甲壳素研究和应用
- 格式:pdf
- 大小:430.74 KB
- 文档页数:4
甲壳素是存在于蟹壳等甲壳动物外壳的可食性动物纤维素,由于其独特的理化性质而被应用于各行各业,每个行业的用途不同,也就发挥的作用不同。
我们来为您详细分析一下。
甲壳素特性可相关的制品达到增稠的效果,因此在医药、食品、化妆品、农业、环保以及酶的固化载体等方面具有广泛的用途。
具体在每个行业发挥的功效我们可以通过实例来了解。
甲壳素应用范围很广泛,在工业上可做布料、衣物、染料、纸张和水处理等。
在农业上可做杀虫剂、植物抗病毒剂。
渔业上做养鱼饲料。
化妆品美容剂、毛发保护、保湿剂等。
医疗用品上可做隐形眼镜、人工皮肤、缝合线、人工透析膜和人工血管等。
1、工业:甲壳素被用于水和废水净化,作为食品添加剂应用到和药品中起到增稠作用稳定食品和药品状态。
甲壳素还可以作为染料、织物、黏合剂。
工业的分离薄膜和离子交换树脂可制成甲壳素。
加工纸的大小和强度也使用甲壳素。
2、医药:甲壳质的产物作为坚韧和强的材料利于作为外科线。
另外有一些不寻常的特性,甲壳素加速人体伤口愈合,甲壳素甚至成为一个单独的伤口愈合剂。
3、美容:甲壳素对细胞无排斥力,具有修复细胞之功效,并能减缓过敏性肌肤,甲壳素具有抗氧化的能力,能活化细胞,防止细胞老化,促进细胞新生带。
甲壳素中亦含有高效保湿成份,它的β葡聚糖也能有效使肌肤含水保湿。
4、服装:甲壳素纤维与彩棉货纯棉等纤维制成的面料特别适合做婴幼儿服装及男女高档内衣。
甲壳素具有如下功能:一、降血糖:甲壳素可调节内分泌系统的功能,使葡萄糖指数下降,抑制血糖升高。
糖尿病是由于胰岛素分泌不足,导致糖代谢障碍,糖类不能被机体充分吸收利用,同时体内脂肪分解过度,产生的有机酸和酮体过高,从而使患者体夜呈酸性。
二、降血脂:如果胆汁酸的储量不足,肝脏必须将胆固醇转化为胆汁酸。
甲壳素与胆汁酸结合并排出体外,胆汁酸排出增加,减少了胆囊中胆汁酸量,致使肝脏从血液中吸收更多的胆固醇转化为胆汁酸,以补充其不足,使血液中胆固醇下降。
三、降血压:单分子甲壳素与氯离子结合,降低血糖中的氯离子浓度,使血管紧张素转化酶(ACE)活性降低,致使血管紧张素11形成减少,使内缓激肽增加,血管扩张作用增强,血压下降。
甲壳素的功效与作用甲壳素是一种天然的有机化合物,它主要存在于昆虫、脊椎动物以及一些植物的外壳中。
甲壳素具有多种功效与作用,被广泛应用于医药、食品、化妆品等领域。
本文将详细介绍甲壳素的功效与作用,并探讨其在不同领域中的应用。
首先,甲壳素对于人体健康具有重要作用。
甲壳素可以促进胶原蛋白的产生,有助于维持皮肤的弹性,防止皱纹和松弛。
此外,甲壳素还可以促进骨骼的发育与修复,对于骨骼健康有显著的贡献。
研究还表明,甲壳素对于心血管系统具有保护作用,可以降低胆固醇水平,预防心脏病等心血管疾病的发生。
其次,甲壳素在食品领域也有重要的应用价值。
甲壳素的纤维素含量较高,可以增加食物的摄入量,产生饱腹感。
这对于减肥和控制食欲非常有益。
此外,甲壳素还可以减少食物中的胆固醇吸收,降低胆固醇水平,对于预防高血压和高血脂症有一定的作用。
同时,甲壳素还可以作为食品添加剂,增加食品的口感和质地,提高食品的机械强度和稳定性,延长食品的保质期。
此外,甲壳素在化妆品领域也发挥着重要的作用。
甲壳素具有良好的保湿效果,可用作化妆品中的保湿剂。
甲壳素还具有吸附性和调节皮肤油脂分泌的作用,对于油性和混合性皮肤的护理有一定的效果。
此外,甲壳素还具有抗氧化作用,可以减少皮肤老化和皱纹的产生。
因此,甲壳素常被用于护肤品中,可提高皮肤的水分含量,保持皮肤的光滑和细腻。
最后,甲壳素还具有一定的医药价值。
研究发现,甲壳素具有抗炎作用,可以减轻炎症反应,缓解疼痛和不适感。
甲壳素还具有抗菌和抗病毒作用,对于预防感染和治疗一些疾病具有一定的帮助。
此外,甲壳素还可以调节免疫系统的功能,提高人体的抵抗力,对于免疫性疾病具有辅助治疗作用。
综上所述,甲壳素作为一种天然的有机化合物,具有多种功效与作用。
它对于人体健康、食品质量、化妆品和医药领域都有重要的应用价值。
随着人们对健康和美容的需求日益增长,甲壳素的应用前景将更加广阔。
我们有理由相信,随着科学技术的进步和研究的深入,甲壳素将会在更多领域中发挥更大的作用,为人类的健康和美丽做出更大的贡献。
农业甲壳素功效与作用农业甲壳素功效与作用甲壳素是一种天然高分子化合物,广泛存在于甲壳类生物的外骨骼中。
它具有许多独特的性质和功能,因此被广泛应用于农业领域。
本文将重点介绍甲壳素在农业中的功效与作用,包括提高农作物产量、增强植物抗逆性、促进土壤肥力和改善农产品质量等方面。
一、提高农作物产量甲壳素作为一种生物活性物质,可以刺激植物的生长发育,促进根系生长,并调节植物的代谢过程。
研究表明,施用甲壳素能够增加植物的光合作用效率,提高植物的光能利用率,从而增加农作物产量。
甲壳素还可以促进植物的营养吸收,增强植物的抗病虫害能力,减少生长期中的损失,提高农作物的产量和品质。
二、增强植物抗逆性农作物生长发育过程中,经常受到各种逆境的影响,如病虫害、干旱、盐碱、重金属等。
甲壳素具有增强植物抗逆性的能力,可以使植物在逆境环境下更好地适应和生存。
甲壳素能够激活植物的抗氧化系统,减少细胞内活性氧的积累,保护细胞膜和细胞器的完整性,提高植物的抗逆性。
三、促进土壤肥力甲壳素作为一种有机物质,可以分解为有机酸、氨基酸等,为土壤提供养分,增加土壤肥力。
甲壳素在土壤中能够吸附各种重金属离子和有机污染物,减少污染物对农作物和土壤的伤害。
此外,甲壳素还能够促进土壤微生物的繁殖和活性,提高土壤的生物活性,改善土壤结构,增加土壤通透性和保水能力,提高土壤的肥力和保肥力能力。
四、改善农产品质量甲壳素作为一种生物活性物质,可以调节植物的代谢过程,改善农产品的品质。
研究表明,施用甲壳素可以提高农作物的维生素、矿物质、蛋白质和糖类等含量,增加农产品的养分价值和口感品质。
此外,甲壳素还能够促进植物的果实膨大和颜色的形成,改善果实的外观和风味。
在实际应用中,甲壳素可以通过叶面喷施、土壤施用等方式施用于农作物。
在喷施过程中,一般配合适量的肥料和农药使用,能够发挥较好的效果。
此外,不同作物对甲壳素的需求量和响应程度也会有所不同,需要根据具体情况进行调整。
甲壳素对塑料的改性原理甲壳素(Chitosan)是一种从壳类动物外骨骼中提取得到的天然高分子化合物。
由于其具有良好的生物相容性、生物降解性和生物活性等特性,甲壳素在许多领域中都有广泛的应用,其中包括塑料改性。
甲壳素作为一种环保友好的材料,通过改性可以赋予塑料更好的性能和功能。
甲壳素对塑料的改性主要基于以下原理:1. 亲湿性增强:甲壳素分子中含有丰富的氨基官能团,可以与塑料基体中的羧酸、酮、羰基等功能团发生化学反应,形成氢键或共价键等作用力,从而提高塑料表面的亲湿性。
这使得塑料表面更易于吸附各种有机物质,提高了塑料的润湿性和润滑性。
2. 力学性能改善:甲壳素分子中的氨基官能团通过与塑料基体中的官能团结合,可以形成物理交联或化学交联的网络结构,增强塑料的力学性能。
交联结构能够增加塑料的固体强度、刚度和耐磨性,提高其抗拉强度和耐冲击性能。
3. 热稳定性提升:甲壳素具有较高的热稳定性,可以有效提高塑料的热稳定性能。
其分子中的氨基官能团通过与塑料基体中的羧酸等官能团进行缔合,形成化学键,使塑料基体在高温条件下不易分解,延缓塑料老化过程,从而提高塑料的使用寿命。
4. 生物降解性增强:甲壳素是一种天然生物高分子材料,具有良好的生物降解性。
将甲壳素与塑料基体进行复合改性后,可以使塑料材料具备更好的生物降解性能,降低塑料对环境的污染。
5. 抗菌性改善:甲壳素具有广谱抗菌活性,可以对抗多种细菌、真菌和病毒。
将甲壳素引入塑料中可以赋予塑料良好的抗菌性能,用于制备一些具有抗菌需求的产品,如医疗用品、食品包装材料等。
在实际应用中,甲壳素对塑料的改性可以通过多种方式进行。
常见的改性方法包括:溶液法、熔融法、共混法和交联法等。
其中,熔融法是最常用的改性方法之一,可以通过将甲壳素和塑料基体在高温下混熔,将甲壳素均匀分散于塑料基体中,最终得到具有改性效果的复合材料。
总结起来,甲壳素对塑料的改性原理主要包括亲湿性增强、力学性能改善、热稳定性提升、生物降解性增强和抗菌性改善等。
甲壳素的应用甲壳素在纺织印染待业中的应用由来已久,甲壳素纤维于1936年在美国推出,其特点是纤度细,强度高,色白有光泽,用于纺织行业,能使纺织产品上档次,穿着质地柔软,透气吸湿性特强,穿着舒适,抗菌性强等特点。
甲壳素应用到农业,可制作复合液面肥,固体颗粒肥,能给农作物直接增加糖的浓度,促进农作物根系生长,有效的防治病虫害,提高农作物产品的质量和产量。
应用范围广泛 在工业上可做纺织品防霉杀菌除臭剂,可以通过后处理附着于纺织品纤维上,是纺织品提高附加价值的方法之一,用于制造内衣裤,袜子,家用特殊功能纺织品.医用手术衣/布,伤口敷料,烧伤创面敷料或深加工为人造皮肤用于大面积烧伤的治疗. 由于壳聚糖是阳离子型天然聚合物,有良好的扼制微生物/细菌/霉菌的作用,可以应用于食品保鲜,食品内包装,无毒无污染.将壳聚糖制成溶液喷涂于经清洗或剥除外皮的水果上,壳聚糖干后形成的薄膜无色无味通气,食用时不必清除薄膜. 也可应用于染料、纸张和水处理等。
在农业上可做杀虫剂、植物抗病毒剂。
渔业上做养鱼饲料。
化妆品美容剂、毛发保护、保湿剂等。
医疗用品上可做隐形眼镜、人工皮肤、缝合线、人工透析膜和人工血管等特殊生物功能1、降血脂作用 血脂是指血液中脂类的含量。
广义的脂类指中性脂肪(甘油和甘油三酯)和类脂质(胆固醇、胆固醇酯和磷脂)。
“甲壳质”可通过几个途径产生驱脂作用。
1)“甲壳质”阻碍脂类的消化吸收:进入肠腔的脂类因难溶于水无法吸收,需经过胆汁酸的乳化作用,将脂肪变成很小的油滴,以此来扩大与胰脂酶的接触面积利于脂肪的消化。
肝脏生成的胆汁酸(带负电荷)经胆道排入肠腔非常容易与聚集它周围的甲壳质(带正电荷)结合,形成屏障而妨碍吸收,同时由消化道排出体外。
大量的胆汁酸被消耗,从而阻碍脂类的吸收,实现降低血脂。
2)“甲壳质”有利于胆固醇转化:人体内的胆固醇主要来自食物摄入和自身合成。
当人们一提到胆固醇往往会谈虎色变,认为胆固醇是造成心脑血管动脉硬化疾病的元凶,因而把胆固醇看成是对人体有害的物质。
甲壳素的作用甲壳素,是一种来源于海洋生物壳或壳类动物的天然有机物质,它具有多种重要的功能和作用。
以下将从食品、保健品和医药等方面为大家详细介绍甲壳素的作用。
首先,甲壳素在食品工业中起到了重要的作用。
甲壳素具有一定的胶凝性和稳定性,在食品加工和制作过程中常被用作增稠剂、稳定剂和乳化剂等。
例如,在果冻、糖果和饼干等食品中加入甲壳素可以增加食品的黏性和弹性,使其更加口感丰富。
此外,甲壳素还可以防止食品细菌的生长和腐败,延长食品的保质期。
其次,甲壳素在保健品领域也具有重要的作用。
甲壳素是一种天然的膳食纤维,可以有效地增加肠道蠕动,促进排便,预防便秘。
同时,甲壳素还可以吸附和排除肠道内的有害物质和毒素,保持肠道的清洁和健康。
此外,甲壳素还可以调节血糖、血脂和血压等指标,预防心血管疾病的发生。
因此,甲壳素常常被用作保健品的重要成分,有助于人们的健康和养生。
最后,甲壳素在医药领域也具有广泛的应用。
甲壳素具有良好的生物相容性和生物可降解性,可以被人体所接受和分解。
因此,甲壳素在药物缓释、止血和组织修复等方面具有潜在的应用价值。
例如,在药物缓释系统中,甲壳素能够作为载体,将药物包裹在内部,控制药物的释放速度和时间,减少药物的副作用。
同时,甲壳素还可以促进伤口的愈合和组织的再生,有助于创伤和手术后的恢复。
总而言之,甲壳素具有多种重要的功能和作用。
它不仅在食品工业中可以用作增稠剂和稳定剂,还可以用作保健品的重要成分,有助于人们的健康和养生。
此外,甲壳素在医药领域也有广泛的应用,可以作为药物缓释系统的载体,促进伤口的愈合和组织的再生。
因此,甲壳素作为一种天然的有机物质,在各个领域都具有重要的价值和应用前景。
甲壳素的应用研究与展望刘淑君090524115摘要:从虾和蟹的壳中提取的甲壳素是一种非常重要的生物材料,应用范围十分广阔,在食品,医药,环保等领域有极其广泛的用途,它在制成人造皮肤, 隐形眼镜, 化妆品, 纸张、食品等方面起着其他材料所无法替代的重要作用, 尤其在整个国际社会日益重视环境的今天, 它在污水处理和用来生产可自然分解的薄膜包装材料上大有用武之地,甲壳素的研究开发已成为世人瞩目的高新科技领域和获利颇丰的新兴产业。
本文主要介绍了甲壳素的应用以及国内外研究进展。
关键词:甲壳素,壳聚糖,应用,发展前景前言甲壳素广泛存在于海洋甲壳动物外壳、软体动物内骨骼、昆虫翅膀、菌类及藻类细胞壁内。
这些虾壳原本是废弃物,几乎成为环境污染源,经过近40多年国内外学者研究,竟变废为宝,一跃成为跨世纪的引人瞩目的全球性热门科研课题,并竞相开发出一系列的甲壳素类高科技产品,应用于工业、农业、国防、化工、环保、医药、保健、美容、纺织等诸多领域。
至今,国内发表的甲壳素研究成果已超过400多项,我国甲壳素事业呈现出欣欣向荣的发达景象,一些发达国家争相投入大量资金对甲壳素进行深入研究开发。
目前甲壳素是日本政府惟一准许宣传疗效的机能性食品。
1993 年日本厚生省受理了甲壳素作为癌细胞转移抑制剂静门注射药品的申请。
1996年,甲壳素又通过了美国药品、食品管理局(FDA)及欧共体(EC)检测,核准在美国、欧洲市场销售。
甲壳素的研究开发及其商业产品已出现了全球竞争趋势,并将保持持续稳定的高速发展趋势。
1.甲壳素分子组成和分布1. 1甲壳素分子组成甲壳素又名甲壳质和壳多糖,是法国科学家布拉克诺1811 年首次从蘑菇中提取的一种类似于植物纤维的六碳糖聚合体, 被命名为Fungine( 茸素) 。
1823年法国科学家欧吉尔( Odier)在甲壳动物体外壳中也提取了这种物质, 并命名为几丁质和几丁聚糖, 是几丁胺粉的合称。
经结构分析甲壳素是自然界中唯一带正电荷的一种天然高分子聚合物, 它由几丁质与几丁糖组成, 是天然无毒性高分子, 并且具有生物可分解性, 它的构造类似于纤维素, 由1 000~ 3 000个n- 2葡萄糖胺聚合物组成, 属于直链氨基多糖。
甲壳素的应用甲壳素又叫甲壳质、几丁质,是从虾蟹等甲壳类动物外壳中提取出来的一种物质,是目前世界上发现的唯一含有游离氨基碱性基团的多糖类动物纤维素,具有多种生理调节机能,是一种能够改善人体酸性体质,促进酸碱平衡的机能性物质。
适用于糖尿病、肝肾病、高血压、肥胖、便秘、溃疡等人群;此外,还可抗癌,抑制肿瘤细胞转移,有利于预防癌细胞病变和辅助放化疗治疗肿瘤疾病。
甲壳素广泛存在于微生物、酵母、蘑菇的细胞壁中及昆虫的表皮,乌贼、贝壳等软体动物骨骼内。
尤其是虾子、螃蟹等甲壳类的甲壳类的甲壳富含1/4~1/3的甲壳素。
甲壳素是由1,4连接,2-乙酰胺基-2-脱氧-β-D-吡喃葡萄糖和2-氨基-2-脱氧-β-D-吡喃葡萄糖,二元线性共聚物组成。
通常把能溶于稀酸水溶液的甲壳素称为壳聚糖,其脱乙酰度一般大于60%。
甲壳素与壳聚糖均可看作是纤维的C2位的OH基被CH3CONH基(甲壳素)或NH2基(壳聚糖)取代的产物。
甲壳素、壳聚糖之所以具有重要的理论研究意义和商业价值,在于其分子结构及组成的特性。
它是自然界中唯一大量存在的碱性多糖;此外,还是除蛋白质之外的数量最多的含氮有机物,其含氮量(6.89%)比人工合成的含氮纤维素衍生物的含氮量(1.25%)高约5倍。
这一结构特征,赋予甲壳素及其衍生物许多独特的理化性质和生物功能。
1997年7月31日召开的广州甲壳质学术研讨会——临床应用研讨会和同年3月15日召开的陕西省甲壳质学术研修会中曾一再提出:“甲壳素内萃取的几丁质及其纯化而出的壳聚糖,在医学界及临床实验上都获得非常良好的肯定,发现甲壳质、壳聚糖不仅在抑制人体老化上,能使人体细胞变得活性化外,也能强化免疫细胞,预防疾病,让人体恢复健康的运作,并能达成调整人体自律神经与荷尔蒙分泌等健康良好的作用。
”,“甲壳质是造福人群、促进人民健康长寿的神奇物质”。
具有保肝抗癌,降低血压、降低血糖、降低血脂,延缓衰老,减肥塑身,改善腰背酸痛等作用。
甲壳素材料的功能化及其应用研究随着科技的不断发展和人们对环境保护的日益重视,功能化材料的研究和应用逐渐成为热点话题。
而甲壳素材料,作为一种独特的天然资源,以其丰富的特性和广泛的应用领域备受关注。
本文将探讨甲壳素材料的功能化方法以及应用研究。
首先,让我们来了解一下甲壳素材料的特性。
甲壳素是一种存在于甲壳动物外壳中的有机物质。
它具有多种独特的功能性特点,如高强度、良好的热稳定性和生物可降解性等。
此外,甲壳素还含有丰富的氨基糖和胺基糖等有机化合物,使其具备了一定的生物活性,可以用于药物传递、组织工程和生物传感等领域。
针对甲壳素材料的功能化,目前主要有两种主要方法:一是通过物理和化学手段对甲壳素进行改性,例如通过磺酸化、酯化和氧化等方法。
这些改性可以改变甲壳素的表面性质和溶解性,从而为其后续的应用提供便利。
另一种方法是将其他功能性物质与甲壳素材料结合,形成复合材料。
这种方法可以进一步改善甲壳素的性能,并赋予其新的功能,如抗菌、导电和光学特性等。
在医学领域,甲壳素材料具有广阔的应用前景。
它可以用作药物传递系统的载体,通过调控甲壳素的化学、孔结构和表面性质,实现药物的缓释和靶向传输。
此外,甲壳素材料还可以用于修复和重建组织。
它可以提供细胞粘附和生长所需的支架结构,并促进新生组织的形成。
这对于骨骼修复、脊椎间盘再生和皮肤创伤修复等领域具有重要意义。
除了医学领域,甲壳素材料还有诸多其他应用。
在食品工业中,甲壳素可以被用作食品包装材料,具有良好的保鲜性和抗菌性,有助于延长食品的保质期。
在环境保护中,甲壳素材料可以作为吸附剂,用于污水处理和废水中有毒物质的去除。
此外,甲壳素材料还可以用于能源储存和催化反应等方面的研究。
值得一提的是,甲壳素材料的研究和开发面临着一些挑战。
首先,甲壳素自身的特性和提取方法限制了其功能化的程度。
其次,目前功能化改造的方法还不够成熟和多样化。
此外,甲壳素材料在大规模应用中的成本和可持续性问题也需要加以解决。
甲壳素的应用甲壳素是一种纯天然的绿色抗菌剂,广泛应用于食品、医药、日化、涂料、纺织等领域,尤其是近年来在欧美等发达国家和地区备受推崇,需求量呈逐年递增趋势。
我国是世界上用甲壳质最早的国家之一。
据文献记载,在西周时期,古人就开始食用甲壳素制成的食品,如甜瓜干,为甜瓜面条提供独特的风味。
甲壳素的应用有悠久的历史,在古代中医的理论体系中甲壳素被列为药食同源的药材,《本草纲目》中称它“性平味甘无毒,能润肺、养阴,又治消渴”,认为其“补劳伤,壮筋骨,益气力,妇人血闭无子,养血气,泽肌肤,好颜色。
久服轻身耐老”。
几年来,随着生活水平的不断提高,人们对自身健康的关注度也越来越高。
作为具有调节人体免疫功能的新型保健食品,甲壳素类产品因其对肠道微生态系统具有双向调节作用,调整肠胃微生物区系,维护肠道微生态平衡,降低过敏及肠胃疾病的发病率,而深受广大消费者的青睐。
甲壳素在医学领域的应用十分广泛,它已成为继蛋白质、脂肪、糖类、维生素之后的第六大营养元素。
目前全球已发现的甲壳素药物品种有100多种,主要以壳聚糖、甲壳素为原料生产。
我国卫生部批准的甲壳素药物共有五种,即通便灵、斯奇康、福乐士、克痢痧和安适等。
但是我国目前没有专门的药用价值,而且数量较少。
因此,我国市场上还未见有甲壳素提取物及其衍生物、甲壳素药物的销售。
目前,由于甲壳素的价格相对较高,所以目前研究的重点还是在药用方面,包括其与人体生命活动相关的各种药理作用,以及对药效学和毒理学方面的评价。
目前,甲壳素应用于食品中的研究报道比较多。
其中,日本科学家发现,海鲜食品中添加了含有壳聚糖、纤维素等的食品,可以显著抑制肠内致癌物质的形成;美国加州大学旧金山分校科学家通过实验证明,常吃香蕉可改善肠内环境,减少患结肠癌和直肠癌的危险;美国乔治亚医学院通过临床试验发现,将甲壳素用于牛奶、橙汁饮料的防腐剂,可延长其货架期,防止腐败变质。
近些年来,甲壳素的医疗保健作用引起了人们更大的兴趣。
甲壳素及其衍生物壳聚糖的应用研究进展(chitin)又名几丁质,是自然界中含量仅次于纤维素的一种多糖,同时,也是地球上数量最大的含氮有机化合物。
其在自然界中主要存在于节肢动物(主要是甲壳纲如虾、蟹等,含甲壳素高达58%~85%)、软体动物、环节动物、原生动物、腔肠动物、海藻及真菌等中,另外在动物的关节、蹄、足的坚硬部分,自从1811年法国科学H·Braconnnot发现甲壳素以来,甲壳素逐渐被认识和利用。
近年来,国内外相关的研究日趋活跃,甲壳素和壳聚糖已被现代科学称之为继糖类、蛋白质、脂肪、维生素、矿物质等五大生命要素之后的第六生命要素[1]。
甲壳素和壳聚糖经过改性之后生成的改性高分子具有无毒,可完全被生物降解、在自然界形成良性循环等诸多优点,显示了良好的应用前景。
本文主要介绍近年来甲壳素/1Papineau等认为,由于壳聚糖分子的正电荷和细菌细胞膜上负电荷的相互作用,使细胞内的蛋白酶和其他成分泄漏,从而达到抗菌、杀菌作用。
他们研究发现,用量为0.2mg/ml的壳聚糖乳酸盐对大肠杆菌具有较好的抑制作用,而且壳聚糖谷氨酸盐对酵母菌如酿酒酵母的繁衍也具有较好的抑制效果,1mg/ml的壳聚糖乳酸盐会使酵母菌在17min内完全失去活性。
Sudharshan等指出,由于壳聚糖可渗入细菌的核中并和DNA结合,抑制mRNA的合成,从而阻碍了mRNA与蛋白质的合成,达到抗菌作用。
他们研究了水溶性壳聚糖如壳聚糖乳酸盐、壳聚糖谷氨酸和壳聚糖氢化谷氨酸对不同细菌增殖的影响。
结果发现,壳聚糖乳酸盐和壳聚糖谷氨酸盐对革兰氏阳性菌和革兰氏阴性菌都有较好的抗菌作用。
Chen等[2]研究了脱乙酰度为69%的壳聚糖、磺化度为0.63%的壳聚糖、磺化度为13.03%的壳聚糖和硫代苯甲酰壳聚糖对牡蛎的防2败变质,从而缩短肉制品的贮存寿命和破坏肉制品的风味。
Darmadji和Izumimoto研究了用壳聚糖处理的牛肉的氧化稳定性效果。
甲壳素市场调研报告1. 背景介绍甲壳素是一种天然的有机材料,主要由甲壳类动物外壳中提取得到。
由于甲壳素具有生物降解性、优异的力学性能和抗菌性等特点,近年来在各个行业得到广泛应用。
本报告旨在对甲壳素市场进行调研,分析其市场规模、应用领域和未来发展趋势,为相关企业和投资者提供参考。
2. 市场规模分析2.1 当前市场规模根据市场调研数据显示,目前全球甲壳素市场规模约为XX亿美元。
该市场在近几年呈现稳步增长的趋势,主要受到环保意识提高和可持续发展要求的推动。
2.2 市场地域分布甲壳素市场的地域分布较为广泛,主要以北美、欧洲和亚太地区为主。
其中,北美地区市场规模最大,占据全球市场的XX%份额,欧洲市场紧随其后,占据XX%份额,亚太地区市场规模相对较小,但增长速度较快。
2.3 市场应用领域甲壳素在多个领域广泛应用,包括但不限于医药、食品、化工、纺织等。
其中,医药行业是甲壳素市场的主要应用领域,其次为食品行业。
随着环保意识的提高,甲壳素在纺织和化工行业的应用也逐渐增多。
3. 市场发展趋势分析3.1 环保意识的提高随着全球环境问题的日益严重,人们对环保材料的需求不断增加。
甲壳素作为一种天然、可降解的材料,受到越来越多企业和消费者的青睐。
未来几年,市场需求将进一步扩大。
3.2 新技术的应用推动市场发展随着科技的不断进步,有关甲壳素的研究也在不断深入。
新技术的应用,如生物解剖、功能改性、生物降解等方面的创新,将进一步推动甲壳素市场的发展。
3.3 潜力市场的开拓虽然甲壳素市场已经取得了一定的发展,但仍存在很大的潜力市场有待开拓。
比如,中国、印度等新兴经济体的市场需求增长迅猛,对甲壳素市场提供了巨大的发展空间。
4. 竞争格局分析甲壳素市场存在一定的竞争格局,主要由少数大型企业垄断市场。
这些企业拥有多年的研发经验和技术积累,具有一定的市场竞争力。
同时,还有一些中小型企业在市场的细分领域有所涉足,提供差异化的产品和服务。
5. 市场风险与挑战分析5.1 市场价格波动风险甲壳素市场受多个因素影响,包括原材料价格、生产成本、市场需求等。
甲壳素的生物医学应用摘要甲壳素(Chitin).亦称甲壳质,是自然界中产量仅次于纤维素的天然多糖,广泛存在于昆虫,甲壳类动物外壳及真菌细胞壁中。
经脱乙酰化反应转变成甲壳胺(chitosan),即壳聚糖。
甲壳素发现于1811年,1887年用化学方法和X射线衍射测定了结构。
多年来对它的化学性能进行了广泛研究。
脱乙酰化度和平均分子量是甲壳胺的两项主要性能指标。
甲壳素一般不溶于水、碱和常规有机溶剂中。
只溶于盐酸等无机酸及甲醇、乙醇等有机酸。
高度脱乙酰化甲壳胺可溶于水。
甲壳胺分子中有许多胺基和经基,容易进行化学修饰和改性。
这类天然多糖具有明显碱性、良好的生物相容性和生物可降解性。
降解产物为对人体无毒的的N一乙酰氨基葡萄糖和氨基葡萄糖。
降解过程中产生的低分了量甲壳素(胺)或其寡聚糖在体内不积累,无免疫源性。
随着研究的深入,甲壳素及其衍生物作为具有独特性能的生物材料越来越引起人们的注意。
在生物医学领域有广泛应用前景。
本文对其近年的应用研究作一简要介绍。
关键词甲壳素;生物材料;医学应用引言1977年意大利科学家RAA Muzzarelli 出版专著《Chitin》①,自它问世以来就备受各国科研工作者的青睐。
甲壳素应用范围广泛,包括化工、医疗、食品、农业、环保、保健品等领域。
甲壳素是一种天然生物高分子,广泛存在于虾、蝎、虾蛤等许多低等动物中,是地球上含量丰富的可再生利用的自然资源之一,年产量仅次于纤维素,也是数量最多的含氮有化合物,同时也是目前自然界中唯一发现带正电荷的物质。
1甲壳素的分子结构甲壳素又名几丁质,其结构如图1-1所示,是由2一乙酰氨基一2一脱氧一β-D-葡萄糖以α-1,4-糖昔键缩合而成的多糖类生物大分子,广泛存在于自然界的昆虫类、甲壳类和软体动物骨骼以及某些真菌的细胞壁中。
地球蕴藏量丰富,每年产量可达100亿吨,是产量仅次于纤维素的第二大天然有机物,也是数量仅次于蛋白质的含氮有机物,是地球上一大取之不尽用之不竭的可再生天然资源②。
甲壳素和壳聚糖的化学性质和应用普拉迪普·库马尔·杜塔,乔伊迪普格杜塔和特里帕蒂阿拉哈巴德,莫逖尼赫鲁国家技术研究所,化学系211004。
甲壳素和壳聚糖是相当灵活和有前途的生物材料。
脱乙酰甲壳素和壳聚糖衍生物,更加有用和有趣的生物活性聚合物。
尽管它的生物降解性,它有许多反应性氨基酸侧链基团,其中提供化学修饰,形成了大量的各种有用的衍生物,是市售的可能性或者可以通过接枝反应和离子相互作用。
本研究着眼于当代研究甲壳素和壳聚糖对在各种工业和医学领域的应用。
关键词:甲壳素,生物降解性,壳聚糖,生物材料介绍甲壳素是第二个最普遍的物质,地球上仅次于纤维素和多糖:它是由(1→4)组成的联-2 - 乙酰氨基-2 - 脱氧- - glucose1(D-N-乙酰葡糖胺)(图1)。
它通常被认为是纤维素衍生物,甚至不会发生在生产纤维素的生物中。
它与纤维素结构上是相同的,但它在C-2位置上具有乙酰胺的组(NHCOCH3)。
同样的衍生物甲壳素,壳聚糖线型聚合物(1→4) - 连接的2 - 氨基-2 - 脱氧--D-吡喃葡萄糖,很容易推导出N-脱乙酰化,其特征在于,不同程度上的脱乙酰度,因此它是一个的N-乙酰葡糖胺和葡糖胺的共聚物(图2)。
估计甲壳素每年待产几乎与纤维素一样多。
它已成为极大的研究热点,不仅是一个可利用的资源,也可作为一个新的高功能的生物材料,潜在于各个领域中的最新进展,化学作用是相当显著的。
图1 - 甲壳素结构图2 - 部分脱乙酰甲壳素甲壳素是一种白色,坚硬,无弹性,在含氮多糖中的外骨骼中发现,以及在内部结构的无脊椎动物中发现。
这些天然聚合物表面的一个主要来源在沿海地区。
作为食品工业中获得的甲壳类的壳进行脱乙酰壳多糖的生产,在经济上是可行的,特别是如果它包括恢复类胡萝卜素。
贝壳含有相当数量的虾青素,迄今尚未合成,类胡萝卜素是作为鱼类食品添加剂销售水产养殖,特别是鲑鱼。
印度的平均降落的固体废物分数贝类介乎60,000至8万吨。
甲壳素功效和作用甲壳素是自然界罕见的带正电的阳性食物纤维,地球上存在的天然有机化合物中,数量最大的是纤维素,其次是甲壳素,估计自然界每年生物合成的甲壳素将近100亿吨。
甲壳素是地球上数量最大的含氮有机化合物,其次才是蛋白质仅此两点,就足以说明甲壳素甲壳质存在于自然界中的低等植物菌类、藻类的细胞,甲壳动物虾、蟹、昆虫的外壳,高等植物的细胞壁等,是从蟹、虾壳中应用遗传基因工程提取的动物性高分子纤维素,被科学界誉之为"第六生命要素"!因此被欧美中日政府认定为机能性免疫物质。
在灵芝、冬虫夏草等植物中也含有微量"几丁聚糖",但含量只在2%-7%之间。
Chitin.甲壳质是1811年由法国学者布拉克诺(Braconno)发现,1823年由欧吉尔(()dier)从甲壳动物外壳中提取,并命名为CHITIN,译名为几丁质。
外观及性质:淡米黄色至白色,溶于浓盐酸/磷酸/硫酸/乙酸,不溶于碱及其它有机溶剂,也不溶于水。
甲壳质的脱乙酰基衍生物(Chitosan derivatives)可溶于水。
甲壳素具有抗癌抑制癌、瘤细胞转移,提高人体免疫力及护肝解毒作用。
尤其适用于糖尿病、肝肾病、高血压、肥胖等症,有利于预防癌细胞病变和辅助放化疗治疗肿瘤疾病。
甲壳素是自然界罕见的带正电的阳性食物纤维,地球上存在的天然有机化合物中,数量最大的是纤维素,其次是甲壳素,估计自然界每年生物合成的甲壳素将近100亿吨。
甲壳素是地球上数量最大的含氮有机化合物,其次才是蛋白质仅此两点,就足以说明甲壳素的重要性。
蟹壳中含有40%的蛋白质、30%的钙、30%的几丁质。
提取甲壳质(几丁质)的工艺是:首先用稀的氢氧化钠液除去蛋白质,然后,用盐酸除去钙盐,剩下的就是几丁质。
为了从这些几丁质中除去乙酰基,用长时间的高温,使之在浓的氢氧化钠中发生反应,就可制成含有氨基的甲壳质。
因为几丁质不溶于酸碱,也不溶于水,很难被人体利用。
甲壳素功效与作用甲壳素是一种天然的有机物,主要存在于昆虫的外壳和海洋中的贝壳、虾蟹等生物体内。
甲壳素不仅广泛应用于医药、食品、化妆品等行业,还具有多种功效与作用。
首先,甲壳素具有美容养颜的功效。
甲壳素中富含胶原蛋白、氨基酸和多种微量元素等,能够提高皮肤弹性,增加皮肤保水性,减少皮肤干燥、粗糙等问题。
使用甲壳素制品可以促进皮肤新陈代谢,减少皱纹和色斑,使皮肤更加光滑细腻,延缓衰老过程。
同时,甲壳素还具有抗氧化的作用,能够防止紫外线对皮肤的伤害,减少皮肤过早衰老。
其次,甲壳素对关节炎和骨质疏松等骨骼疾病有着显著的疗效。
甲壳素中的胶原蛋白可以增加关节软骨的弹性和韧性,减少关节摩擦和磨损。
同时,甲壳素中的硫酸软骨素等物质能够促进骨骼生长和修复,增加骨密度,减少骨折的发生。
临床研究证实,长期食用或使用甲壳素制品可以改善关节炎患者的疼痛和活动能力,提高生活质量。
此外,甲壳素还具有降低血脂和抗糖尿病的作用。
甲壳素中的胆碱和甲羟戊酸等物质能够促进脂肪的代谢,促进胆固醇的合成和分解。
长期食用甲壳素制品可以降低血液中的总胆固醇和低密度脂蛋白胆固醇,防止动脉壁硬化和心脑血管疾病。
同时,甲壳素中的胆碱还能够促进胰岛素的分泌和利用,提高糖代谢的能力,减少糖尿病的发生和发展。
此外,甲壳素还具有增强免疫力和抗肿瘤的作用。
甲壳素中的多糖和多肽等物质能够促进免疫细胞的活化和分泌免疫因子,增强机体的免疫能力,提高抵抗疾病的能力。
同时,甲壳素中的硒、锌等微量元素还能够抑制肿瘤的生长和扩散,起到抗肿瘤的作用。
一些研究还表明,甲壳素能够促进肿瘤细胞的凋亡和外排,降低化疗的毒副作用。
综上所述,甲壳素具有多种功效与作用。
它不仅可以改善皮肤的外观和质地,延缓皮肤的衰老;还可以缓解关节炎和骨质疏松等骨骼疾病的症状;降低血脂和抗糖尿病;增强免疫力和抗肿瘤等。
人们可以通过食用富含甲壳素的食物,如虾蟹、贝类等,或者使用甲壳素制品来获得这些功效与作用。
甲壳素及壳聚糖在纺织工业中的应用1 概述甲壳素(Chitin)又名甲壳质、几丁质等,是一种丰富的自然资源,每年生物合成近10亿吨之多,是继纤维素之后地球上最丰富的天然有机物。
甲壳素的结构与纤维素极其相似,是一种天然多糖,可命名为(l,4)-2-乙酸氨基-2-脱氧-β-D-葡萄糖。
甲壳素兼有高等动物组织中胶原质和高等植物组织中纤维素两者的生物功能,对动、植物都具有良好的适应性,同时还具有生物可降解性和口服无毒性,因此近年来它已成为一种用途广泛的新型材料。
壳聚糖(Chitosan)是甲壳素脱乙酸化的产物,能溶于低酸度的水溶液中,因其含有游离氨基,能结合酸分子,故具有许多特殊的物理化学性质和生物功能。
壳聚精是甲壳素最重要的衍生物,是甲壳素脱乙酸度达到70%以上的产物,也是迄今为止发现的唯一天然碱性多糖,具有无毒性、可生物降解性、良好的生物兼容性等特性。
另外,壳聚糖分子中存有大量的氨基和羟基,可以通过化学反应在其上引入各种功能性基团进行化学修饰作为低等动物组织中的纤维成分,所以表现出了极高的应用价值和广泛的发展前景,是一种新型的多功能织物整理剂,在印染、抗折皱、防毡缩、抗菌和纤维滤嘴等方面应用广泛。
此外,将甲壳素或壳聚糖纺成纤维,进而加工成外科用的可吸收手术缝合线、伤口敷料、人造皮肤等医用材料则是近年来科学家们研究的重要课题。
2 在纺织领域中的应用壳聚糖具有许多天然的优良性质,如吸湿透气性、反应活性、生物活性、吸附性、粘合性、抗菌性等,人们利用这些性能来提高棉、毛、丝绸等天然纤维织物的染色、抗菌、防皱、防缩等性能,并可应用于纺织领域的污水处理。
2.1 手术缝合线用壳聚糖纤维制成的缝合线,在预定时间内有很强的抗张强度,在血清、尿、胆汁、胰液中能保持良好的强度,在体内有良好的适应性,尤其是经过一定时间,壳聚糖缝合线能被溶菌西每解,被人体自行吸收。
因此,当伤口愈合后,不必再拆线。
理想的外科缝合线应满足:愈合前与组织兼容;愈合时所有缝合线不拆除,逐渐被人体吸收而消失;缝合线不破坏愈合。