初二数学竞赛训练(十)(含答案)-
- 格式:doc
- 大小:360.76 KB
- 文档页数:6
初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】第一届试题1. 某长方体的长、宽、高依次是2 cm、3 cm和4 cm,求它的体积。
解:体积公式为V = lwh,其中l、w和h分别表示长方体的长、宽和高。
代入已知数值,得V = 2 cm × 3 cm × 4 cm = 24 cm³。
答案:24 cm³2. 如图,已知△ABC中,∠C = 90°,AC = 6 cm,BC = 8 cm,AD⊥ BC,AD = 4 cm。
求△ABC的面积。
解:△ABC为直角三角形,面积公式为S = 1/2 ×底 ×高。
底为AC,高为AD,代入数值,得S = 1/2 × 6 cm × 4 cm = 12 cm²。
答案:12 cm²3. 若(3x + 5)(4 - x) = -7x + 9,求x的值。
解:将方程进行展开和合并同类项得:12x - 3x² + 20 - 5x = -7x + 9。
将所有项移到一边得:3x² - 12x + 11 = 0。
对方程进行因式分解得:(x - 1)(3x - 11) = 0。
由此可得x = 1 或 x = 11/3。
答案:x = 1 或 x = 11/3第二十二届试题1. 下图为某街区的地理平面图,a、b、c和d分别表示大街,A、B、C、D和E分别表示街区中的五个角落。
已知AE = CD,AB = 2 cm,BC = 10 cm,求AE的长度。
解:由题意可推出ABCD为平行四边形,而AE = CD。
根据平行四边形的性质,平行四边形的对角线互相等长,所以AE= CD = 10 cm。
答案:10 cm2. 若一个正方形的周长是36 cm,求它的面积。
解:设正方形的边长为x cm,由题意可知4x = 36,解方程得到x = 9。
初二数学竞赛测试题 班级 姓名_____________________ 一、选择题(每小题4分,共32分)1.如果a >b,则2a -b 一定是( C ) A 、负数 B 、非负数 C 、正数 D 、非正数。
2.已知x ﹥0,y ﹤0,∣x ∣﹤∣y ∣,则x+y 是( C )A 、零B 、正数C 、负数D 、不确定。
3.如图,△ABC 中,∠B=∠C ,D 在BC 边上, ∠BAD=500,在AC 上取一点E ,使得∠ADE=∠AED ,则∠EDC 的度数为( B )A 、150B 、250C 、300D 、504.满足等式 2003200320032003=+--+xy y x x y y x的正整数对(x,y )的个数是( )A 、1B 、2C 、3D 、45.今有四个命题:①若两实数的和与积都是奇数,则这两数都是奇数。
②若两实数的和与积都是偶数,则这两数都是偶数。
③若两实数的和与积都是有理数,则这两数都是有理数。
④若两实数的和与积都是无理数,则这两数都是无理数。
其中正确命题个数为( )A 、0B 、1C 、2D 、46.若M=3x 2-8xy+9y 2-4x+6y+13(x,y 是实数),则M 的值一定是( )A 、正数B 、负数C 、零D 、整数7.设A=48)41001441431(222+++-+-⨯Λ则与A 最接近的正整数是( ) A 、18 B 、20 C 、24 D 、25 8.如果关于x 的方程k(k+1) (k-2)x 2-2(k+1) (k+2)x+k+2=0,只有一个实数解,则实数k 可取不同的值的个数为( )(A)2 (B)3 (C)4 (D)5.二.填空题(每小题5 分共30分)9.如图,有一块矩形ABCD,AB=8,AD=6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE,再将△AED 沿DE 向上翻折,AE 与BC 的交点为F,则△CEF 的面积为 .10.关于x 的方程∣∣x-2 ∣-1∣=a 有三个整数解,则a 的值是 .11.已知关于x 的方程a 2x 2-(3a 2-8a)x+2a 2-13a+15=0(其中a 是非负整数),至少有一个整数根,那么a= .12.若关于x 的方程13213+-=++x x ax x 有增根x=-1,则a= . 13.已知三个质数a,b,c 满足a+b+c+abc=99,那么a c c b b a -+-+-= .14.在一个圆形时钟的表面,OA 表示秒针,OB 表示分针(O 为两针的旋转中心).若现在时间恰好是12点整,则经过 秒钟后,△OAB 的面积第一次达到最大.三、解答题:15.如图已知△ABC 中,∠ACB=900, AC=BC ,CD ∥AB ,BD=AB ,求∠D 的度数。
数学竞赛8年级真题试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 2x + 1,则f(1)的值为?A. 0B. 1C. 2D. 32. 下列哪个数是无理数?A. √9B. √16C. √3D. √13. 若a > b,则下列哪个选项是正确的?A. a c > b cB. a + c < b + cC. ac < bcD. a/c > b/c (c ≠ 0)4. 下列哪个方程的解集是实数集?A. x² + 1 = 0B. x² 2x + 1 = 0C. x² + x + 1 = 0D. x² x + 1 = 05. 若一组数据的平均数为10,则这组数据的和为?A. 5B. 10C. 20D. 50二、判断题(每题1分,共5分)1. 若a > b,则a² > b²。
()2. 两个负数相乘的结果是正数。
()3. 任何实数的平方都是非负数。
()4. 若a、b、c是等差数列,则a²、b²、c²也是等差数列。
()5. 两个无理数的和一定是无理数。
()三、填空题(每题1分,共5分)1. 若a + b = 5,a b = 3,则a = ______,b = ______。
2. 若x² 5x + 6 = 0,则x = ______或x = ______。
3. 若一组数据的方差为4,则这组数据的平均数为______。
4. 若等差数列{an}的前n项和为Sn = 2n² + 3n,则a1 = ______,d = ______。
5. 若函数f(x) = 2x + 3,则f(2) = ______。
四、简答题(每题2分,共10分)1. 解释什么是无理数。
2. 什么是等差数列?给出一个等差数列的例子。
3. 解释函数的定义。
初中数学竞赛一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内)1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是( B ). (A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-332. “a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的4倍”用代数式表示应为( )(A)2a+(21b 2)-4(a+b)2 (B)(2a+21b)2-a+4b 2(c)(2a+21b)2-4(a 2+b 2) (D)(2a+21b)2-4(a 2+b 2)23.若a 是负数,则a+|-a|( C ),(A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数 4.如果n 是正整数,那么表示“任意负奇数”的代数式是( ). (A)2n+l (B)2n-l (C)-2n+l (D)-2n-l5.已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ). (A)A 、B 两点的距离 (B)A 、C 两点的距离 (C)A 、B 两点到原点的距离之和 (D)A 、C 两点到原点的距离之和6.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且d-2a =10,那么数轴的原点应是( ). (A)A 点 (B)B 点 (C)C 点 (D)D 点7.已知a+b =0,a≠b ,则化简a b (a+1)+ba(b+1)得( ).(A)2a (B)2b (C)+2 (D)-28.已知m<0,-l<n<0,则m ,mn ,mn 2由小到大排列的顺序是 ( ).(A)m ,mn ,mn 2 (B)mn ,mn 2,m (C)mn 2,mn ,m (D)m ,mn 2,mn 二、填空题(每小题?分,共84分)9.计算:31a -(21a -4b -6c)+3(-2c+2b)=10.计算:0.7×194+243×(-15)+0.7×95+41×(-15)=ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,则表中问号“?”表示的数是 梨 梨 苹果 苹果 30 梨 型 梨 梨 28 荔枝 香蕉 苹果 梨 20 香蕉 香蕉 荔枝 苹果 ? 19 20 25 3014.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果应是 .15.在数轴上,点A 、B 分别表示-31和51,则线段AB 的中点所表示的数是 .16.已知2a x b n-1与-3a 2b 2m (m 是正整数)是同类项,那么(2m-n)x =17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月. 18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1 000元,2000年12月3日支取时本息和是 元,国家利息税税率是20%,交纳利息税后还有 元.19.有一列数a 1,a 2,a 3,a 4,…,a n ,其中 a 1=6×2+l ; a 2=6×3+2; a 3=6×4+3; a 4=6×5+4;则第n 个数a n = ;当a n =2001时,n = . 20.已知三角形的三个内角的和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是第十五届江苏省初中数学竞赛参考答案初一年级第一试一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D二、9.一6a+1 06. 10.一43.6.11.男生比女生多的人数.1 2.90. 1 3.1 6. 1 4.0.1 2 5. 1 5.-1511 6.1. 1 7.1988;1. 18.1022.5;101 8. 1 9.7n+6;2 8 5.2 O .2,8 9,8 9或2,7 1,1 07(每填错一组另扣2分).一、选择题1.已知x=2是关于x 的方程3x-2m=4的根,则m 的值是( ) (A)5 (B)-5 (C)1 (D)-12.已知a+2=b-2=2c=2001,且a+b+c=2001k ,那么k 的值为( )。
初二数学竞赛试题一选择题(每小题5分,共45分)1.a.b.c 是正整数,a >b 且a 2-ab-ac+bc=7.则a-c 等于(D ) A. -1 B. –1或-7 C . 1 D . 1或7 2. 已知a ≠0. b ≠0且a1+b1=4 则bab a bab a 323434-+-++等于(B )A .411- B.1019- C.0 D. 10193.对于非负数a 1.a 2…a 5满足M=(a 1+a 2+a 3+a 4)(a 2+a 3+a 4+a 5) N=(a 1+a 2+a 3+a 4+a 5)(a 2+a 3+a 4) ,则(B ) A. M >N B. M ≥N C. M <N D. M ≤N4.下列各图是纸箱厂剩下的废纸片,全是由全等的正方形组成的图形,为了充分5.,以使所作三角形与ABC 全等,这样的三角形最多可以画出(C ) A 8 个 B 6个 C 4个 D2个 6.有下列四个命题:(1) (2) 两边和第三边上的高对应相等的两个锐角三角形不一定是全等三角形 (3) 两边和第三边上的高对应相等的两个三角形是全等三角形(4) 两边和其中一边所对的角对应相等的两个三角形不一定是全等三角形 其中正确的是(D ) A.(1) (2) B. (2) (3) C. (3) (4) D.(4) (1)7.若x =a1-a ,则24x x +的值为(B )A . a-a 1 B.a1-a C. a+a1 D.不能确定8.如果两个三角形的两边和其中一边上的高分别对应相等,那么这两个三角形的 第三边所对的角(D )A .相等 B.不相等 C.互余 D.互补或相等 9 .已知实数a 满足 2000-a +2001-a =a,则a-20002的值为(C )A .1999 B.2000 C.2001 D.2002 二.填空题(每题5分,共40分) 10. 已知A=3232--+,化简后,A=211.设x=nn n n ++-+11,y=nn n n -+++11.且19x 2+143xy+19y 2=2005,则整数n=_2______.12.若m 适合于关系式y x y x m y x m y x --+-=-++--+199.19932253,则m=_201__ 13.满足23)31(2x x --=-的所有整数x 的和是___5_____14.在△ABC 中,∠C=90°,BC=40,AD 是∠BAC 的平分线交BC 于D,且DC :DB=3:5则点D 到AB 的距离是__15______15.在△ABC 中,AB=5,AC=9,则BC 边上的中线AD 的长的取值范围是_2<AD <7___16.如图,在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,并且AE=21(AB+AD ),则∠ABC+∠17.张家村、李家村和杨家村三个村庄的位置不在同一眼机井,要求机井到三条道路的距离相等,那么打机井的位置有__4____处.三.三所学校分别记作A 、B 、C ,体育场记作O ,它是△ABC 的三条角平分线的交点,O 、A 、B 、C 每两地之间有直线道路相连,一支长跑队伍从体育场O 出发,跑遍各校再回到O 点,指出哪条路线跑的距离最短(已知AC >BC >AB ),并说明理由(9分)解:O →A →B →C →O (或 O →C →B →A →O )四.设a+b+c+3=2(a +11-++cb ),求a 2+b 2+c 2的值(8分)解:a=1,b=0.c=2 . a 2+b 2+c 2=5五.已知c b a x --+a c b x --+b c a x --=3,且a 1+b1+c1≠0,求(x-a-b-c )2005的值(9分)解: (x-a-b-c )2005=0六、如图,,已知AD ∥BC,∠EAD=∠EAB,∠EBA=∠EBC,直线DC 过E 交AD 于D,交BC 于C,求证: AD+BC=AB (9分)。
湖州市初二年级数学竞赛试卷答题时注意: 1. 用圆珠笔或钢笔作答.2. 解答书写时不要超过装订线.D旳四个选项, 其中有且只有一种选项是对旳旳. 请将对旳选项旳代号填入题后旳括号里. 不填、多填或错填均得零分)1. 旳末位数字是().A. 1B. 3C. 5D. 72.设a、b是方程旳两个实数根, 则旳值是()A. B. C. D.3.桌上放着6张扑克牌,所有正面朝下。
你已被告知其中有两张且只有两张是老K,不过你不懂得老K在哪个位置。
你随便取了两张并把它们翻开,会出现下面两种状况:(1)两张牌中至少有l张是老K;(2)两张牌中没有l张是老K。
比较这两种状况旳也许性, 可知 ( )A. (1)旳也许性大B. (2)旳也许性大C. 两者同样.D. 不能确定4.如图, △ABC中, AD是∠BAC内旳一条射线, BE⊥AD, M是BC上旳点, 把△BEM绕点M旋转1800得到△CHM, 延长CH交AD于F, 则下列结论错误旳是()A. BM=CMB. FM= EHC. CF⊥ADD. F M⊥BC5. 如图所示,是矩形内一点,已知PA=6 PB=8 PC=10,则PD旳值为()A. B. 8 C. D. 96.一种人步行从A 地出发, 匀速向B 地走去.同步另一种人骑摩托车从B 地出发, 匀速向A 地驶去.二人在途中相遇, 骑车者立即把步行者送到B 地, 再向A 地驶去, 这样他在途中所用旳时间是他从B 地直接驶往A 地原计划所用时间旳2.5倍, 那么骑摩托车者旳速度与步行者旳速度之比是( ) A. 2:1 B. 3:1 C. 4:1 D. 5:17.某人月初用x 元人民币投资股票,由于行情很好,他旳资金每月都增长 ,虽然他每月末都取出1000元用于平常开销,他旳资金仍然在三个月后增长了一倍,那么x 旳值是( ) A. 9000 B. 10000 C. 11000 D. 111008. 一堂“探索与实践”活动课上, 小明借助学过旳数学知识, 运用三角形和矩形为班里旳班报设计了一种报徽, 设计图案如下: 如图, 两条线段EF 、MN 将大长方形ABCD 提成四个小矩形, 已知DE=a, AE=b, AN=c, BN=d, 且S1旳面积为8, S2旳面积为6, S3旳面积为5, 则阴影三角形旳面积为( ) A . B .3 C .4 D.二、填空题(共6小题, 每题5分, 满分30分) 9. 若m= ,a 是m 旳小数部分, 则a=____________.10. 若有关 旳不等式组 无实数解, 则 旳取值范围是11. 你玩过“数字黑洞”旳游戏吗? 下面我们就来玩一种数字游戏, 它可以产生“黑洞数”, 操作环节如下: 第一步, 任意写出一种自然数(如下称为原数);第二步, 再写出一种新旳三位数, 它旳百位数字是原数中偶数数字旳个数, 十位数字是原数中奇数数字旳个数, 个位数字是原数旳位数;如下每一步, 都对上一步得到旳数按照第二步旳规则继续操作, 直至这个数不再变化为止. 不管你开始写旳是一种什么数, 几步之后变成旳自然数总是相似旳, 最终这个总相似旳数就称为“黑洞数”. 请你认为例进行尝试: 这个数字游戏旳“黑洞数”是(零作为偶数)得 分 评卷人610第5题 ABCD8第4题12.如图, △ABC中, ∠A=30°以BE为边, 将此三角形对折, 另一方面, 又以BA为边, 再一次对折, C点落在BE上, 此时∠CDB=84°, 则原三角形旳∠B =____________度。
八年级(下)数学期末竞赛测试卷一、选择题(每小题3分,共30分)1、下列多项式中能用完全平方公式分解的是( ) A.x 2-x +1 B.1-2xy +x 2y 2 C.a 2+a +21D.-a 2+b 2-2ab2、不等式组⎩⎨⎧>-≥-04012x x 的整数解为( )A.1个B.2个C.3个D.4个3、下列各分式中,与分式ba a--的值相等的是 ( )A 、b a a --B 、b a a +C 、a b a -D 、-ab a-4、.若分式34922+--x x x 的值为0,则x 的值为( )A . 3-B .3或3-C .3D .无法确定5、某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82=甲x 分,82=乙x 分;2452=甲s ,1902=乙s ,那么成绩较为整齐的是( ) A .甲班 B .乙班 C .两班一样整齐 D .无法确定6、某天同时同地,甲同学测得1 m 的测竿在地面上影长为0.8 m ,乙同学测得国旗旗杆在地面上的影长为9.6 m ,则国旗旗杆的长为( )A .10 mB .12 mC .13 mD .15 m 7、如图,△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,DE =1,BC =3,AB =6,则AD 的长为( )A .1B .1.5C .2D .2.5(第7题图) (第9题图)8、赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A .1421140140=-+x x B .1421280280=++x x C .1421140140=++x x D .1211010=++x x9、如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2米,桌面距离地面1米.若灯泡距离地面3米,则地面上阴影部分的面积为( )A .0.36π平方米B .0.81π平方米C .2π平方米D .3.24π平方米10.下列从左到右的变形是因式分解的是( ) A.(x+1)(x-1)=x 2-1 B. a 2b =a ·abC.ab-a-b+1=(a-1)(b-1)D.m 2-2m-3=m(m-2-m3)二、填空题(每小题3分,共24分)11、已知:线段AB=10cm ,C 为AB 有黄金分割点,AC>BC ,则AC=_________. 12、不等式(a -b )x>a -b 的解集是x <1,则a 与b 的大小关系是________.13、已知x 1,x 2,x 3的标准差是2,则数据2x 1+3,2x 2+3,2x 3+3的方差是 ..14、计算机生产车间制造a 个零件,原计划每天造x 个,后为了供货需要,每天多造了b 个,则可提前______________天完成。
初中数学竞赛模拟题50题含答案一、单选题10,0)a b>>,分别作了如下变形:甲:()a b-====( )A .甲、乙都正确B .甲、乙都不正确C .只有甲正确D .只有乙正确2.若实数a ,b ,c 满足等式36b =,96b c =,则c 可能取的最大值为( ) A .0B .1C .2D .33.设a ,b ,c 的平均数是M ,a ,b 的平均数是N ,N 与c 的平均数是P .若a b c >>,则M 与P 的大小关系是( ). A .M P =B .M P >C .M P <D .不能确定4.1234x x x x -+-+-+-的最小值为( ) A .4B .5C .6D .105.A ,B ,C ,D ,E 五人参加“五羊杯”初中数学竞赛得分都超过91分,其中E 排第三,得96分.又已知A ,B ,C 平均95分,B ,C ,D 平均94分,若A 排第一,则D 得( )分. A .98B .97C .93D .926.如果21x x --是31ax bx ++的一个因式,则b 的值是( ). A .2-B .1-C .0D .27.如图,在ABC 中,过点C 作CD AB ⊥,垂足为点D ,过点D 分别作DE AC ⊥,DF BC ⊥,垂足分别为E ,F .连接EF 交线段CD 于点O ,若CO =CD =EO FO ⋅的值为( ).A .B .4C .D .68.已知3a b -=,则339a b ab --的值是( ). A .3B .9C .27D .819.把三个连续的正整数a ,b ,c 按任意次序(次序不同视为不同组)填入20x x ++=□□□的三个方框中,作为一元二次方程的二次项系数、一次项系数和常数项.使所得方程至少有一个整数根的a ,b ,c ( ). A .不存在B .有一组C .有两组D .多于两组10.已知a ,b 长,则这个三角形的面积是( ) A .32abB .abC .12abD .2ab11.定义:平面直角坐标系中,点(),P x y 的横坐标x 的绝对值表示为||x ,纵坐标y 的绝对值表示为||y ,我们把点(),P x y 的横坐标与纵坐标的绝对值之和叫做点(),P x y 的折线距离,记为||||||M x y =+(其中的“+”是四则运算中的加法),若抛物线21y ax bx =++与直线y x =只有一个交点M ,已知点M 在第一象限,且2||4M ≤≤,令2242022t b a =-+,则t 的取值范围为( ) A .20182019t ≤≤ B .20192020t ≤≤ C .20202021t ≤≤D .20212022t ≤≤12.1991331991+的值用十进制表示时,末位数字是( ). A .8B .4C .2D .013.从正整数里取出k 个不同的数,使得这k 个数中任意两个数之差的绝对值是质数,则k 的最大值是( ). A .3B .4C .5D .614.满足等式2003的正整数对(),x y 的个数是( ).A .1B .2C .3D .415.1898年6月9日英国强迫清政府签约,将香港975.1平方公里土地租借给英国99年.1997年7月1日香港回归祖国,中国人民终于洗刷了百年耻辱,已知1997年7月1日是星期二,那么,1898年6月9日是星期( ).(注:公历纪年,凡年份为4的倍数但不是100的倍数的那年为闰年,年份为400的倍数的那年也为年,年的2月有29天,平年的2月有28天.) A .二B .三C .四D .五16.在实数范围内,设198851111a x a a ⎤⎥+=⎥-⎢⎥+-⎣⎦,则x 的个位数字是( ). A .1B .2C .4D .617.已知a b c d ,,,都是实数,则下列命题中,错误的是( ). A .若222a b c ab bc ca ++=++,则a b c == B .若3333a b c abc ++=,则a b c ==C .若442242242()a b c d a b c d +++=+,则a b c d ===D .若44444a b c d abcd +++=,则a b c d ===18.从1分、2分、5分3种硬币中取出100枚,总计3元,其中2分硬币枚数的可能情况有( )种. A .13B .16C .17D .1919.使424m m -+为完全平方数的自然数m 有( )个. A .2B .3C .4D .无数20.已知a ,b ,c 三个数中有两个奇数、一个偶数,n 是整数,如果()()()12233S a n b n c n =++++++,那么( ).A .S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D .S 的奇偶性不能确定二、填空题21.若243k x -<是关于x 的一元一次不等式,则 k 的值为______. 22.已知(x -3)2+1m +=0,则mx =_______.23.已知:122334!99100a =⨯+⨯+⨯++⨯,243546!100102b =⨯+⨯+⨯++⨯,则a b -=______.24.设a ,b 是一元二次方程210x x --=的两根,则32234a b a ++的值为__________. 25.设n 是小于100的正整数且使2232n n --是6的倍数,则符合条件的所有正整数n 的和是______.26.如图,在Rt ABC 中,90BAC ∠=︒,分别以AB 、BC 、AC 为边向上作正方形,已知Rt ABC 的面积为5,则图中阴影部分面积之和为______.27.今天是星期日,从今天算起,200011111个天是星期________.28.一本书共有61页,顺次编号为1,2,…,61,某人将这些数相加时,有两个两位数的页码都错把个位数和十位数弄反了(形如ab 的两位数被当成了两位数ba ),结果得到总和是2008,那么书上这两个两位数页码之和的最大值是_________. 29.若实数,x y 满足333333331,134365456x y x y+=+=++++,则x y +=_____.30.若化简2x -25x -,则满足条件是x 的取值围是_________.31.使得521m ⨯+是完全平方数的整数m 的个数为__________.32.如图,以△ABC 的边AC 、BC 为边向外作正方形ACDE 和正方形BCGF ,连接AG 、BD 相交于点O ,连接CO 、DG ,取AB 中点M ,连接MC 并延长交DG 于点N .下列结论:①AG =BD ;①MN ①DG ;①CO 平分①DCG ;①S △ABC =S △CDG ;①①AOC =45°.其中正确的结论有______________(填写编号).33.从1,2,…,2008中,至少取________个偶数才能保证其中必定存在两个偶数之和为201234.某个两位自然数,它能被其各位数字之和整除,且除得的商恰好是7的倍数,写出符合条件的所有两位数是_________.35.关于,x y 的方程332232x y x y xy -+-=的正整数解的个数_____个. 36.方程13217219211211215217292x x x xx x x x----+=+----的解是______.37.方程22320060x xy x y --++=的正整数解(,)x y 共有__________对. 38.已知由小到大的10个正整数1210,,,a a a 的和是2000,那么5a 的最大值是_________,这时10a 的值应是_________.39.已知在正方形ABCD 中,5AB =,点N 在DC 的延长线上,过D 作BN 的垂线分别交BC 、BN 于点P 和点M ,点Q 在CD 边上且满足1010DQ BP BQBN --=,连接AE 、CE ,则)1CE AE +的最小值等于 __.40.如图所示,已知边长为2的正三角形ABC 中,P 0是BC 边的中点,一束光线自P 0发出射到AC 上的P 1后,依次反射到AB 、BC 上的点P 2和P 3,且1<BP 3<32(反射角等于入射角),则P 1C 的取值范围是_____.三、解答题41.戴高乐是二战期间领导法国人民赶走德国法西斯的英雄,也是法兰西第五共和国的总统.他去世后,根据他生前的意愿,他的墓前只立有一块小小的碑牌,一面刻着“查尔斯·戴高乐1890—1970”,另一面则刻着一个洛林十字架.洛林十字架由13块相同的小正方形组成,如图1所示.(1)你能否只用一把无刻度直尺画一条直线,使其等分洛林十字架.(面积等分,在图1中画出1种情形即可)(2)戴高乐还是第一个提出并且解决了下面一个非常有趣的有关洛林十字架的数学问题的人.问题如下:如图2,在洛林十字架的A 点处作一条直线,把洛林十字架严格地划分成面积相等的两部分.戴高乐利用圆规,直尺和铅笔解决了该问题,他的作法如下:如图3所示,①标记点D ,B ,M ,连接BM ,与AD 交于点F ;①以点F 为圆心,FD 长为半径作弧,与BF 交于点G ;①以点B 为圆心,BG 长为半径作弧,与BD 交于点C ;①连接CA 并延长,与洛林十字架边界交于点N ,则直线CN 即为所求.请根据戴高乐的作图步骤,证明直线CN 等分洛林十字架.小林同学的部分证明过程如下:标记点H ,P ,Q ,如图3所示.设洛林十字架中每个小正方形的边长为1. 易证BDF MAF ≌, ①FD FA =.由作图,可知1122FG FD FA AD ====.①BF .①12BG BC BF FG ==-=.①1CD BD BC =-==请补全小林同学的证明过程.42.如图1,ABC 中,AC =BC =4,①ACB =90°,过点C 任作一条直线CD ,将线段BC 沿直线CD 翻折得线段CE ,直线AE 交直线CD 于点F .直线BE 交直线CD 于G 点.(1)小智同学通过思考推得当点E 在AB 上方时,①AEB 的角度是不变的,请按小智的思路帮助小智完成以下推理过程: ①AC =BC =EC ,①A 、B 、E 三点在以C 为圆心以AC 为半径的圆上, ①①AEB = ①ACB ,(填写数量关系) ①①AEB = °.(2)如图2,连接BF ,求证A 、B 、F 、C 四点共圆;(3)线段AE 最大值为 ,若取BC 的中点M ,则线段MF 的最小值为 .43.岳池县体育馆今夏外围绿化施工,有一块三角形空地,要在上面栽种四种不同的花草,需将该空地分成面积相等的四块,请你设计出三种不同的划分方案.44.将平面直角坐标系中点集{}(,)1,2,3,4,5,1,2,3,4M x y x y ===内的11个点染成红色,其余点不染色.证明:存在一个矩形,它的边与坐标轴平行,顶点都在M 中,并且都是红色.45.求证:若()8216157|78+,则()8316357|78+.46.10个学生参加n 个课外活动小组,每一小组至多5个人;每两个学生至少参加一个小组;任意两个课外小组至少可找到两个学生,他们都不在这两个课外活动小组中.试求n 的最小值.47.在元旦晚会上,学校组织了一次关于语文、数学、外语、奥运及日常生活常识的知识竞赛,设定每科满分为40分,以下依次为30分、20分、10分和0分,共5个评分等级,每个小组分别回答这五个方面的问题.现将A 、B 、C 、D 、E 五个小组的部分得分列表1如下: 表1表1中,(1)每一竖行的得分均不相同(包括单科和总分);(2)C 组有4个单科得分相同.求B 、C 、D 、E 组的总分并填表进行检验. 48.a ,b 和c 都是两位数的自然数,a ,b 的个位分别是7与5,c 的十位是1.如果它们满足等式2005ab c +=,求a b c ++的值. 49.在正2004边形122004A A A 的各个顶点上随意填上1,2,3,,501中一个数,证明:一定存在四个顶点满足如下条件: (1)这四个顶点构成的四边形是矩形; (2)此四边形相对两顶点所填数之和相等.50.对非负整数n ,满足方程2x y z n ++=的非负整数(),,x y z 的组数记为n a . (1)求3a 的值; (2)求2001a 的值.参考答案:1.D【分析】甲利用分母有理化的知识,可求得;乙先将分子因式分解,然后约分,即可求得.【详解】解:甲:当a b 时,()a b-==当a =b 时,无意义,==①甲错误,乙正确,选项说法错误,不符合题意; 选项说法错误,不符合题意; 选项说法错误,不符合题意; 选项说法正确,符合题意; 故选D .【点睛】本题考查了分母有理化,因式分解,解题的关键是要全面考虑a 与b 之间的数量关系. 2.C【详解】解:由已知,()69315121512c b b b b ==-=-≤,①2≤c . 3.B【详解】解 依题意2,,3224a b c a b N c a b cM N P ++++++====,2()()1212a b c a c b c M P +--+--==. 因a b c >>,故0M P ->,即M P >.故应选B 4.A【详解】()()14143x x x x -+-≥---=,当14x ≤≤时取得等号;()()21233x x x x +-≥---=-,当23x ≤≤时取得等号;因此,1234314x x x x -+-+-+-≥+=,当23x ≤≤时取得等号.所以,1234x x x x -+-+-+-的最小值为4. 5.B【详解】设A ,B ,C ,D ,E 分别得a ,b ,c ,d ,e 分,则a ,b ,c ,d ,e 都是在92与100之间的正整数,其中a 最大,96e =排第三,且395285,394282a b c b c d ++=⨯=++=⨯=.两式相减得3a d -=.若b 排在第二,则197,97,2859192b e a b c a b ≥+=≥≥=--=<,矛盾. 若c 排第二,则97,97,2859192c a b a c ≥≥=--≤<,矛盾.若d 排第二,则97,3973100d a d ≥=+≥+=,故只可能100,97a d ==.所以选B . 6.D【详解】(解法一)依题意可设32321(1)()()()ax bx x x ax c ax c a x a c x c ++=--+=+--+-,比较系数得(),0,1,b a c c a c =-+⎧⎪-=⎨⎪-=⎩所以1,2c a b ==-=.故选D .(解法二)依题意21x x --是3221(1)()1ax bx ax x x ax b a x ++---=+++的因式, 所以1111a b a +==--, 解得1,2a b =-=.故选D .(解法三)用长除法可得321(1)()(2)(1)ax bx x x ax a a b x a ++=--+++++,所以20,10,a b a +=⎧⎨+=⎩得1,2a b =-=.故选D .7.B【分析】由题意易得出90DEC DFC ∠=∠=︒,即说明点C ,E ,D ,F 四点共圆,得出DEO FCO ∠=∠,从而易证DOE FOC ∽,得出EO DOCO FO=.由题意可求出DO CD CO =-4EO FO CO DO ⋅=⋅=.【详解】解:①DE AC ⊥,DF BC ⊥, ①90DEC DFC ∠=∠=︒, ①点C ,E ,D ,F 四点共圆,①DEF FCD ∠=∠,即DEO FCO ∠=∠.又①DOE FOC ∠=∠, ①DOE FOC ∽, ①EO DOCO FO=, ①EO FO CO DO ⋅=⋅. ①CO =CD = ①DO CD CO =-=①4EO FO CO DO ⋅=⋅==. 故选B .【点睛】本题考查相似三角形的判定和性质,四点共圆的知识,圆周角定理.确定点C ,E ,D ,F 四点共圆,从而可得出证明DOE FOC ∽的条件是解题关键. 8.C【详解】3322229()()93()9a b ab a b a ab b ab a ab b ab --=-++-=++-22223(2)3()3327a ab b a b =-⨯+=-==.故选C .9.C【详解】设三个连续的正整数分别为n 1-,n ,1n +(n 为大于1的整数).当一次项系数是n 1-或n 时,∆均小于零,方程无实数根;当一次项系数是1n +1时,22(1)4(1)3(1)4n n n n ∆=+--=--+.因为n 为大于1的整数,所以,要使0∆≥,n 只能取2.当2n =时,方程22320,2310x x x x ++=++=均有整数根,故满足要求的(a ,b ,c )只有两组:(1,3,2)、(2,3,1). 10.A【分析】构造矩形ABCD , E 、F 分别为AD 、AB 的中点,设2AD b =, 2AB a =,将所求三角形面积转化为△△△△矩形=---CEF AEF BCF CDE ABCD S S S S S 即可求解. 【详解】解:如图,在矩形ABCD 中, E 、F 分别为AD 、AB 的中点, 设2AD b =, 2AB a =, ①AF BF a ==,==AE DE b ,①在Rt AEF △、Rt BCF 、Rt CDE △中,依次可得到:EFCF==CE①△△△△矩形=---CEF AEF BCF CDE ABCD S S S S S 1112222222=⨯-⨯⨯-⨯⨯-⨯⨯a b a b a b a b142=---ab ab ab ab32ab =. 故选:A【点睛】本题考查二次根式的应用.能够通过构造矩形及直角三角形,利用等积变换将所求三角形的面积转化为矩形和几个直角三角形的面积之差.利用数形结合是解答本题的关键. 11.C【分析】联立方程组求得M 点坐标,并由只有一个交点条件求得a 、b 的关系式, 再由新定义和2||4M ≤≤列出b 的不等式,,求得b 的取值范围,由2242022t b a =-+,得出t 关于b 的二次函数解析式,再根据函数的性质求得t 的取值范围.【详解】解:①抛物线21y ax bx =++与直线y x =只有一个交点M ,①方程组21y x y ax bx =⎧⎨=++⎩只有一组实数解, ①()2110ax b x +-+=,①()2140b a =--=△, ①()21b =-4a ,即()2114b =-a , ①方程()2110ax b x +-+=可以化为()()22111104b x b x -+-+=, 即()()2214140b x b x -+-+=, ①1221x x b ==-, ①1221y y b==- ①22,11M b b ⎛⎫ ⎪--⎝⎭, ①点M 在第一象限, ①10b ->, ①2||4M ≤≤, ①222||||411b b≤+≤--, ①2121b≤≤-, 解得:10b -≤≤, ①2242022t b a =-+,①()()22221202212020t b b b =--+=++, ①10b -≤≤,①t 随b 的增大而增大, ①1b时,2020t =,0b =时,2021t =,①t 的取值范围为20202021t ≤≤. 故选:C .【点睛】本题考查二次函数的性质、二元二次方程组、一元二次方程及其判别式、一元一次不等式组等知识.把问题转化为方程或方程组,构建二次函数并且利用二次函数的性质解决问题是解题的关键. 12.A【详解】123453,3,3,3,3,……的末位数字分别为3,9,7,1,3,……,它们是以3,9,7,1四个数为一个周期循环出现的.而199144973=⨯+,所以19913的末位数字与33的末位数字相同,都为7.因此,1991331991+的末位数字与71+的末位数字相同,都为8. 13.B【详解】解法一 首先4个数1,3,6,8满足题目要求,故所求k 的最大值4≥. 若5k ≥,记第n 个数为(1,2,,)n a n k =,且12 k a a a <<<,则分下列几种情形:(1)1a 为奇,2a 为奇,于是21a a -为偶数. 又21a a -为质数,故212a a -=,即212a a =+.若3a 为奇数,又32a a ≠,故31a a -为不等于2的偶数,即31a a -为不小于4的偶数,即31a a -为合数,矛盾.故3 a 为偶数,4a 也只能为偶数.那么,若5a 为奇,则51312a a a a ->-≥为偶数,即51a a -为不小于4的偶数,从而51a a -为合数,矛盾.若5a 为偶数,则53432a a a a ->-≥为偶数,从而53a a -为合数,矛盾. (2)1a 为奇,2a 为偶,于是21a a -为奇数,即213a a -≥. 若3a 为奇数,则31213a a a a ->-≥为偶数,故31a a -为合数,矛盾. 所以3a 为偶数,且322a a -=.若4a 为奇数,则41313a a a a ->-≥为不小于4的偶数,即41a a -为合数,矛盾. 若4a 为偶数,则42322a a a a -->=为不小于4的偶数,即42a a -为合数,矛盾. (3)1a 为偶,2a 为奇或偶,都类似于(1),(2)可导致矛盾. 综上得所求k 的最大值是4,故选B .解法二 同解法一得4k ≥.若5k ≥,则将全体正整数分为4个不相交的子集1M ,2M ,3M ,4M ,其中i M 由全体被4除余i 的正整数组成(0,1,2,3)i =于是任取5k ≥个数,其中必有2个数a ,b (a b >)属于同一个子集i M ,于是a b -被4整除,a b -不是质数,矛盾.故所求k 的最大值等于4. 14.B 【详解】原式0⇔==,0>0=,即2003 xy =.又2003是质数,所以1,2003x y =⎧⎨=⎩或2003,1.x y =⎧⎨=⎩故选B15.C【详解】选C .理由:已知1997年7月1日是星期二,则易推知1997年6月9日是星期一.而1898年6月9日至1997年6月9日共99年,其中闰年24次,所以 993652499244(mod7)⨯+≡+≡, 1434(mod7)-≡-≡.16.D【详解】解:要使x 有意义,必须且只需(2)(1)0,(2)(1)0,(2)(1)0,1,110,21101a a a a a a a a a a a ⎧--≥⎪⎧--=--≥⎪⎪⎪⇒≠⇒=-⎨⎨-≠⎪⎪≠⎩⎪+≠⎪-⎩. 所以1988198********05(1)1()(2)(2)1611(1)12x ⨯⨯-+=+=-=-=--+, 故x 的个位数字为6, 故选:D . 17.C【详解】对A ,因2222()2()0a b c ab bc ca +-++=+,即222()()()0a b b c c a -+-+-=,所以0a b b c c a -=-=-=,即a b c ==,故A 成立. 对B ,因3332223()()a b c abc a b c a b c ab bc ca ++-=+++++++ 2221()[]()()()02a b c a b b c c a =++-+-+-=, 所以0a b c ++=,或a b c ==,不一定有a b c ==,故B 不成立. 对C ,因44442222220a b c d a b c d +++--=,即222222()()0a b c d -+-=,所以2222,a b c d ==,即,a b c d =±=±,不一定有a b c d ===,故C 不成立. 对D ,因422442242222(2)(2)2240a a b b c c d d a b c d abcd -++-+++-=, 即2222222()()2()0a b c d ab cd -+-+-=,故2222,,a b c d ab cd ===,由此可推出a b c d ===或a b c d =-==-,不一定有a b c d ===成立,故D 不成立,所以本题应选B 、C 、D .(注:若限定a b c d ,,,都为正数,则B 和D 成立,答案应选C .) 18.C【详解】设1分、2分和5分的硬币分别取了x 枚、y 枚和z 枚,依题意得10025300x y z x y z ++=⎧⎨++=⎩①②,②-①得4200y z +=,可见y 是4的倍数,设4y k =,则100453008x z k x z k +=-⎧⎨+=-⎩,解得503450x k y k z k=-⎧⎪=⎨⎪=-⎩. 因为x 为非负整数,故5030k -≥,即016,k k ≤≤可取0,1,2,,16中任何一个,有17种取法,从而y 可取0,4,8,,64中任何一个,也有17种取法,故选C .19.B【详解】理由:当0,1,2m =时,424m m -+都是完全平方数.当3m ≥时,()()22242214m m m m -<-+<,故424m m -+都不是完全平方数.所以,符合条件的自然数m 只有3个. 故选:B 20.A【详解】选A .理由:考察S 的三个因数和的奇偶性. 21.1或3##3或1【分析】一元一次不等式即为含有一个未知数,且未知数的次数是1的不等式,据此即可确定k 的值.【详解】①|2| 43k x -<是关于x 的一元一次方程, ①21k -=,即21k -=±, 解得:k =1或3,故答案为:1或3.【点睛】本题考查了一元一次不等式的定义,准确理解定义中“一元”与“一次”的含义是解题的关键. 22.-1【分析】根据偶数次幂和绝对值的非负性,求出x ,m 的值,进而即可求解. 【详解】解:①(x ﹣3)2+|m +1|=0,且(x ﹣3)2≥0,|m +1|≥0, ①(x ﹣3)2=0,|m +1|=0, ①x =3,m =-1, ①()311x m =-=-. 故答案是:-1.【点睛】本题主要考查非负数和的性质,代数式求值,掌握偶数次幂和绝对值的非负性,是解题的关键. 23.-15147【详解】323334!3100a b -=-⨯-⨯-⨯--⨯ 3(23!100)3995115147=-⨯+++-⨯⨯=-24.11【详解】①a ,b 是一元二次方程210x x --=的两根,①1ab =-,1a b +=,21a a =+,21bb =+.①332222343423(1)42(1)3362a b a b b a a b b a a b a++=++=++++=+++ 3(1)3626()511a a b a b =++++=++=.25.1634【详解】①2232n n --是6的倍数,①()22232n n --,①23n ,①2n ,设2n m =(m 是正整数),则()22228626612232m m m m m n n =--=-+---.①2232n n --是6的倍数,①21m -是3的倍数,①31m k =+或32m k =+,其中k 是非负整数.①()23162n k k =+=+或()23264n k k =+=+,其中k 是非负整数. ①符合条件的所有正整数n 的和是()()2814869298410168288941634+++⋅⋅⋅+++++++⋅⋅⋅+++=.26.10【分析】利用勾股定理和正方形的面积公式可得+=四边形四边形四边形ABHL ACMN BCEG S S S ,利用正方形的性质证明()Rt ABC Rt HBG HL ≌和()DBC FCE ASA ≌,根据全等三角形的面积相等,从而得出5=△HBG S ,5=四边形ADEF S ,再根据三个正方形面积的关系可得出5+=△四边形FGL DCMN S S ,从而可得阴影面积之和.【详解】解:如图,设AC a =,AB b =,BC c =, ①在Rt ABC 中,90BAC ∠=︒,5ABCS =①222+=a b c ,①四边形BCEG ,四边形ABHL 和四边形ACMN 都是正方形,①2=四边形BCEG S c ,2=四边形ABHL S b ,2=四边形ACMN S a ,①+=四边形四边形四边形ABHL ACMN BCEG S S S , ①四边形BCEG 和四边形ABHL 是正方形, ①BC BG =,BA BH =,90H ∠=︒, ①HBG 是直角三角形, 在Rt ABC 和Rt HBG △中,BC BGBA BH=⎧⎨=⎩, ①()Rt ABC Rt HBG HL ≌ ①5==△△HBG ABC S S ,①四边形BCEG 和四边形ABHL 是正方形, ①BC CE =,90∠=∠=︒BCD CEF ,①90∠+∠=︒DBC BCA ,90∠+∠=︒FCE BCA , ①∠=∠DBC FCE , 在在DBC △和FCE △中,DBC FCE BC CEBCD CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,①()DBC FCE ASA ≌, ①=△△DBC FCE S S ,①+=+△△△四边形ABC ACD ACD ADEF S S S S , ①5==△四边形ABC ADEF S S ,①+=四边形四边形四边形ABHL ACMN BCEG S S S ,又①5=++=++△△△四边形四边形四边形HBG FGL FGL ABHL ABGF ABGF S S S S S S , =+△四边形四边形ACD ACMN DCMN S S S ,=+++△△四边形四边形四边形ABC ACD BCEG ADEF ABGF S S S S S 55=+++△四边形ACD ABGF S S10=++△四边形ACD ABGF S S ,①5+=△四边形FGL DCMN S S ,①5510++=+=△△四边形HBG FGL DCMN S S S , ①图中阴影部分面积之和为10. 故答案为:10.【点睛】本题考查正方形的性质,勾股定理,全等三角形的判定和性质,等角的余角相等等知识,运用了等积变换的思想方法.运用等积变换是解题的关键. 27.三【详解】111111158737,200033362=⨯=⨯+,所以200011111个被7除的余数与11被7除的余数相同.因为11714=⨯+,所以从今天算起的第200011111个天是星期三.28.68【详解】解:注意到12361++++616218912⨯==,20081891117-=.因为形如ab 的页码被当成ba 后,加得的和将相差|(10)(10)|9||b a a b b a +-+=-,并且a ,b 只能在1,2,…,9中取值,||8b a -≤,9||72b a -≤.设弄错的两数是ab 和cd ,则9||9||117b a d c -+-=,而将117写成两个正整数之和,其中每个数既要不大于72,又要是9的倍数,只有下列两种可能:11772456354=+=+.当9||72b a -=,9||45d c -=时,||8b a -=,||5d c -=,则只有19ab =,而cd 可取16,27,38,49,此时ab cd +的最大值是194968+=.当9||63b a -=,9||54d c -=,即||7b a -=,||6d c -=,此时ab 可取18,29,cd 可取17,28,39,则ab cd +的最大值是293968+=. 综上所述,ab cd +的最大值是68,故应填68. 29.432【详解】解 因题目中条件去分母整理后可写为:()()()223323333346364460x y x y -+--⋅-+-⋅=,(()()()223323333546564460x y x y -+--⋅-+-⋅=,故依题目条件知33t =或35t =是关于t 的方程()()23333334664460t x y t x y -+---+-⋅=的两根.由韦达定理,得33333546x y +=+--, 所以33333456432x y +=+++=. 30.23x ≤≤【详解】由22232(3)25x x x x x x x -=----=---=-,得2030x x -≥⎧⎨-≤⎩即23x ≤≤.故填23x ≤≤.31.1【详解】解:设2521m n ⨯+=(其中n 为正整数), 则2521(1)(1)m n n n ⨯=-=+-,①52m ⨯是偶数,①n 为奇数,设21n k =-(其中k 是正整数),则524(1)m k k ⨯=-,即()2521m k k -⨯=-,显然1k >,①k 和1k -互质,①25211m k k -⎧=⨯⎨-=⎩或2512m k k -=⎧⎨-=⎩或2215m k k -⎧=⎨-=⎩, 解得:5k =,4m =.因此,满足要求的整数m 只有1个.故答案为:1.32.①①①①【分析】利用正方形的性质,通过证明三角形全等以及利用四点共圆的判定和圆周角定理逐一判断即可得出正确答案.【详解】解:①正方形ACDE 和正方形BCGF ,①CB CG =,AC CD =,ACD BCG ∠=∠;①ACD DCG BCG DCG +=+∠∠∠∠,即ACG BCD =∠∠,①()ACG DCB SAS △≌△,①AG BD =,CAG CDB =∠∠①①正确;①CAG CDB =∠∠,①点A 、D 、O 、C 四点共圆,如图,连接AD ,①°=45AOC ADC =∠∠,故①正确;同理可证°=45BOC ∠,①°=45AGC OCG BDC OCD +=+∠∠∠∠,由()ACG DCB SAS △≌△知=AGC DBC ∠∠,而DBC ∠与BDC ∠不一定相等,①OCG ∠与OCD ∠不一定相等,因此①不一定成立;如图,延长CM 至H ,使MH =CM ,连接AH ,①M 点是AB 的中点,①AM =BM ,又①=AMH BMC ∠∠,①()AMH BMC SAS △≌△,①AMH BMC S S =△△,①AHC ABC S S =△△①AH =BC ,=MAH MBC ∠∠①AH =CG ,=CAH CAM MAH CAM MBC +=+∠∠∠∠∠,①°=180CAM MBC ACB ++∠∠∠,°°°°=3609090=180DCG ACB +--∠∠,①=CAM MBC DCG +∠∠∠,即CAH DCG =∠∠,①()AHC CGD SAS △≌△,①AHC CGD S S =△△,①ABC CGD S S =△△,故①正确;由()AHC CGD SAS △≌△,①ACH CDN =∠∠,①°°==180=90CDN DCN ACM DCN ACD ++-∠∠∠∠∠,①°=90CND ∠,故①正确;因此①①①正确;故答案为:①①①①.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、四点共圆的判定、圆周角定理、倍长中线法构造全等三角形等内容,本题综合性较强、需要学生熟练掌握相关知识并进行灵活运用,本题蕴含了数形结合的思想方法等.33.504【详解】解 填504,理由:从1,2,…,2008中选出两个偶数,和为2012的共有501组,即42008+,62006+,…,10041008+.由于2或1006与其中的任意一个偶数之和均不等于2012,因此,至少取出50121504++=个偶数,才能保证其中一定有两个偶数之和为2012.34.21,42,63,84 【详解】设所有两位数是xy ,则10()x y k x y +=+.其中k 是正整数,且为7的倍数.当7k =时,107()x y x y +=+,即2x y =.当1y =时,2x =;2y =时,4x =;3y =时,6x =;4y =时,8x =.当14k =时,1014()x y x y +=+,即4130x y +=.此方程无正整数解.当21,28,k =⋅⋅⋅⋅⋅⋅,方程均无正整数解.所以满足条件的两位数是:21,42,63,84.35.1【分析】先将原方程等号左边部分因式分解,可得2()()32x y x y +-=,根据题意列举出两个正整数乘积为32的情况,考虑到因式分解后含有2()x y +,在保证正整数集的条件下,可列出三个二元一次方程组,分别解方程组即可获得答案.【详解】解:3322x y x y xy -+-22()()x x y y x y =+-+22()()x y x y =+-()()()x y x y x y =++-2()()x y x y =+-,由题意可知2()()32x y x y +-=,列举出两个正整数乘积为32的情况,可以有以下三种(只是因数位置不同的算一种), 13232⨯=,21632⨯=,4832⨯=,①因式分解后含有2()x y +,在保证正整数集的条件下,则有0x y +>,又①211=,224=,2416=,①根据题意可列出方程组为132x y x y +=⎧⎨-=⎩或28x y x y +=⎧⎨-=⎩或42x y x y +=⎧⎨-=⎩, 解第一个方程组,可得16.515.5x y =⎧⎨=-⎩, 解第二个方程组,可得53x y =⎧⎨=-⎩, 解第三个方程组,可得31x y =⎧⎨=⎩, 只有第三个方程组的解均为正整数,因此原方程的正整数解得个数为1个.故答案为:1.【点睛】本题主要考查了因式分解的应用以及解二元一次方程组,灵活运用相关知识,正确进行因式分解是解题关键.36.132x = 【详解】解 原方程化为2222111111215217292x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+++=+++ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭, 即111111215217292x x x x+=+----, 即111111292172152x x x x-=-----, 通分得22(112)(92)(172)(152)x x x x --=----, 去分母(172)(152)(112)(92)x x x x --=--,即2225564499404x x x x -+=-+. 解之得132x =.经检验132x =是原方程的根. 故填132x =. 37.4【详解】理由:22(1)320060x x y x ---+=,即2(1)232006x y x x -=-+.显然1x =不满足方程,故1x ≠. 因此22320061x x y x -+=- (1)(21)20051x x x --+=- 2005211x x =-+-. 从而12005x -.由于20054015=⨯,故取2,6,402,2006x =,分别可得相应的正整数y ,故共有4对正整数解.38. 329 335或334【详解】要使10a 最大,必须1a ,2a ,3a ,4a 及6a ,7a ,8a ,9a ,10a 尽量小.又因为1210a a a <<<,且1a ,2a ,3a ,4a 的最小可能值依次为1,2,3,4,于是有2000123≥+++56104a a a ++++,即56101990a a a +++≤.又651a a ≥+,752a a ≥+,853a a ≥+,954a a ≥+,1055a a ≥+,故51990615a ≥+,51975132966a ≤=.又5a 为正整数,所以5329a ≤,于是6710a a a +++=199********-=.又761a a ≥+,862a a ≥+,963a a ≥+,1064a a ≥+,故65101661a +≤,616515a ≤=13305,且6a 为正整数,所以6330a ≤,而651330a a ≥+=,所以6330a =,要7a ,8a ,9a 最小得7331a =,8332a =,9333a =,这时101661a =-()6789335a a a a +++=.但如果取1a ,2a ,3a ,4a 依次为1,2,3,5,那么同样可得569,,,a a a 取上述值,这时10334a =.故应填5a 的最大值是329,这时10a 的值应是335或334.39 【分析】先根据条件证明()ASA BCN DCP ≌△△,再由1010DQ BP BQ BN --=得出120BED ∠=︒,进而有E 在以O 为圆心,BO 为半径的圆上,再延长CA 至F 使得,)1OF OE =,构造AOE EOF ∽△△,从而有)1CE AE CE EF CF +=+≥,再由勾股定理求出CF 即可.【详解】解:四边形ABCD 是正方形,BC CD ∴=,BCN DCP ∠=∠,DM BN ⊥,NBC PDC ∴∠=∠,(ASA)BCN DCP ∴△≌△,CP CN ∴=,5AB =, ∴1010DQ BP BQ BN --=可以变形为552DQ BP BQ BN AB -+-=, ∴2CQ CP BQ BN AB +=, ∴2CQ CN BQ BN AB +=, ∴2QN BQ BN AB=, 在BQN △中,由正弦定理得到sin sin QN BN QBN BQN=∠∠,∴sin 1sin 22QBN QN BQ BQ BQN BN AB BC∠===⋅∠, 在Rt BQC △中,sin BC BQC BQ ∠=, ∴sin 111sin 22sin QBN BQ BQN BC BQC∠=⋅=⋅∠∠, BQC BQN ∠=∠,1sin 2QBN ∴∠=, 30QBN ∴∠=︒,120QBC BCD PCQ BED ∴∠+∠+∠=∠=︒,连接BD ,AC 交于G 点,在BD 上取一点O ,连接BO 、CO ,使得120BQD ∠=︒,则在以O 为圆心,BO 为半径的圆上,延长CA 至F 使得,)1OF OE =,如图所示:5AB =,BD AC ∴==BO OE ∴==,12AG GC AC ===, 30OBG ∠=︒,12OG OB ∴==,OA ∴=∴1OEOA=,∴OE OFOA OE=,AOE EOF∠=∠,AOE EOF∴△∽△,)1EF AE∴=,)1CE AE CE EF CF∴+=+≥,CF OF OC=+,)1CF OE OC∴=+=)1CE AE∴+,.【点睛】本题主要考查了全等三角形的判定与性质、正弦定理、圆周角定理、相似三角形的判定与性质、勾股定理,解决此题的关键是根据正弦定理将1010DQ BP BQBN--=转化为120BED∠=︒,判断出E在以O为圆心,BO为半径的圆上,构造AOE EOF△∽△将)1CE AE+最小值转化为CF.40.1716PC<<【分析】首先利用光的反射定律及等边三角形的性质证明①P0P1C①①P2P1A①①P2P3B,再根据相似三角形对应边成比例得到用含P3B的代数式表示P1C的式子,然后由1<BP3<32,即可求出P1C长的取值范围.【详解】解:①反射角等于入射角,①①P0P1C=①P2P1A=①P2P3B,又①①C=①A=①B=60°,①①P0P1C①①P2P1A①①P2P3B,①01P CPC=21P AP A=23P BP B,设P1C=x,P2A=y,则P1A=2﹣x,P2B=2﹣y.①1x =2y x-=32y P B -, ①322xy x x xy P B =-⎧⎨-=⎩, ①x =13(2+P 3B ). 又①1<BP 3<32, ①1<x <76, 即P 1C 长的取值范围是:1<P 1C <76. 故答案为:1<P 1C 76<. 【点睛】此题考查了等边三角形的性质,解题的关键是根据等边三角形的性质找出对应点是解此题的关键,难度较大.41.(1)见解析(2)见解析【分析】(1)应用作矩形的对角线的方法;(2)因为ACD APH ≅,求出PH 的值,然后求出PQ 的值,根据相似三角形的性质2NPQ APH SPQ S PH ⎛⎫= ⎪⎝⎭,求出NPQ ∆的面积,计算右部分面积之和. (1)解:答案不唯一,合理即可,以下画法仅供参考.(2),,CDA PHA AD AH CAD PAH ∠=∠=∠=∠,∴ACD APH ≅,ACD APH S S ∴=,PH CD ==,1PQ HQ PH ∴=-==, ,APH NPQ AHP NQP ∠=∠∠=∠,∴APH NPQ ~,2NPQ APH SPQ S PH ⎛⎫∴= ⎪⎝⎭, 221•••12NPQ APH PQ PQ S S CD PH CD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 22PQ CD=, 22⎛=÷ ⎝⎭⎝⎭,12=, ①在直线CN 右侧部分的面积=6个小正方形的面积+NPQ △的面积113622=+=, ①直线CN 等分洛林十字架. 【点睛】本题考查图形面积的等积变化,涉及知识点:全等三角形的判定及性质、相似三角形的判定及性质(相似三角形面积的比等于相似比的平方),解题关键应用相似三角形面积的比等于相似比的平方.42.(1)12,45;(2)见解析;(3)8,2【分析】(1)根据同弧所对的圆周角等于圆心角的一半解答;(2)由题意知,CD 垂直平分BE ,连接BF ,则BF=EF ,求得①EBF =①AEB =45°,利用外角的性质得到①AFB =①EBF +①AEB =90°,即可得到结论;(3)当点A 、C 、E 在一条直线上时,线段AE 最大,最大值为4+4=8,当MF ①BC 时线段MF 最小,根据BC 的中点M ,得到CF=BF ,设BG=FG=x ,则x ,CG+1)x ,由勾股定理得222CG BG BC +=,求出28x =-222BM MF BF +=,即可求出2MF =.【详解】(1)解:①AC =BC =EC ,①A 、B 、E 三点在以C 为圆心以AC 为半径的圆上, ①①AEB =12①ACB , ①①AEB =45°. 故答案为:12,45;(2)解:由题意知,CD 垂直平分BE , 连接BF ,则BF=EF , ①①EBF =①AEB =45°. ①①AFB =①EBF +①AEB =90°. ①①ACB =90°,①A 、B 、F 、C 在以AB 为直径的圆上,即A 、B 、F 、C 四点共圆;(3)解:当点A 、C 、E 在一条直线上时,线段AE 最大,最大值为4+4=8, 当MF ①BC 时线段MF 最小, ①BC 的中点M , ①CF=BF ,设BG=FG=x ,则,CG x , ①222CG BG BC +=,①2221)4x x ⎡⎤+=⎣⎦,得28x =- ①222BM MF BF +=,①2222)MF +=,得2MF =,故答案为:8,2 ..【点睛】此题考查了圆周角定理,四点共圆的判定及性质,线段垂直平分线的性质,勾股定理,等腰直角三角形的性质,熟记各知识点并熟练应用解决问题是解题的关键. 43.见解析【分析】利用三角形的中线将三角形分为面积相等的两个三角形,将三角形空地分成面积相等的四块.【详解】解:划分方案如图所示【点睛】本题考查了与三角形中线有关的等面积问题,解决本题的关键是构造三角形的中线. 44.见解析【详解】证明 将M 分为下列4个点集: {}(,)1,2,3,4,5,(1,2,3,4)i M x y x y i i ====.则由第二抽屉原理知1234,,,M M M M 必有一个集合内至多有1124⎡⎤=⎢⎥⎣⎦个红色点,不妨设4M ,内至多有2个红色点,从而123M M M 内至少有1129-=个红色点.再将123M M M 分成下列5个点集:{}(,),1,2,3(1,2,3,4,5)i N x y x i y i ====.由第二抽屉原理,12345,,,,N N N N N 必有一个集合内至多有915⎡⎤=⎢⎥⎣⎦个红色点,不妨设5N 内至多有1个红色点,从而1234N N N N 内至少有918-=个红色点,又将1234N N N N 分成下列3个点集:{}(,)1,2,3,4,(1,2,3)j M x y x y j j '====.由第二抽屉原理知123,,M M M '''中必有一个集合内至多有823⎡⎤=⎢⎥⎣⎦个红点,不妨设3M '内至多有2个红色点,从而{}12(,)1,2,3,4,1,2M M x y x y ''⋃===内至少有826-=个红色点,又将12M M '',分为4个集合:{}(,),1,2(1,2,3,4)i N x y x i y i '====.因为这4个集合内一共至少有6个红色点,且每个集合内只有2点,故必有2个集合内有2个红色点(否则这4个集合内一共至多只有11125+++=个红色点,矛盾).不妨设13,N N ''内4个点都为红色点,这4点即为一个矩形的4个顶点,且矩形的边与坐标轴平行,从而完成了题目的证明. 45.见解析【详解】由8316378+=()82161161778578++⨯及()8216157|78+,得()8316357|78+.46.6【详解】设10个学生为1210,,,a a a ,n 个课外活动小组为12,,,n B B B .首先,每个学生至少参加了两个课外活动小组,否则,若有某个学生只参加一个课外活动小组,不妨设这个学生为1a ,他参加的小组为1B ,则由于每两个学生都至少参加一个小组,所以1B 内就有10个人了,于是对1B ,2B 不存在两人,他们都不在1B 、2B 内.矛盾. 若有一个学生恰参加两个课外活动小组,不妨设1a 恰参加1B 和2B ,由题设,至少有两个学生,他们没有参加这两组,于是,他们与1a 没有参加同一个小组,矛盾. 所以,每个学生至少参加三个课外活动小组. 于是参加n 个课外活动小组1120,,,B B B 的人数之和不小于31030⨯=.另一方面,每个课外活动小组至多有5人参加,所以n 个小组12,,,n B B B 至多有5n 人参加,故530n ≥,6n ≥. 下面例子说明6n =可以达到.。
全国初中数学竞赛试题(含答案)20220207144625一、选择题(每题5分,共20分)1. 下列哪个数是质数?A. 2B. 3C. 4D. 52. 如果一个三角形的两边长分别为3和4,那么这个三角形的周长可能是多少?A. 7B. 10C. 11D. 123. 下列哪个分数可以化简为最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个正方形的面积是36平方厘米,那么这个正方形的边长是多少厘米?A. 6B. 7C. 8D. 9二、填空题(每题5分,共20分)1. 7的平方根是______。
2. 0.25的小数点向右移动两位后是______。
3. 一个等边三角形的边长是10厘米,那么这个等边三角形的周长是______厘米。
4. 下列哪个数是立方数?A. 2B. 3C. 4D. 5三、解答题(每题10分,共30分)1. 解方程:2x 5 = 11。
2. 计算下列表达式的值:3(2 + 4) 7。
3. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。
四、答案部分一、选择题1. A2. B3. A4. D二、填空题1. ±√72. 253. 304. C三、解答题1. x = 82. 133. 32平方厘米全国初中数学竞赛试题(含答案)20220207144625四、应用题(每题15分,共30分)1. 小明家有一块长方形的地,长是12米,宽是8米。
小明计划将这块地分成两个相同大小的正方形区域。
请问每个正方形的边长是多少米?2. 小红有一笔钱,她将其中的1/3用于购买书,剩下的钱再将其中的1/2用于购买文具。
她剩下的钱是100元。
请问小红最初有多少钱?五、证明题(每题15分,共30分)1. 证明:对于任意实数a和b,如果a < b,那么a² < b²。
2. 证明:等腰三角形的底角相等。
六、答案部分四、应用题1. 每个正方形的边长是6米。
2. 小红最初有300元。
初中数学竞赛初二第1试试题一、选择题(每小题7分共56分)1、某商店售出两只不同的计算器,每只均以90元成交,其中一只盈利20%,另一只亏本20%,则在这次买卖中,该店的盈亏情况是( )A 、不盈不亏B 、盈利2.5元C 、亏本7.5元D 、亏本15元2、设20012000,20001999,19991998===c b a ,则下列不等关系中正确的是( ) A 、c b a << B 、b c a << C 、a c b << D 、a b c <<3、已知,511ba b a +=+则b a a b +的值是( ) A 、5 B 、7 C 、3 D 、31 4、已知xB x A x x x +-=--1322,其中A 、B 为常数,那么A +B 的值为( ) A 、-2 B 、2C 、-4D 、45、已知△ABC 的三个内角为A 、B 、C ,令B A A C C B +=+=+=γβα,,则γβα,,中锐角的个数至多为( )A 、1B 、2C 、3D 、06、下列说法:(1)奇正整数总可表示成为14+n 或34+n 的形式,其中n 是正整数;(2)任意一个正整数总可表示为n 3或13+n 或23+n 的形式,其中;(3)一个奇正整数的平方总可以表示为18+n 的形式,其中n 是正整数;(4)任意一个完全平方数总可以表示为n 3或13+n 的形式A 、0B 、2C 、3D 、47、本题中有两小题,请你选一题作答:(1)在19991002,1001,1000 这1000个二次根式中,与2000是同类二次根式的个数共有……………………( )A 、3B 、4C 、5D 、6(2)已知三角形的每条边长是整数,且小于等于4,这样的互不全等的三角形有( )A 、10个B 、12个C 、13个D 、14个8、钟面上有十二个数1,2,3,…,12。
将其中某些数的前面添上一个负号,使钟面上所有数之代数和等于零,则至少要添n 个负号,这个数n 是( )A 、4B 、5C 、6D 、7二、填空题(每小题7分共84分)9、如图,XK ,ZF 是△XYZ 的高且交于一点H ,∠XHF =40°,那么∠XYZ = °。
1、第一届希望杯初二第1试试题2、第一届希望杯初二第2试试题3、第二届希望杯初二第1试试题4、第二届希望杯初二第2试试题5、第三届希望杯初二第1试试题6、第三届希望杯初二第2试试题7、第四届希望杯初二第1试试题8、第四届希望杯初二第2试试题9、第五届希望杯初二第1试试题10、第五届希望杯初二第2试试题11、第六届希望杯初二第1试试题12、第六届希望杯初二第2试试题13、第七届希望杯初二第1试试题14、第七届希望杯初二第2试试题15、第八届希望杯初二第1试试题16、第八届希望杯初二第2试试题17、第九届希望杯初二第1试试题18、第九届希望杯初二第2试试题19、第十届希望杯初二第1试试题20、第十届希望杯初二第2试试题21、第十一届希望杯初二第1试试题22、第十一届希望杯初二第2试试题23、第十二届希望杯初二第1试试题24、第十二届希望杯初二第2试试题25、第十三届希望杯初二第1试试题26、第十三届希望杯初二第2试试题27、第十四届希望杯初二第1试试题28、第十四届希望杯初二第2试试题28、第十五届希望杯初二第1试试题30、第十五届希望杯初二第2试试题31、第十六届希望杯初二第1试试题32、第十六届希望杯初二第2试试题33、第十七届希望杯初二第1试试题34、第十七届希望杯初二第2试试题35、第十八届希望杯初二第1试试题36、第十八届希望杯初二第2试试题37、第十九届希望杯初二第1试试题38、第十九届希望杯初二第2试试题39、第二十届希望杯初二第1试试题40、第二十届希望杯初二第2试试题41、第二十一届希望杯初二第1试试题42、第二十一届希望杯初二第2试试题43、第二十二届希望杯初二第1试试题44、第二十二届希望杯初二第2试试题45、第二十三届希望杯初二第1试试题46、第二十三届希望杯初二第2试试题希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .2. C .±2. D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( ) A .0B .a 0.C .a 1D .a 0-a 14. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B 5.平面上有4条直线,它们的交点最多有( ) A .4个B .5个.C .6个.D .76.725-的立方根是[ ] (A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式a a 1-⋅化为最简二次根式是[ ](A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组B .3组.C .4组D .5组。
初二数学竞赛测试题班级 _____________________一、选择题(每小题4分,共32分)1.如果a >b,则2a -b 一定是( C ) A 、负数 B 、非负数 C 、正数 D 、非正数。
2.已知x ﹥0,y ﹤0,∣x ∣﹤∣y ∣,则x+y 是( C )A 、零B 、正数C 、负数D 、不确定。
3.如图,△ABC 中,∠B=∠C ,D 在BC 边上, ∠BAD=500,在AC 上取一点E ,使得∠ADE=∠AED ,则∠EDC 的度数为( B )A 、150B 、250C 、300D 、504.满足等式 2003200320032003=+--+xy y x x y y x的正整数对(x,y )的个数是( )A 、1B 、2C 、3D 、45.今有四个命题:①若两实数的和与积都是奇数,则这两数都是奇数。
②若两实数的和与积都是偶数,则这两数都是偶数。
③若两实数的和与积都是有理数,则这两数都是有理数。
④若两实数的和与积都是无理数,则这两数都是无理数。
其中正确命题个数为( )A 、0B 、1C 、2D 、46.若M=3x 2-8xy+9y 2-4x+6y+13(x,y 是实数),则M 的值一定是( )A 、正数B 、负数C 、零D 、整数7.设A=48)41001441431(222+++-+-⨯ 则与A 最接近的正整数是( ) A 、18 B 、20 C 、24 D 、25 8.如果关于x 的方程k(k+1) (k-2)x 2-2(k+1) (k+2)x+k+2=0,只有一个实数解,则实数k 可取不同的值的个数为( )(A)2 (B)3 (C)4 (D)5.二.填空题(每小题5 分共30分)9.如图,有一块矩形ABCD,AB=8,AD=6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE,再将△AED 沿DE 向上翻折,AE 与BC 的交点为F,则△CEF 的面积为 .10.关于x 的方程∣∣x-2 ∣-1∣=a 有三个整数解,则a 的值是 .11.已知关于x 的方程a 2x 2-(3a 2-8a)x+2a 2-13a+15=0(其中a 是非负整数),至少有一个整数根,那么a= . 12.若关于x 的方程13213+-=++x x ax x 有增根x=-1,则a= . 13.已知三个质数a,b,c 满足a+b+c+abc=99,那么a c c b b a -+-+-= .14.在一个圆形时钟的表面,OA 表示秒针,OB 表示分针(O 为两针的旋转中心).若现在时间恰好是12点整,则经过 秒钟后,△OAB 的面积第一次达到最大.三、解答题:15.如图已知△ABC 中,∠ACB=900, AC=BC ,CD ∥AB ,BD=AB ,求∠D 的度数。
初中数学 初二第 1一、 (每小 7 分共 56 分 )1、某商店售出两只不同的 算器,每只均以 90 元成交,其中一只盈利 20%,另一只 本 20%, 在 次 中, 店的盈 情况是( )A 、不盈不B 、盈利 2.5 元C 、 本 7.5 元D 、 本 15 元2、 a1998 ,b1999 ,c 2000, 下列不等关系中正确的是 ()199920002001A 、 a b cB 、 a cb C 、 bc a D 、 c b a3、已知11 5b,b a的 是 ()ab a a bA 、5B 、7C 、3D 、1、已知 2x33 AB,其中 A 、B 常数,那么 A +B 的 ()4x 2x x 1xA 、- 2B 、2C 、-4D 、 45、已知△ ABC 的三个内角 A 、B 、C ,令 B C ,C AA B , ,, 中角的个数至多 ( )A 、1B 、2C 、3D 、 0 6、下列 法: (1)奇正整数 可表示成 4n 1 或 4n 3 的形式,其中 n 是正整数; (2)任意一个正整数 可表示 3n 或 3n 1 或 3n2 的形式,其中; (3)一个奇正整数的平方 可以 表示 8n 1 的形式,其中 n 是正整数; (4)任意一个完全平方数 可以表示 3n 或 3n 1 的形 式A 、0B 、2C 、3D 、 47、本 中有两小 , 你 一 作答:(1)在 1000 , 1001, 10021999 1000 个二次根式中,与 2000 是同 二次根式的个数共有 ⋯⋯⋯⋯⋯⋯⋯⋯ ( )A 、3B 、4C 、5D 、 6(2)已知三角形的每条 是整数,且小于等于 4, 的互不全等的三角形有 ( ) A 、10 个 B 、12 个 C 、13 个 D 、14 个 8、 面上有十二个数 1,2,3,⋯ ,12。
将其中某些数的前面添上一个 号,使 面上所有 数之代数和等于零, 至少要添 n 个 号, 个数 n 是 ( )A 、4B 、5C 、6D 、 7 二、填空 (每小 7 分共 84 分 )9、如 , XK ,ZF 是△ XYZ 的高且交于一点 H ,∠ XHF = 40°,那么∠ XYZ = °。
2021年北京市中学生数学竞赛初二试题(含答案)2021年北京市中学生数学竞赛初二试题一、选择题(每小题5分,共25分)1.在1~100这100个自然数中,质数所占的百分比是().(A)25% (B)24% (C)23% (D)22%2.一个三角形的三边长都是整数,它的周长等于10,则这个三角形是().(A)直角三角形(B)钝角三角形(C)恰有两边相等的三角形(D)恰有一个内角为60°的三角形3.已知n为正整数,S=1+2+…+n.则S的个位数字不能取到的数字是().(A)0,1,2,3 (B)3,4,5,6 (C)3,5,6,8 (D)2,4,7,94.如图1,四边形ABCD的对角线AC、BD相交于点O.S△AOB=4,S△COD=9.则S四边形ABCD的最小值是().(A)22 (B)25 (C)28 (D)32(1) (2) (3) 5.如果│a-b│=1,│b+c│=1,│a+c│=2,则│a+b+2c│等于().(A)3 (B)2 (C)1 (D)0 二、填空题(每小题7分,共35分)1.如图2,大圆的两条直线AC、BC垂直相交于点O,分别以边AB、BC、CD、DA为直径向大圆外侧作四个半圆,图中四个“月形”阴影的总面积是2cm2.?则大圆的半径等于_______cm.2.2 005被两位的自然数去除,可能得到的最大余数是_______. 3.已知a2+bc=14,b2-2bc=-6.则3a2+4b2-5bc=_________.4.如图3,在凸六边形ABCDEF中,AD、BE、CF三线共点于O,?每相邻三个顶点所组成的三角形的面积都等于1,则S六边形ABCDEF=_______.5.有6个被12除所得余数都相同的自然数,它们的连乘积为971 425.则这6?个自然数之和的最小值是________.三、(15分)已知非零实数a、b、c满足a+b+c=0.求证:(1)a3+b3+c3=3abc;- 1 -(2)(a?bb?cc?acab++)(++)=9.acba?bb?cc?a四、(15分)如图,在△ABC中,∠BAC=∠BCA=44°,M为△ABC形内一点,?使得∠MCA=30°,∠MAC=16°,求∠BMC的度数.- 2 -五、(10分)某学生在黑板上写出了17个自然数,?每个自然数的个位数码只能是0,1,2,3,4这5个数字中的一个.证明:从这17个数中可以选出5个数,?它们的和能被5整除.- 3 -参考答案一、1.A在1~100这100个自然数中,有质数2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97共25个,所以,其中质数所占的百分比是25%. 2.C将10分拆成三个正整数之和,有10=1+1+8=1+2+7=1+3+6=1+4+5=2+2+6=2+3+5=2+4+4=3+3+4共八种情况.由“三角形两边之和大于第三边”可知,只有(2,4,4),(3,3,4)两组可构成三角形.由于等腰三角形两个底角都是锐角,于是,以2、4、4为边的等边三角形中,最小边2对的顶角也是锐角.以3、3、4为边的等腰三角形中,由32+32>42,?知顶角也是锐角.所以,以2、4、4为边的等腰三角形以及以3、3、4为边的等腰三角形都是锐角三角形,排除选项(A)、(B)?.?又由于等腰三角形中恰有一个内角为60°时变为等边三角形,与边为(2,4,4)、(3,3,4)的条件矛盾,排除选项(D).由(2,4,4)、(3,3,4)为边的三角形是恰有两边相等的三角形. 3.D.由S=n(n?1),又n、n+1是两个连续的自然数,知n(n+1)的个位数字只能取0,22,6.?所以,S的个位数字只能是0,1,3,5,6,8这六个数字.因此,S的个位数字不能取到的是2,4,7,9. 4.B如图1,设S△AOD=x,S△BOC=y,则S四边形ABCD=4+9+x+y≥13+2xy.由x4?,有xy=36.所以, 9yS四边形ABCD≥13+2xy=13+12=25.故S四边形ABCD的最小值是25.此时,AB∥DC,即四边形ABCD是梯形.5.A.由│a-b│=1,知a-b=1或a-b=-1;由│b+c│=1,知b+c=1或b+c=-1;由│a+c│=2,知a+c=2或a+c=-2.- 4 -这样,可以得到23=8个三元一次方程组:(1)a-b=1,b+c=1,a+c=2;(2)a-b=1,b+c=1,a+c=-2;(3)a-b=1,b+c=-1,a+c=2;(4)a-b=1,b+c=-1,a+c=-2;(5)a-b=-1,b+c=1,a+c=2;(6)a-b=-1,b+c=1,a+c=-2;(7)a-b=-1,b+c=-1,a+c=2;(8)a-b=-1,b+c=-1,a+c=-2.对于(2)~(7),将前两个方程相加得到的a+c的值与后一个方程不同,所以,不会出现这六种情况.对于(1),有a=2-c,b=1-c,所以, a+b+2c=3.对于(8),有a=-2-c,b=-1-c,所以, a+b+2c=-3.故│a+b+2c│=3.二、1.1.由勾股定理知AD2+CD2=AC2.所以,上面半个大圆的面积等于以AD、CD为直径的两个半圆的面积.同理,下面半个大圆的面积等于以AB、BC为直径的两个半圆的面积.?因此,正方形ABCD的面积等于四个“月形”的总面积.容易计算,大圆的半径OD是1cm. 2.85.由2 005依次被99,98,97,…去除,观察所得余数的值变化得 2005=99×20+25=98×20+45=97×20+65=96×20+85=95×21+10 =94×21+31=93×21+52=92×21+73=91×22+3=90×22+25=89×22+47 =88×22+69=87×23+4=86×23+27 =85×23+50.以下的余数不会大于84,故可能得到的最大余数是85. 3.18.3a2+4b2-5bc=3(a2+bc)+4(b2-2bc)=3×14+4×(-6)=18. 4.6.如图5,连结BD、CE.因为S△BCD=S△ECD=1,所以,BE∥CD.因为S△BAF=S△EAF,所以,BE∥AF.因此,BE∥AF∥CD.同理,CF∥DE∥BA,AD∥FE∥BC.- 5 -感谢您的阅读,祝您生活愉快。
CD八年级数学竞赛试题一、选择题:1.方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ).2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ). (A ) 14 (B ) 16 (C )18 (D )20 3.已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx恰有一个公共实数根,则222a b c bc ca ab++的值为( ). (A ) 0 (B )1 (C )2 (D )3 4.若3210x x x +++=,则2627--+x x+ … +x x ++-11+ … +2726x x +的值是( )(A )1 (B )0 (C )-1 (D )25.若a b c t b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) (A )第一、二象限 (B )第一、二、三象限 (C )第二、三、四象限 (D )第三、四象限6.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )(A)1个 (B) 2个 (C) 3个 (D)无穷多个8.如图在四边形ABCD 中,∠DAB=∠BCD=90°,AB=AD ,若这个四边形的面积是10,则BC+CD 等于( ) A .54 B .102 C .64D .289.线段a x y +-=21(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积为 ( )A .6B .8C .9D .1010.四条直线两两相交,且任意三条不交于同一点,则这四条直线共可构成的同位角有( ) (A )24组 (B )48组 (C )12组 (D )16组 11、如图,P 是△ABC 内一点,BP ,CP ,AP 的延长线分别与 AC ,AB ,BC 交于点E ,F ,D 。
初二数学竞赛练习题一、选择题1.已知实数a 、b 满足:1=ab 且b a M +++=1111,bba a N +++=11,则M 、N 的关系为(C )A .N M >B .N M <C .N M =D .M 、N 的大小不能确定 2.关于x 的不等式023)2(>---b a x b a 的解是34<x ,则不等式0>+b ax 的解为(A ) A .101<x B .101>x C .101-<x D .101->x4.如图,啤酒瓶高为h ,瓶内酒面高为a ,若将瓶盖好后倒置,酒面高为a '(h b a =+'),则酒瓶的容积与 瓶内酒的体积之比为(C ) A .a b '+1 B .b a '+1 C .a b +1 D .ba +1 5.正三角形ABC 所在平面内有一点P ,使得△PAB 、△PBC 、△PCA 都是等腰三角形,则这样的P 点有(D )A .1个B .4个C .7个D .10个二、填空题6.方程5665-=+x x 的解是 x=11 ;7.如图,把ΔABC 绕点C 顺时针旋转o25,得到⊿C B A '',B A ''交AC 于D ,已知∠DC A '=o 90,则∠A 的度数是 65˚ ;8.已知012=-+x x ,则3222005x x ++= 2006 ;9.已知直角梯形ABCD 中,AD ∥BC ,AB =BC ,∠A =o90,∠D =o45,CD 的垂直平分线交CD 于E ,交BA 于的延长线于F ,若AD =9cm ,则BF = 9 cm ;10.已知四边形的四个顶点为A (8,8),B (-4,3),C (-2,-5),D (10,-2),则四边形在第一象限内的部分的面积是85615。
11.如图,长方形纸片ABCD 中,AB =3cm ,BC =4cm , 现将A 、C 重合,使纸片折叠压平,设折痕为EF ,则 图形中重叠部分△AEF 的面积为27516cm ; 12.计算:100321132112111+⋅⋅⋅++++⋅⋅⋅++++++=200101; 13.将24)43)(6(22+-+--x x x x 分解因式得)2331)(2331)(2)(3(-+++-+x x x x ; 14.甲、乙两人在环形跑道上练习长跑,甲的速度与乙的速度的比为5∶3,若两人同时从同一点出发,则乙跑了 6 圈后,甲比乙多跑了4圈。
初二数学竞赛训练(十)
一、选择题:
1、下列几个关于不变量的叙述:
(1)边长确定的平行四边形ABCD ,当∠A 变化时,其任意一组对角之和不变; (2)当多边形的边数不断增加时,它的外角和不变;
(3)当△ABC 绕顶点A 旋转时,△ABC 各内角的大小不变; (4)在放大镜下观察,含角α的图形放大时,角α的大小不变; (5)当圆的半径变化时,圆的周长与半径的比值不变; (6)当圆的半径变化时,圆的周长与面积的比值不变, 其中,错误的叙述有 ( )
(A)2个 (B)3个 (C)4个 (D)5个 2.设m=|1|-+x x ,则m 的最小值是( )
(A )0
(B )1
(C )―1
(D )2 3.已知2
3
10x x x +++=,则2008
3
2
1x
x x x +++++ 的值为( )
(A )0 (B )1 (C )―1 (D )2008
4.如图是一个正方体纸盒,在其中的三个面上各画一条线段构成△ABC ,且A 、B 、C 分别是各棱上的中点.现将纸盒剪开展成平面,则不可能的展开图是( )
5、n 个连续自然数按规律排成右表:
0 3 → 4 7 → 8 11 … ↓ ↑ ↓ ↑ ↓ ↑
1 →
2 5 →6 9 → 10 根据规律, 从2006到2008, 箭头的方向依次应为( ) (A) ↑→ (B) →↑ (C) ↓→ (D) →↓
6、某人月初用x 元人民币投资股票,由于行情较好,他的资金每月都增加
3
1
,即使他每月末都取出1000元用于日常开销,他的资金仍然在三个月后增长了一倍,那么x 的值是( )
A .9000
B .10000
C .11000
D .11100
(A)(B)(C)
(D)
A
B
C
(A)
二、填空题:
7、盒子中有红球和白球各2个,小玲把球从盒子中一个一个地摸出来,则红球和白球相间出现(可以是“红白红白”也可以是“白红白红”)的可能性是。
8、如图是一个3×3的正方形, 则图中∠1+∠2+∠3+…+∠9的度数应该是________ 。
9、图中的三十六个小等边三角形面积都等于1,则△ABC的面积为____ __。
10、用大小相同的正六边形瓷砖按如图所示的方式来铺设广场,中间的正六边形瓷砖记为
A,定义为第一组,在它的周围铺上六块同样大小的正六边形瓷砖,定义为第二组,在第二组的外围用同样大小的正六边形瓷砖来铺满,定义为第三组,…,按这种方式铺下去,用现有的2007块瓷砖最多能完整地铺满组,此时还剩余块瓷砖。
(第8题)(第9题)(第10题)
11、在△ABC中,高BD和CE所在直线相交于O点,若△ABC不是直角三角形,
且∠A=60°,则∠BOC=____度.
12、一辆卡车在公路上匀速行使,起初看到里程碑上的数字为xy,过了一小时里程碑上
x0,则第三次看到里程碑上的数字为yx,又行使了一小时里程碑上的数字为三位数y
的数字是_________.
三、解答题:
13、已知实数x,y满足x2+ 2 y= 3 ,y2+ 2 x= 3 且x≠y,求x+y和xy的值。
14、在一次数学考试中,老师出了一道解方程组的题:
222
2007
x y z xy yz zx x y z
⎧++=++⎨
++=
⎩
小明认为老师出的题目有错,没办法解,因为只有两个方程,而有三个未知数。
你同意小明的观点吗?若不同意,试一试解这个方程组。
15.某商场对顾客购物实行优惠,规定:(1)一次购物不超过100元不优惠;(2)一次购物超过100元但不超过300元,按标价的九折优惠;(3)一次超过300元的,300元内的部分按(2)优惠,超过300元的部分按八折优惠.老王第一次去购物享受了九折优惠,第二次去购物享受了八折优惠。
商场告诉他:如果他一次性购买同样多的商品还可少花19元;如果商品不打折,他将比现在多花67元钱。
问老王第一次购物、第二次购物实际各支付了多少钱?
16.如图,△ABC中,∠C=90°,∠CAD=30°,AC=BC=AD.求证:BD=CD.
C
参考答案
一、选择题:1、A 2、B 3、B 4、B 5、A 6、D 二、填空题: 7、
3
1
8、405º 9、21 10、26,54 11、120°或60° 12、106 (11、分锐角三角形和钝角三角形两种情况。
12、(10y+x)-(10x+y)=(100x+y)-(10y+x) ) 三、解答题:
13、x+y= 2 ,xy=2- 3 14、由①得x 2
+y 2
+z 2
-xy -yz -zx =0,
∴2x 2+2y 2+2z 2-2xy -2yz -2zx =0 ∴(x-y )2+(y-z)2+(z-x)2
=0 ∴x=y=z
15.解:设老王第一次购物的标价为x 元,实际支付0.9x 元,第二次购物的标价为y 元,实际支付8.0)300(9.0300⨯-+⨯y 元.依题意,得 19]8.0)300(9.0300[]9.03008.0)300(9.0[=⨯-++⨯-⨯+⨯-+y x y x ……① 67]9.03008.0)300(9.0[)(=⨯+⨯-+-+y x y x …………………………②
由①得,191.0=x ,∴x = 190(元)
由②得,972.01.0=+y x ,将x 代入,得 y =390 (元)
故第一次支付 0.9×190=171(元),第二次支付270+(390―300)×0.8=342(元)
答:老王第一次支付了171(元),第二次支付了342(元)
16.证法一:如图,过C 作CE ⊥AD 于E ,过D 作DE ⊥BC 于F .
∵∠CAD=30°,∴∠ACE=60°,且CE=
2
1
AC , ∵AC=AD ,∠CAD=30°,∴∠ACD=75°, ∴∠FCD=90°―∠ACD=15°, ∠ECD=∠ACD ―∠ACE=15° ∴△CED ≌△CFD ,
∴CF=CE=
21AC=2
1
BC ,∴CF=BF . ∴Rt △CDF ≌Rt △BDF , ∴BD=CD .
A
B
C
D
A
B
C
D
E
F
证法二:如图,作△AEB,使AEBC为正方形,连结ED.
∵∠BAD=45°―∠CAD=45°―30°=15°,
∴∠EAD=∠EAB+∠BAD=60°,又AD=AC=AE,
∴△ADE是等边三角形,∴ED=AD=AC=EB,
∴∠DEB=90°―∠AED=30°,∴△ACD≌△EBD,∴CD=BD.。