2, 1)=12+8+5-14-8-3+=0,且F1(2, 1)=≠0, F2(2, 1)=5≠0,所以点(2, 1)是二次曲线上的正常点.因此切线方程为(x-2)+5(y-1)=0,化简得 9x+10y-28=0.(2)F (x, y)= x2+xy+y2+x+4y+3, F1(x, y)=x+, F2(x, y)=, 因为F(-2, -1)=4≠0, 所以点 (-2, -1) 不在曲线上,而F1(-2, -1)= -2, F2(-2, -1)=0,设所求切线方程为,由 (-2X)2-4(X2+XY+Y2)=0 得X1:Y1=-1:1, X2:Y2=1:0,所以两条切线方程为与,即x+y+3=0 与y+1=0.例3. 已知曲线x2+4xy+3y2-5x-6y+3=0的切线平行于x+4y=0,求切线方程和切点坐标.解:设切点为(x0, y0),则切线方程为x0x+2(x0y+xy0)+3y0y-(x+x0)-3(y+y0)+3=0,即 (x0+2y0-)x+(2x0+3y0-3)y-x0-3y0+3=0,由已知条件有即 4(x0+2y0-)=2x0+3y0-3,或 2x0+5y0-7=0, ①又切点在曲线上,从而+4x0y0+3-5x0-6y0+3=0, ②由①, ②解得切点为 (1, 1),(-4, 3), 故所求切线方程为x+4y-5=0 和x+4y-8=0.例4. 试求经过原点且切直线4x+3y+2=0于点 (1,-2) 及切直线x-y-1=0于点 (0, -1) 的二次曲线方程.解:因为二次曲线过原点 (0, 0),所以设二次曲线为a11x2+2a12xy+a22y2+2a13x+2a23y=0,切线方程为 (x-x0)F1(x0, y0)+(y-y0)F2(x0, y0)=0,还可写为F1(x0, y0)x+F2(x0, y0)y+F3(x0, y0)=0.从而过点 (1, -2) 及 (0, -1) 的切线分别为(a11-2a12+a13)x+(a12-2a22+a23)y+a13-2a23=0,(-a12+a13)x+(-a22+a23)y-a23=0,由题设它们应分别为4x+3y+2=0及x-y-1=0,故有,解得λ: μ = 1: -,从而a11=6, a12 = , a22 = -1, a13= 1, a23= -,故所求二次曲线为6x2+3xy-y2+2x-y=0.作业题:1. 求以下二次曲线在所给点或经过所给点的切线方程.(1) 曲线 5x2+7xy+y2-x+2y=0 在原点;(2) 曲线 5x2+6xy+5y2=8经过点 (0, 2).2. 已知曲线x2+xy+y2=3 的切线平行于x轴,求切线方程和切点坐标.。
二次曲线- 二次曲线二次曲线- 正文也称圆锥曲线或圆锥截线,是直圆锥面的两腔被一平面所截而得的曲线。
当截面不通过锥面的顶点时,曲线可能是圆、椭圆、双曲线、抛物线。
当截面通过锥面的顶点时,曲线退缩成一点、一直线或二相交直线。
在截面上的直角坐标系(x,y)之下,这些曲线的方程是x,y 的二元二次方程:。
若截面不通过锥面的顶点,令截面与锥面轴线所成的角为θ,锥面的半顶角为α,则当时,所截曲线为圆;当时,截面与锥面的所有母线都相交,所截曲线为椭圆;当θ=α时,截面与锥面的一条母线平行,所截曲线为抛物线;当0≤θ<α时,截面与锥面的两条母线平行,所截曲线为双曲线。
焦点与准线如果圆锥曲线不是圆,则在圆锥曲线所在的平面上存在一定点和一定直线,使得圆锥曲线上任何一点到该定点和定直线的距离之比为常数,这个定点称为圆锥曲线的焦点,定直线称为圆锥曲线的准线。
为了得到焦点与准线,只需作一个球面内切于圆锥面并同时与圆锥曲线所在的平面σ相切。
设球面与平面σ相切于点F,球面与圆锥面相切于一个圆,这个圆所在的平面为ω,ω与σ相交于直线l,则点F,就是焦点,直线l就是准线(图1)。
二次曲线二次曲线这时,圆锥曲线上任意一点P到焦点F的距离|PF|与到准线l的距离|PD|之比为:。
其中θ,α都与P在曲线上的位置无关,所以是常数。
这个常数称为圆锥曲线的离心率,记为e。
当截线是椭圆时,e<1;当截线是双曲线时,e>1;当截线是抛物线时,e=1。
对于椭圆或双曲线,存在两个合于以上要求的球面,因此椭圆或双曲线都有两个焦点与两条准线。
每个焦点与其相应的准线都有上述性质。
抛物线只有一个焦点与一条准线。
若椭圆的两个焦点为F1,F2。
如图2所示的球面与圆锥面相切的圆为C1,C2。
这时对于椭圆上任意一点P,令通过P的母线OP(O为圆锥面的顶点)与C1、C2的交点分别为A、B。
则P 到F1的距离|PF1|与P到F2的距离|PF2|之和为|PF1||PF2|=|P A||PB|=|AB|。
目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)1 引言 (1)2 求二次曲线渐近线的几种方法 (2)2.1 欧氏定义法 (3)2.2 极线法 (3)2.3 自共轭直径法 (5)2.4 中心法 (6)2.5 不变量法 (7)参考文献: (9)致谢................................................................................................ 错误!未定义书签。
例谈二次曲线渐近线的几种求法摘要:本文从二次曲线渐近线的欧式定义和射影定义出发,阐述了二次曲线渐近的两种定义虽然在形式上有所不同,但两种定义是一致的,并且结合实例总结出了求解二次曲线渐近线方程的五种方法,从而从不同的角度来理解二次曲线渐近线本质特征,并且通过对这些实例的解答,对这些方法在解题时的优缺点进行了小结.同时用射影的观点阐明了二次曲线渐近线的本质特征,加强了射影几何中常用无穷远点、极点、极线的直观理解,从而感受高等几何对初等几何的指导作用.关键词:二次曲线;渐近线;射影Asymptotic line of the second curve Few SolutionsAbstract:This article from the conic ou definition and projective relation, expounds the definition of conic asymptotic of two kinds of different in formally defined though, but the two definition is consistent, and examples for solving quadratic curves summarized relation, and five methods from different view of quadratic curves, and relation nature of these examples by the answer of these methods in when the problem solving the advantages and disadvantages of summary. Meanwhile allusive view illustrates with the essential characteristics of conic relation, strengthen the projective geometry infinity points, commonly used in the poles, extremely line, thus verstehende feel higher geometry to elementary geometry guidance.Keywords:conic; asymptote; projective1 引言二次曲线的渐近线是研究二次曲线性质和作图时常用的重要曲线,用初等的方法求解一般二次曲线的渐近线,不但求解方法繁杂,而且对渐近线与二次曲线位置关系的理解仅局限于表面。
二次曲线的切线方程及应用[摘要] 本文主要利用隐函数求导的方法推导常见二次曲线(圆、椭圆、双曲线、抛物线)上某点处的切线方程,并得出一般二次曲线的切线方程及切点弦方程,再将相应结论进行应用。
[关键词] 二次曲线切线方程切点弦方程有关二次曲线的切线方程及其应用问题,近年来在各类考试中出现的频率颇高,为更好地解决此专题的问题,笔者将常见二次曲线的切线方程及切点弦方程的有关结论及推导过程整理一遍,并简述其应用,以供广大教师及学生参考.1几个常见结论及推导1.在圆上一点处的切线方程为:.(注:为与求其它二次曲线的切线方程所用方法一致,这里利用涉及隐函数求导的方法来推导.)将圆的方程中的y视为关于x的函数(即y是x的隐函数),那么就可以在上式两边分别对x求导数.隐函数求导法则,实际与复合函数求导法则一致,将y看作中间变量,外函数是,内函数为,故.于是有:在两边分别对x求导,得,若,则有.由导数的几何意义知,曲线上某点处切线的斜率是该点的导数值.故对于圆上点,若,则有,此即为在点M处切线的斜率,故所求切线方程为.又,① 为所求.若,由图象可知,此时所求切线方程为:或.又,故所求切线方程为:或.也满足①式.故在圆上一点处的切线方程可统一写为:.2.在椭圆上一点处的切线方程为:.推导过程如下:在两边分别对x求导得:,对于点,若,则有,此即为在点M处切线的斜率.故所求切线方程为,又,故②为所求.若,此时所求切线方程为:或,也满足②式.故在椭圆上一点处的切线方程为:.3.在双曲线上一点处的切线方程为:③.注:推导过程与结论1和结论2的推导过程类似,可让学生动手推导,体会其中的思想.4.在抛物线上一点处的切线方程为:.在两边对x求导,得.对于点,若,则有,此即为在点M处的切线的斜率.故所求切线方程为,即,又在抛物线上,故,因此所求切线方程为:④.若,此时所求切线方程为:也满足④式.故在抛物线上一点处的切线方程为:.结论4的切线方程形式与前3个结论有些不同,引导学生从抛物线的方程的形式观察,得到结论:抛物线的切线方程实际上可写为,进而得到一般性的结论5.将以上四个结论推广,可得到以下结论:5.设是二次曲线上一点,则此曲线在点M处的切线方程为:⑤.注:二次曲线的方程中不含项.此结论推导过程可仿照上述结论的推导过程来完成,这里不再赘述.从结论5出发,进一步思考,若点在二次曲线外,则过点M可作曲线的两条切线,设切点分别为,那么由切点在曲线上及结论5可知,曲线在点A处的切线方程为,曲线在点B处的切线方程为,因点在切线上,故⑥,同理,⑦,综合⑥⑦得,点,的坐标都满足方程.因为经过点的直线是唯一的,故过点A,B的直线方程为:.由此,我们可以得到另一个结论:6.设是二次曲线外一点,则过点M可作曲线的两条切线,设切点分别为,则直线AB的方程(即切点弦方程)为:.由结论6,将曲线方程特殊化为高中常见的二次曲线方程,即可得到关于圆、椭圆、双曲线和抛物线的切点弦方程的相应结论.2应用有关切线方程及切点弦方程的考题,近几年均是热点,比如广州市2013届普通高中毕业班综合测试(一)数学(理科)(简称“广州市一模”)第20题,2013年普通高等学校招生全国统一考试(广东卷)数学(文科/理科)第20题,2014年清华等七校自主招生考试(简称“华约卷”)第5题等.2013年广东高考的解析几何题虽和当年广州市一模的解析几何题有较大相似度,但考试结果仍不理想,文[1]指出,2013年的解析几何题“不仅加大了计算量,而且对计算的技巧性的要求大大增强,与压轴题的难度接近(第20题得分2.85分,第21题得分2.13).”因此,有必要对切线方程及切点弦方程这一专题内容做一个梳理.现将2013年普通高等学校招生全国统一考试(广东卷)数学第20题展示如下:已知抛物线的顶点为原点,其焦点到直线 :的距离为 .设为直线上的点,过点作抛物线的两条切线 ,其中为切点.(Ⅰ) 求抛物线的方程;(Ⅱ) 当点为直线上的定点时,求直线的方程;(Ⅲ) 当点在直线上移动时,求的最小值.略解:(Ⅰ)易得所求抛物线方程是:.(Ⅱ)利用第1部分的结论6,即得所求直线的方程(即切点弦方程)为:,即.(注:高考需将结论6的过程在答卷上推演一遍,因其不是高中课本内的结论.第(Ⅲ)小题解答略.)从此题的解答看,熟知第1部分的几个结论虽可立即得正解,但在高考题的作答中仍要将推导过程再演算一遍,似乎不太便捷,这是因为此题直接考查结论(求切点弦方程),若考查的是利用切点弦方程再求其它问题,那熟知结论的优越性立刻体现.请看2014年华约卷第5题:过椭圆上一点作圆的两条切线,切点为,设直线与轴、轴分别交于点,求的面积的最小值.解析:法一:设,由结论6知,直线的方程为:,,,故的面积.又点在椭圆上,故.由基本不等式得:,即(当且仅当时,等号成立),.,即的面积的最小值为.法二:(利用椭圆的参数方程求解)因点在椭圆上,故可设,由结论6知,直线的方程为:,故,的面积(当且仅当,即或时,等号成立),故的面积最小值为.解法一与解法二虽具体利用的知识不同,但其求解思路是一致的,关键的一步在于写出直线PQ的方程,而在自主招生或竞赛类考试中,直接写出二次曲线的切线方程或切点弦方程是允许的.因此,教师可将有关二次曲线的切线方程及切点弦方程问题形成一个小专题,根据学生水平及实际需要,适当讲解以上结论作为拓展,为学生获得更佳成绩打好基础.3小结由于高中阶段没有涉及到隐函数求导的内容,因此高考题在考纲范围内只能考查形如的抛物线的切点弦方程,对于一般水平的学生,教师只需讲透高中常见的解法即可.而第1部分的结论是常见二次曲线的有关切线方程和切点弦方程的结论,结论5、结论6将常见二次曲线的切线方程、切点弦方程统一起来,得到一般二次曲线的切线方程、切点弦方程.实践表明,对于能力较强的学生,是可以理解第1部分的几个结论的推导,并且利用这些结论对于他们应对自主招生或竞赛类考试有一定的帮助.参考文献[1] 彭建开.于平凡处见“真功夫”——2013年高考广东理科试题第20题解析[J].广东教育(高中版), 2013(7·8): 59-60.。
二次曲线的一般式-概述说明以及解释1.引言1.1 概述二次曲线是数学中重要的曲线类型之一。
它由二次方程所表示,是平面上的曲线。
在二次曲线上,点到定点的距离与点到定直线的距离的比值恒定,这是二次曲线独特的性质之一。
二次曲线广泛应用于几何学、物理学、工程学和计算机图形学等领域。
在几何学中,二次曲线的性质和特点被用于解决许多关于曲线的问题,如焦点、直径、切线和法线等。
在物理学中,二次曲线的运动方程被用于描述抛物线运动或者椭圆轨道等运动问题。
在工程学中,二次曲线常用于设计道路、桥梁和建筑物的曲线部分,以达到美观和结构稳定的目的。
在计算机图形学中,二次曲线被广泛应用于绘制曲线和曲面,用于创建平滑的图形效果。
本文将深入探讨二次曲线的一般式,包括其定义、性质和特点。
我们将介绍二次曲线的一般形式,并重点讨论其中的关键概念和公式。
通过学习二次曲线的一般式,读者能够更好地理解二次曲线的特性,并能够应用这些知识解决相关问题。
接下来的章节将按照以下结构展开:首先,我们将介绍二次曲线的定义和一般形式,包括其方程和基本图形。
然后,我们将深入研究二次曲线的性质和特点,例如焦点、直径和切线等。
最后,我们将总结二次曲线的一般式,并探讨其应用和意义。
在本文的剩余部分,读者将逐步了解二次曲线的复杂性和多样性,以及它们在数学和实际应用中的作用。
无论读者是初学者还是对二次曲线较为熟悉的人,本文都将为他们提供全面而深入的知识,帮助他们更好地理解和运用二次曲线的一般式。
文章1.2文章结构部分的内容可以如下编写:文章结构是指文章的整体组织和布局方式,在本文中分为引言、正文和结论三个部分。
引言部分是文章的开端,概述了二次曲线的一般式的主题和背景,引起读者的兴趣。
其中,1.1小节对二次曲线的概念和定义进行解释,确保读者了解文章所涉及的数学概念。
1.2小节则介绍了本文的文章结构,提供了整篇文章的脉络,为读者理解文章内容奠定基础。
最后,1.3小节明确了本文的目的,即探究二次曲线的一般式,并说明了相关探究的意义。
二次曲线切线的判定初中数学教案一、教学目标1.理解二次曲线切线的定义和性质;2.掌握如何求解二次曲线的切线方程;3.加深对曲线方程的解析与应用的理解和运用能力。
二、教学重难点1.二次曲线切线的定义和性质的掌握2.求解二次曲线切线方程的方法掌握3.针对不同类型的二次曲线如何判定切线的难度。
三、教学方法1.讲授法2.探究法3.练习法4.讨论法四、教学内容1.二次曲线切线的定义切线是指在曲线上某一点处与该点的切线斜率相等的直线。
对于二次曲线y = ax²+bx+c ,如果该曲线在点 (x0,y0)处存在切线,这条切线必然经过点 (x0,y0)。
2.二次曲线切线的性质(1)二次曲线切线的斜率等于该处的导数值,即切线斜率为f’(x0)。
(2)当曲线在顶点处至少有一条切线和坐标轴垂直。
(3)当二次曲线切线与x轴的交点为 a1,a2,横轴范围内同号的曲线段必然在 a1,a2两点之间。
3.求解二次曲线的切线方程以y = ax²+bx+c 为例,求解该曲线在点 (x0,y0) 处的切线方程。
(1)求导:y’ = 2ax+b(2)将x0带入原方程求出y0;(3)利用一阶导数和点斜式,得到切线方程为 y-y0 =y’(x0)(x-x0)。
4.二次曲线切线的判定判定二次曲线在某一点是否存在切线,可通过以下方式:(1)当一阶导数值f’(x0) 存在且不等于零时,一定存在切线;(2)当一阶导数在某一点不存在或等于零时,不一定存在切线。
需要通过二阶导数来判断,二阶导数存在且不等于零,则存在切线,否则不存在。
五、教学过程1.引入通过一个例子让学生初步了解什么是切线,并引入绘制二次曲线及切线问题。
2.探究(1)通过展示几个二次曲线,了解不同类型的二次曲线的性质及其与切线的关系。
(2)举例讲解如何求解二次曲线上任意点的切线方程。
(3)让学生自己通过求导和点斜式得出曲线上某点的切线方程,并验证答案的正确性。
3.操练通过大量练习巩固学生对二次曲线切线的理解和求解切线方程的方法。
圆锥曲线专题:调和点列-极点极线一、问题综述(一)概念明晰(系列概念):1.调和点列:如图,在直线l上有两基点A,B,则在l上存在两点C,D到A,B两点的距离比值为定值,即AC BC =ADBD=λ,则称顺序点列A,C,B,D四点构成调和点列(易得调和关系2AB=1AC+1AD)。
同理,也可以C,D为基点,则顺序点列A,C,B,D四点仍构成调和点列。
所以称A,B和C,D称为调和共轭。
2.调和线束:如图,若A,C,B,D构成调和点列,O为直线AB外任意一点,则直线OA,OC,OB,OD称为调和线束。
若另一直线截调和线束,则截得的四点A ,C ,B ,D 仍构成调和点列。
3.阿波罗尼斯圆:如图,A,B为平面中两定点,则满足APBP=λ(λ≠1)的点P的轨迹为圆O,A,B互为反演点。
由调和点列定义可知,圆O与直线AB交点C,D满足A,C,B,D四点构成调和点列。
4.极点极线:如图,A,B互为阿圆O反演点,则过B作直线l垂直AB,则称A为l的极点,l为A的极线.2024高考数学专项复习5.极点极线推广(二次曲线的极点极线):(1).二次曲线Ax 2+By 2+Cxy +Dx +Ey +F =0极点P (x 0,y 0)对应的极线为Ax 0x +By 0y +Cx 0y +y 0x 2+D x 0+x2+E y 0+y 2+F =0x 2→x 0x ,y 2→y 0y ,xy →x 0y +y 0x 2,x →x 0+x2,y →y 0+y 2(半代半不代)(2)圆锥曲线的三类极点极线(以椭圆为例):椭圆方程x 2a 2+y 2b 2=1①极点P (x 0,y 0)在椭圆外,PA ,PB 为椭圆的切线,切点为A ,B 则极线为切点弦AB :x 0xa 2+y 0yb 2=1;②极点P (x 0,y 0)在椭圆上,过点P 作椭圆的切线l ,则极线为切线l :x 0x a 2+y 0y b 2=1;③极点P (x 0,y 0)在椭圆内,过点P 作椭圆的弦AB ,分别过A ,B 作椭圆切线,则切线交点轨迹为极线x 0xa 2+y 0yb 2=1;(3)圆锥曲线的焦点为极点,对应准线为极线.(二)重要性质性质1:调和点列的几种表示形式如图,若A ,C ,B ,D 四点构成调和点列,则有AC BC =AD BD =λ⇔2AB =1AD +1AC⇔OC 2=OB ⋅OA ⇔AC ⋅AD =AB ⋅AO ⇔AB ⋅OD =AC ⋅BD性质2:调和点列与极点极线如图,过极点P作任意直线,与椭圆及极线交点M,D,N则点M,D,N,P成调和点列(可由阿圆推广)性质3:极点极线配极原则若点A的极线通过另一点D,则D的极线也通过A.一般称A、D互为共轭点.推广:如图,过极点P作两条任意直线,与椭圆分别交于点MN,HG,则MG,HN的交点必在极线上,反之也成立。
§ 5 二次曲线一、圆[圆的切线]圆x2 + y2 = R2上一点M(x0, y0)的切线方程为x0x + y0y = R2圆x2 + y2 + 2mx + 2ny + q = 0 上一点M(x0, y0)的切线方程为x0x + y0y + m(x + x0) + n(y + y0) + q = 0[两个圆的交角、圆束与根轴]式中含交点的坐标,所以在两交点的两交角必相等[反演] 设C为一定圆,O为圆心,r为半径(图7.1),对平面上任一点M,有一点M'与它对应.使得满足下列两个条件:(i)O, M, M'共线,(ii )OM ⋅OM ' = r ,这种点M '称为点M 关于定圆C 的反演点,C 称为反演圆,O 称为反演中心,r 称为反演半径.由于M 和M '的关系是对称的,所以M 也是M '的反演点.因r 2 > 0,所以M 和M '都在O 的同侧.M 和M '之间的对应称为关于定圆C 的反演.取O 为原点,则一切反演点M (x , y )和M '(x ',y ')的对应方程为222222,yx yr y y x x r x +='+=' 反演具有性质:1︒ 不通过反演中心的一条直线变为通过反演中心的一个圆. 2︒ 通过反演中心的圆变为不通过反演中心的直线.3︒ 通过反演中心的一条直线变为它自己.4︒ 不通过反演中心的圆变为不通过反演中心的圆. 5︒ 反演圆变为它自己.6︒ 与反演圆正交的圆变为它自己,其逆也真.7︒ 如果两条曲线C 1,C 2交于一点M ,则经过反演后的曲线C 1', C 2'必交于M 的反演点M '.8︒ 如果两条曲线C 1, C 2在一点M 相切,则经过反演后的曲线C 1', C 2'必在M 的反演点M '相切.9︒ 两条曲线的交角在反演下是不变的.由此可见,反演是一个保角变换.二、 椭圆1.椭圆的基本元素 主轴(对称轴))0(22>>⎩⎨⎧==b a b CD aAB 轴短轴长 顶 点 A , B , C , D 椭圆中心 G 焦 点 F 1, F 2 焦 距 2221,2b a c c F F -==离 心 率 1<=ac e压缩系数 2221,e a b -==μμ焦点参数 ab p 2=(等于过焦点且垂直于长轴的弦长之半,即F 1H )焦点半径 r 1, r 2(椭圆上一点(x , y )到焦点的距离) r 1 = a - ex , r 2 = a + ex 直 径PQ (通过椭圆中心的弦)图7.1图 7.2共轭直径 二直径斜率为k k ',,且满足22a b kk -='准 线L 1和L 2(平行于短轴,到短轴的距离为ea )1︒ 椭圆是到两定点(即焦点)的距离之和为常数(即长轴)的动点M 的轨迹 (r 1 + r 2 = 2a ). 2︒ 椭圆也是到一定点(即焦点之一)的距离与到一定直线(即一准线L )的距离之比为小于1的常数(即离心率)的动点M 的轨迹(MF 1/ME 1 = MF 2/ME 2 = e ).3︒ 椭圆是将半径为a 的圆沿y 轴方向按比ab=μ(即压缩系数)压缩而得到.4︒ 椭圆上一点M (x 0, y 0)的切线(MT )方程为12020=+byy a xx 切线把点M 的两焦点半径间的外角(即∠F 1MH )平分(即α=β,02tan tan cy b ==βα),M 点的法线MN 把内角(即∠F 1MF 2)平分(图7.3).如果椭圆的切线(MT )的斜率为k ,则其方程为 222b a k kx y +±=式中正负号表示直径两端点的两切线.图 7.35︒椭圆的任一直径把平行于其共轭直径的弦平分(图7.4) 如果两共轭直径的长分别为2a 1和2b1, 两直径与长轴的夹角(锐角)分别为α和β, 则a 1b 1sin(α + β) = aba 12 +b 12 = a 2 + b 26︒ 椭圆上任一点M 的焦点半径之积等于它的对应半共轭直径的平方. 7︒ 设MM ', NN '为椭圆的两共轭直径, 通过M , M '分别作直线平行于NN '; 又通过N , N '分别作直线平行于MM ', 则这四条直线构成的平行四边形的面积为一常数4ab (图7.5). 4.椭圆各量计算公式12222=+by a xa b=⎰⎰-=-222arccos22d sin 1d cos 1πx a x t t e a t t e a图 7.4三、 双曲线1.双曲线的基本元素 主轴(对称轴)⎩⎨⎧>=>=)0(2)0(2b b CD a a AB轴虚轴实 顶 点 A , B 中 心 G 焦 点 F 1, F 2焦 距 F 1F 2 = 2c , 22b a c +=离 心 率 1>=ace 焦点参数 a bp 2= (等于过焦点且垂直于实轴的弦长之 半,即F 1H ) 焦点半径 r 1, r 2 (双曲线上一点(x , y )到焦点的距离, 即MF 1, MF 2)r 1 = ± (ex - a ), r 2 = ± (ex + a )直 径 PQ (通过中心的弦)图 7.6共轭直径 二直径斜率为k , k ',且满足22ab k k ='准 线L 1和L 2 (垂直于实轴, 到中心的距离为ea )b+1︒ 双曲线是到两定点(焦点)的距离之差为常数(等于实轴2a )的动点M 的轨迹(使a r r 221=-的各点属于双曲线的一支,而使a r r 221=-的各点属于其另一支).2︒ 双曲线也是到一定点(焦点之一)的距离与到一定直线(准线L 1)的距离之比为大于1的常数(即离心率)的动点M 的轨迹(e ME MF ME MF ==2211//).3︒ 双曲线上一点M ),(00y x 的切线(MT )的方程为12020=-byy a x x它把M 点两焦点半径间的内角(即21MF F ∠)平分(即2tan tan ,cy b ===βαβα),而M 点的法线MN 把外角(即MH F 1∠)平分(图7.7).如果双曲线的切线的斜率为k ,则其切线的方程为 222b a k kx y -±=式中正负号表示在直径两端点的两切线.4︒ 两条渐近线x aby ±=之间的切线线段TT 1被切点M 平分(TM = MT 1),且∆OTT 1的面积ab S OTT =1,平行四边形OJMI 的面积(图7.8的阴影部分)2abS OJMI =5︒ 双曲线的任一直径把平行于共轭直径的弦平分(图7.9)如果两共轭直径的长分别为2a 1,2b 1, 两直径与实轴夹角(锐角)分别为α和β(α<β),则22212111)sin(ba b a abb a -=-=-αβ 6︒ 双曲线上任一点M 的焦点半径之积等于它的对应半共轭直径的平方.7︒ 设MM ', NN '为双曲线的两共轭直径,通过M , M '分别作直线平行于NN ';又通过N , N '分别作直线平行于MM ',则这四条直线构成的平行四边形的面积为一常数4ab (图7.10).4.双曲线各量计算公式12222=-by a x图 7.8图 7.9图 7.10=四、 抛物线1.抛物线的基本元素 抛物线的主轴 AB 顶 点 A 焦 点 F 焦点参数 p (等于过焦点且垂直于轴的 弦CD 之长的一半) 焦点半径 MF (抛物线上一点到焦点的 距离) 直 径 EMH (平行于抛物线的轴的直 线) 准 线 L (与抛物线的轴垂直,到顶点A 的距离等于2p,到焦点F 的距离等于p)2.抛物线的方程、顶点、焦点与准线图 7.11)0 1︒ 抛物线是到一定点F (焦点)的距离与到一定直线L (准线)的距离相等的动点M 的轨迹(MF '=ME )(图7.12)2︒ 抛物线上一点),(00y x M 的切线MT 的方程为)(00x x y py +=它把M 点的焦点半径与直径的夹角(∠FMG )平分(∠FMT =∠TMG ),并且一切与切线MT 平行的弦被过M 点的直径平分(PI =IQ ).如果抛物线的切线的斜率为k ,则其切线的方程为kp kx y 2+= 3︒ 抛物线的任两切线的夹角等于两切点的焦点半径的夹角的一半.4︒ 从焦点F 作抛物线在点M 的切线的垂线,则垂足的轨迹为在顶点的切线. 4.抛物线各量计算公式 pxy 22=图 7.12=pxp p x x 2Arsh22+⎪⎭⎫ ⎝⎛+五、 一般二次曲线1.二次曲线的一般性质上面所列举的椭圆、双曲线、抛物线等,它们的方程关于x,y 都是二次的,关于x,y 的一般二次方程的形式是ax bxy cy dx ey f 222220+++++=它所表示的曲线称为一般二次曲线.这里列举它们的一些共同性质.[直线与二次曲线的交点] 一直线与一个二次曲线交于两点(实的,虚的,重合的).[二次曲线的直径与中心] 一个二次曲线的平行于已知方向的弦的中点在一直线上,称它为二次曲线的直径,它平分某一组弦.设已知方向的方向数为α,β,则直径的方程为()()a b x b c y d e αβαβαβ+++++=0或改写为()()ax by d bx cy e +++++=αβ0由此可见,二次曲线的直径组成一个直线束.束内任一直径通过下列两直线交点:ax by d bx cy e ++=++=00,1︒ a b bc≠,即ac b -≠20.这时二次曲线的一切直径通过同一点,称为中心,这种曲线称为有心二次曲线,中心的坐标为x be cd ac b y ae bdac b 0202=--=--, 2︒a b bc=,即ac b -=20 (i) a b b c de =≠,这时曲线无中心;(ii) a b b c de==,这时曲线有无限个中心,即中心在同一直线上(中心直线).这两种曲线称为无心二次曲线.[二次曲线的主轴(或对称轴)] 如果直径垂直于被它所平分的弦,则称它为二次曲线的主轴(对称轴), 无心二次曲线有一条实的主轴;有心二次曲线有两条实的主轴,它们是互相垂直的,交点就是中心.[二次曲线的切线与法线]二次曲线上的一点()M x y 00,的切线方程为()()()ax x cy y b x y y x d x x e y y f 0000000++++++++=在点M 与二次曲线的切线垂直的直线称为在点M 的法线,它的方程为x x ax by d y y bx cy e-++=-++000000 2.二次曲线的不变量 由一般二次曲线的方程ax bxy cy dx ey f 222220+++++= (1)的系数所组成的下列三个函数:D a b d bc e defa b b cac b S a c ===-=+,,δ2称为二次曲线的不变量,即经过坐标变换后,这些量是不变的.行列式D 称为二次方程(1)的判别式.3.二次曲线的标准方程与形状4二次曲线都是用平面切割正圆锥面的截线.因此二次曲线也称为圆锥截线(图7.13)用一平面P 切割正圆锥时,若P 不通过锥顶,且不平行于任一母线,则截线为椭圆;若P 不通过锥顶,而平行于一条母线时,截线为抛物线;若P 不通过锥顶而平行于两条母线时,截线为双曲线;若P 垂直于锥轴,截线为圆.若P 通过锥顶,则椭圆变为一点,双曲线变为一对相交直线,抛物线变为P 与圆锥相切的一直线.。
二次曲线的理论及其应用文献综述文献综述二次曲线的理论及其应用一、前言部分在中学,我们就二次曲线的性质进行了简单的介绍,它在中学的教学里有很重要的地位,是中学平面解析几何中不可或缺的一部分,在本文中的一些定理的证明都利用到了二次曲线的基本性质。
可以这样说,二次曲线的其它性质都是建立正在他的基本性质之上。
所以我将对它进行一下总结,建立表格如下: 椭圆双曲线抛物线标准方程范围或对称性关于x轴或y轴对称关于原点中心对称关于x轴或y轴对称关于原点中心对称关于x轴顶点离心率渐近线无无准线焦点过曲线上点的切线方程二次曲线的定义:在欧式平面上,由一般二元二次方程(其中,,)表示的曲线,称为二次曲线,此方程称为二次曲线的方程。
定义 1.1:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。
它的方程为。
定义 1.2:到两个定点的距离的差的绝对值等于定长(定值小于两个定点间的距离)的动点的轨迹叫做双曲线。
它的方程为。
定义 1.3:到一个定点和一条直线的距离相等的动点轨迹叫做抛物线。
它的方程为文献综述介绍了二次曲线的定义,给出了二次曲线的分类,介绍了一些二次曲线的化简方法,以及对二次曲线的一些性质与特征的进一步讨论。
本文的目的是在原有知识体系的基础上加以整理和归纳,概括出二次曲线的性质与几何特征,并辅以典型的例题来论证方法的可行性,进而介绍了二次曲线方程的应用,使我们所学知识加以巩固和提高,起到“温故”而“知新”的作用。
二、主题部分公元前350年,古希腊梅纳克莫斯发现三种圆锥曲线,即现在所说的椭圆,双曲线,抛物线,并用开始编写几何学的历史。
古希腊的塞马力达斯开始解简单方程组。
半个世纪后,古希腊另一位数学家阿波罗尼斯又著《圆锥曲线论》.阿波罗尼斯的8卷《圆锥曲线论》以其几乎将圆锥曲线的全部性质网罗殆尽而永垂史册.可以这样说,在解析几何之前的所有研究圆锥曲线的著作中,没有一本达到像《圆锥曲线论》那样的对圆锥曲线研究得如此详尽的程度.但是,像古希腊所有的几何学一样,阿波罗尼斯的几何是一种静态的几何.它既不把曲线看作是一种动点的轨迹,更没有给它以一般的表示方法.这种局限性在16世纪前,并没有引起注意,因为实践没有向几何学提出可能引起麻烦的课题.16世纪以后的情况就不同了.哥白尼(Copernicus,1473-1543)提出日心说,伽利略(Galileo,1564-1642)由物体运动的研究,得出惯性定律和自由落体定律,这些都向几何学提出了用运动的观点来认识和处理圆锥曲线及其他几何曲线的课题.地球绕太阳运转的轨道是椭圆、物体斜抛运动的轨道是抛物线,这些远不是靠建立在用平面截圆锥而得到的椭圆和抛物线的概念所能把握的.几何学要能反映这类运动的轨道的性质,就必须从观点到方法来一个变革,创立起一种建立在运动观点上的几何学.17世纪解析几何的诞生创造了为二次曲线的研究创建了条件.作为点运动轨迹的二次曲线,在引进坐标的基础上显示出更明显的特征,它是二次方程的图形,即它又被命名为二次曲线。
关于二次曲线系的几点说明(2012年10月16日)山东临沂沂州实验学校 李守峰关于二次曲线系的一点探讨1. 设(,)0f x y =表示二次曲线,(,)0g x y =表示一条直线。
则曲线(,)(,)0f x y g x y λμ+=至多与(,)0f x y =同类。
也就是说若(,)0f x y =表示圆,则曲线(,)(,)0f x y g x y λμ+=至多表示圆;若(,)0f x y =表示椭圆,则曲线(,)(,)0f x y g x y λμ+=至多表示椭圆;若(,)0f x y =表示双曲线,则曲线(,)(,)0f x y g x y λμ+=至多表示双曲线;若(,)0f x y =表示抛物线,则曲线(,)(,)0f x y g x y λμ+=至多表示抛物线。
上述结论告诉我们:过两交点的二次曲线并非包含所有的二次曲线,而是与“母曲线”相似的曲线2. 设(,)0f x y =,(,)0g x y =均表示二次曲线。
则曲线(,)(,)0f x y g x y λμ+=至多与(,)0f x y =或(,)0g x y =同类的二次曲线。
3. 两条相交直线或平行直线的积为退化的二次曲线()()0a x b y c m x n y p ++++= 当它不含xy 项时,可与对称轴平行于坐标轴的二次曲线同类。
4. 对称轴平行于坐标轴的二次曲线,在直角坐标系中的方程不含xy 项。
5. 设C 为二次曲线,AB 为二次曲线的任意弦,以直线AB 为x 轴,AB 的垂直平分线为y 轴,若C 在此坐标系下的方程为(,)0g x y =,则(,0)0g x =不含x 的一次项。
6. 设由二次曲线(,)0f x y =和直线1x y αβ+=决定的关于x y 、的二次齐次式为220Ay Bxy Cx ++=,则12()()y y B x x A +=-,12()()y y C x x A⋅= 特别的:当直线与二次曲线的两交点与原点的连线互相垂直时0A C +=,也就是说单二次项的系数之和等于0;当直线与二次曲线的两交点与原点的连线关于坐标轴对称时0B =,也就是说齐次式中不含xy 项。
双曲线的切线(11)本文拟讨论由坐标平面内任意点,,引双曲线:>,>的切线,切线的存在性、切线的条数、切线方程及切点坐标.P(x y )C =1(a 0b 0)(1)001x a y b2222不妨只考察P 在原点、P 在坐标轴正半轴上、P 在第一象限内的情形.当P 在原点或P 在区域Ⅰ时,不存在切线;当P 在C 1或C 2(不含原点)上时,仅一条切线;当P 在区域Ⅱ、Ⅲ、Ⅳ、Ⅴ或在C 3(不含A 、B )上时,有两条切线.结论:①原点处无切线. ②点在C 3上时一条切线③当P 在线段AB 上时,Q 在C 1的右支上半支. ④当P 在线段AB 的延长线上时,Q 在C 1的左支下半支. ⑤若点P 在区域Ⅰ内, 过P 不存在切线.⑥若点P 在曲线C 1上(异于点A ), 切点即点P .⑦若点P 在曲线C 2上(异于点B), 若P 在线段OB 上,Q 在C 1右支下半支.若P 在线段OB 的延长线上, Q 在C 1右支上半支.⑧若点P 在区域Ⅱ内, Q 1在C 1右支下半支,Q 2在C 1右支上半支.⑨若点P 在区域Ⅲ内, Q 1、Q 2位于C 1同一支且在x 轴同侧.⑩若点P 在区域Ⅳ内, Q 1在C 1的右支下半支,Q 2在C 1的左支下半支. ⑪若点P 在区域Ⅴ内, Q 1在C 1左支下半支,Q 2在C 1的右支上半支.如图所示,记的渐近线为∶-,的右顶点为,,直线∶C C =0C A(a 0)C 1213x a ybx=a ;C 3与C 2的交点为B (a,b );C 1的内部(含焦点的部分)为区域Ⅰ;C 1与C 2之间的部分,在C 3左侧为区域Ⅱ,在C 3右侧部分为区域Ⅲ;C 2与y 轴正半轴所夹的部分,在C 3左侧为区域Ⅳ,在C 3右侧为区域Ⅴ.1 若P 在原点∵方程组无实数解,x x a y b =-=⎧⎨⎪⎩⎪012222∴ 直线x=0不是C 1的切线.设过P(0,0)的直线l 的方程为y=kx ,代入(1)消去y 得(b 2-a 2k 2)x 2=a 2b 2,当≥时,此方程无实根,所以与无公共点;当<时,此方程有两相反|k|C |k|1b a ba l实根,∴l 与C 1有两个交点. 故过P 不存在C 1的切线.2 若过点P 存在无斜率的切线此时切线方程为,代入消去得-,此方程有两相等实x =x (1)x a y =b (x a 0222022) 根的充要条件是-,即.x a =0|x |=a 022故点P 在C 3上时,C 3为C 1的一条切线,切点为A .3 若过点P 存在有斜率的切线设切线斜率为k ,则切线方程为y -y 0=k (x -x 0) (2) 将(2)代入(1)消去y 可得(b 2-a 2k 2)x 2-2a 2k (y 0-kx 0)x -a 2[(y 0-kx 0)2+b 2]=0 (3)方程(3)的判别式Δ--++令--++=4a b [(x a )k 2x y k (y b )]f(k)=(x a )k 2x y k (y b )220222000220222000223。