根据七年级上册数学知识点填空(全)
- 格式:docx
- 大小:38.54 KB
- 文档页数:5
七年级数学上册知识点汇总只有非常努力,才能看起来毫不费力,相信自己,一定行!一、丰富的图形世界1.三视图:⭐⭐(重点)①常见图形的三视图(圆柱、圆锥等);②画三视图③通过三视图求表面积或体积2.展开图⭐⭐(重点)①正方体常规展开图(11种);②圆锥、圆柱、三棱柱等常见图形展开图;③正方体找对面题型;3.通过三视图求正方体个数问题.【经典例题】1.如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是()A.B.C.D.选:C.2.如图所示正方体的展开图的是()A.B.C.D.选:A.3.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富B.强C.文D.民选:A.4.用一个平面去截一个几何体,如果截面的形状是圆,则来的几何体可能是()A.正方体B.三棱柱C.四棱锥D.球选:D.5.下面四个几何体中,从左面看到的图形是四边形的几何体共有几个?()A.1个B.2个C.3个D.4个选:B.6.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.5选:C.7.如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)画出它的一种表面展开图;(3)若从正面看的高为3cm,从上面看三角形的边长都为2cm,求这个几何体的侧面积.【解答】解:(1)几何体的名称是正三棱柱;(2)表面展开图为:(3)3×6=18cm2,∴这个几何体的侧面积为18cm2二、 有理数(期中考试重点章节⭐⭐⭐)1. 概念① 有理数分类:整数和分数 ② “四非”:非负整数:正整数+0; 非负数:正数+0 非正整数:负整数+0; 非正数:负数+02. 相反数:a+b=0;a 的相反数为-a3. ⭐⭐⭐(重点)数轴:原点、正方向和单位长度的直线; 作用:比较大小,右边的数>左边的数数轴上两点之间的距离:①大-小;②|a-b|(不知道a 、b 大小)数轴上中点公式:a+b 2;4. 倒数:ab=1;倒数等于它本身的数:±1;绝对值等于它本身的数:正数+0;相反数等于它本身的数:0.5. ⭐⭐⭐(重点) 绝对值① |a |: 数a 对应的点到原点的距离;|a −b |:数a 所对的点到数b 的点的距离;② ,00,0,0a a a a a a >⎧⎪==⎨⎪-<⎩;|正数+0|=本身,|负数+0|=相反数③ 性质:非负性:0+0模型 6. 科学计数法:a ×10n ;(1≤|a |<10)7. 去括号:减变加不变,即()a b b a --=-;()a b a b -+=--8. ①常规计算:先乘方;再乘除;后加减;有括号先算括号里面的.(符号要细心,计算是王道!) ②有理数巧算:裂项相消法(必考)、错位相减法(易错);倒序相加法(等差数列求和) 9. 应用题:行程问题;股票问题;水位问题等;(括号里面的“+”、“-”所代表的意义很重要) 10. 动点问题:化动为静(思维很重要,注意分步得分)【数轴基本性质(唯一性和右边大于左边)】例1. 若数a ,b ,c 在数轴上的对应点如图所示,则下列各式正确的有( )①a +b >0; ②b ﹣c <0; ③>0; ④abc >0. A .1个 B .2个 C .3个 D .4个答案:A【中点公式(折叠、对称)】中点公式:2a b例2. 根据给出的数轴及已知条件,解答下面的问题:(1)已知点A ,B ,C 表示的数分别为1,﹣,﹣3观察数轴,与点A 的距离为3的点表示的数是 ,B ,C 两点之间的距离为 ;(2)若将数轴折叠,使得A 点与C 点重合,则与B 点重合的点表示的数是 ;若此数轴上M ,N 两点之间的距离为2015(M 在N 的左侧),且当A 点与C 点重合时,M 点与N 点也恰好重合,则M ,N 两点表示的数分别是:M ,N ;(3)若数轴上P ,Q 两点间的距离为m (P 在Q 左侧),表示数n 的点到P ,Q 两点的距离相等,则将数轴折叠,使得P 点与Q 点重合时,P ,Q 两点表示的数分别为:P ,Q (用含m ,n 的式子表示这两个数)【解答】解:(1)点A 的距离为3的点表示的数是1+3=4或1﹣3=﹣2; B ,C 两点之间的距离为﹣﹣(﹣3)=;(2)B 点重合的点表示的数是:﹣1+[﹣1﹣(﹣)]=; M =﹣1﹣=﹣1008.5,n =﹣1+=1006.5;(3)P =n ﹣,Q =n +.故答案为:4或﹣2,;,﹣1008.5,1006.5;n ﹣,n +.【非负数和为零(0+0模型)】例3.若|a ﹣3|与|b +4|互为相反数,则a ﹣b = ;若|a +1|+(b ﹣2)2=0,则(a +b )2015+a 2016= .答案为:7;2.【直接给定范围的绝对值化简】例4. 若a <0,b >0,化简|a |+|3b |﹣|a ﹣2b |得( )A .bB .5b ﹣2aC .﹣5bD .2a +b【解答】解:∵a <0,b >0, ∴a ﹣2b <0, ∴|a |+|3b |﹣|a ﹣2b | =﹣a +3b +a ﹣2b=b.故选:A.【与数轴相结合的绝对值化简】步骤:(1)判断>0,<0;(2)取绝对值符号:正数的绝对值是它本身;负数的绝对值是它的相反数;例5.有理数a、b、c在数轴上的位置如图.(1)判断正负,用“<”或“>”填空:c﹣b0 a﹣b0 a+c0 (2)化简:|c﹣b|+|a﹣b|﹣|a+c|【解答】解:由数轴知:a<0,b>0,c>0且a<b<c、|a|<|c|,(1)c﹣b>0;a﹣b<0;a+c>0;(2)原式=c﹣b﹣(a﹣b)﹣(a+c)=c﹣b﹣a+b﹣a﹣c=﹣2a.【绝对值与自身商为±1的分类讨论问题】例6.直接写出答案若a>0,则=;若a<0,则=;思考:①若a、b为有理数,且ab≠0,则=;②若a、b、c为有理数,abc<0,则=;【解答】解:∵a>0,∴==1;∵a<0,∴==﹣1.①若a、b为有理数,且ab≠0,当a,b是一正一负时,则=0;当a,b是两正时,则=2;当a,b是两负时,则=﹣2;②若a 、b 、c 为有理数,abc <0, 当a ,b ,c 中有一个负数时,=1; 当a ,b ,c 中有三个负数时,=﹣3.【最值问题(零点分段法和几何法)】1.a 表示数轴上数a 对应的点与原点的距离;2.a b -表示数轴上数a 、数b 所对应的的两点之间的距离;3.a b +(即()a b --)表示数轴上数a 、数-b 所对应的的两点之间的距离.例7.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m 和数n 的两点之间的距离等于|m ﹣n |.如果表示数a 和﹣1的两点之间的距离是3,那么a = .(2)若数轴上表示数a 的点位于﹣4与2之间,则|a +4|+|a ﹣2|的值为 ;(3)利用数轴找出所有符合条件的整数点x ,使得|x +2|+|x ﹣5|=7,这些点表示的数的和是 .(4)当a = 时,|a +3|+|a ﹣1|+|a ﹣4|的值最小,最小值是 .【解答】解:(1)|1﹣4|=3, |﹣3﹣2|=5, |a ﹣(﹣1)|=3,所以,a +1=3或a +1=﹣3, 解得a =﹣4或a =2;(2)∵表示数a 的点位于﹣4与2之间, ∴a +4>0,a ﹣2<0,∴|a +4|+|a ﹣2|=(a +4)+[﹣(a ﹣2)]=a +4﹣a +2=6;(3)使得|x +2|+|x ﹣5|=7的整数点有﹣2,﹣1,0,1,2,3,4,5, ﹣2﹣1+0+1+2+3+4+5=12. 故这些点表示的数的和是12;(4)a=1有最小值,最小值=|1+3|+|1﹣1|+|1﹣4|=4+0+3=7.故答案为:3,5,﹣4或2;6;12;1;7.【有理数巧算——倒序相加、裂项相消】例8.已知a,b是有理数,且(a﹣1)2+|b﹣2|=0,求:+++……+的值.【解答】解:∵(a﹣1)2+|b﹣2|=0,∴a=1,b=2,∴+++……+=+++……+=1﹣+﹣+﹣+……+﹣=1﹣=.例2.请你观察:=﹣,=﹣;=﹣;…+=﹣+﹣=1﹣=;++=﹣+﹣+﹣=1﹣=;…以上方法称为“裂项相消求和法”请类比完成:(1)+++=;(2)++++…+=.(3)计算:++++的值.【分析】(1)将已知等式相加后两两相消可得;(2)根据=﹣裂项相消可得;(3)根据=﹣裂项相消可得.【解答】解:(1)原式=﹣+﹣+﹣+﹣=1﹣=(2)原式=﹣+﹣+﹣+﹣+…+﹣=1﹣=,(3)原式=(1﹣)+(﹣)+(﹣)+(﹣)+(﹣)=(1﹣+﹣+﹣+﹣+﹣)=×(1﹣)=×=.【有理数的应用】例9. 我市股民老王第一周买进某公司股票1000股,每股27元,下表为第二周内每日该股的涨跌情况(星期六、日股市休市)(正号表示股票价格比前一天上涨,符号表示股票价格比前一天下跌,单位:元)星期一二三四五每股涨跌+4+4.5﹣1﹣2.5﹣6(1)星期三收盘时,每股是多少元?(2)本周每每股最高价多少元?最低价是多少元?(3)已知老王买进购票时付了1‰的手续费,卖出时还需付总金额1‰的手续费和1‰的交易税,如果老王在星期五收盘前将全部购票卖出,他的收益情况如何?(注:1‰=)【解答】解:(1)星期三收盘时,每股是34.5元;(2)本周内最高价是35.5元,最低价是26元;(3)在星期五按收盘价将全部股票卖出,他的收益为:1000×26﹣1000×26×(1‰+1‰)﹣1000×27﹣1000×27×1‰=26000﹣52﹣27000﹣27=﹣1079(元).例10. 足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18.(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?【解答】解:(1)(+40)+(﹣30)+(+50)+(﹣25)+(+25)+(﹣30)+(+15)+(﹣28)+(+16)+(﹣18)=+15(米);答:球员最后到达的地方在出发点的正西方向,距出发点15m;(2)第一段,40m,第二段,40﹣30=10m,第三段,10+50=60m,第四段,60﹣25=35m,第五段,35+25=60m,第六段,60﹣30=30m,第七段,30+15=45m,第八段,45﹣28=17m,第九段,17+16=33m,第十段,33﹣18=15m,∴在最远处离出发点60m;(3)∵|+40|+|﹣30|+|+50|+|﹣25|+|+25|+|﹣30|+|+15|+|﹣28|+|+16|+|﹣18|=277(米),答:球员在一组练习过程中,跑了277米.例11. 某食品厂从生产的袋装食品中抽出样品10袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)﹣5﹣20136袋数1袋2袋3袋2袋1袋1袋(1)这批样品的平均质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为20克,则这10袋食品的总质量是多少?【解答】解:(1)由表格可得,(﹣5)×1+(﹣2)×2+0×3+1×2+3×1+6×1=2(克),即这批样品的平均质量比标准质量多,多2克;(2)10×20+2=20+2=202(克),即若每袋标准质量为20克,则这10袋食品的总质量是202克.【动点问题】例12.已知a是最大的负整数,b是﹣5的相反数,c=﹣|﹣2|,且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于12,请求出所有点M 对应的数.【解答】解:(1)a是最大的负整数,即a=﹣1;b是﹣5的相反数,即b=5,c=﹣|﹣2|=﹣2,所以点A、B、C在数轴上位置如图所示:(2)设运动t秒后,点P可以追上点Q,则点P表示数﹣1+3t,点Q表示5+t,依题意得:﹣1+3t=5+t,解得:t=3.答:运动3秒后,点P可以追上点Q;(3)存在点M,使M到A、B、C三点的距离之和等于12,当M在C点左侧,则M对应的数是:﹣3;当M在AB之间,则M对应的数是4.故使点M到A、B、C三点的距离之和等于12,点M对应的数是﹣3或4.例13. 已知a是最大的负整数,b是多项式2m2n﹣m3n2﹣m﹣2的次数,c是单项式﹣2xy2的系数,且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒个单位长度,点Q的速度是每秒2个单位长度,求运动几秒后,点Q可以追上点P?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于10,请直接写出所有点M对应的数.(不必说明理由).【解答】解:(1)∵a是最大的负整数,∴a=﹣1,∵b是多项式2m2n﹣m3n2﹣m﹣2的次数,∴b=3+2=5,∵c是单项式﹣2xy2的系数,∴c=﹣2,如图所示:评分细则:描对一个点或两个点均不给分.(2)∵动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒个单位长度,点Q的速度是每秒2个单位长度,∴AB=6,两点速度差为:2﹣,∴=4,答:运动4秒后,点Q可以追上点P.(3)存在点M,使P到A、B、C的距离和等于10,当M在AB之间,则M对应的数是2,当M在C点左侧,则M对应的数是:(只写对一个给1分).三、整式1.代数式的书写2.列代数式3.整式:单项式+多项式(次数、系数、项要非常清晰; )4.同类项(要求:①相同字母,②相同字母指数相同)合并同类项;5.①常规代数式化简求值(注意格式)②整体法代数式求值(必考⭐⭐⭐)③赋值法(特殊值±1,0)6.不含某项、与x无关等题型;①合并同类项;②系数和为0;7.找规律及新定义运算考点一:代数式的书写1. 下列代数式书写正确的是()A.a48B.x÷y C.a(x+y)D.112abc选:C.考点二:列代数式2.若x 表示一个两位数,y 也表示一个两位数,小明想用x 、y 来组成一个四位数,且把x 放在y 的右边,你认为下列表达式中正确的是( )A .100y +xB .100x +yC .x +yD .yx选:A .考点三:整式概念3. 在代数式a π、3xy 、b a 、−xy 3、−14中,整式的个数是( ) A .3B .4C .5D .6 【解答】解:a π、3xy 、−xy 3、−14是整式,选:B . 考点四:单项式(系数,指数,次数)4. 下列说法正确的是( )A .10不是单项式B .−abc 2的系数是﹣1 C .xy 2的系数是0,次数是﹣2 D .−23x 2y 的系数是−23,次数是3【解答】解:A .10是单项式,此选项错误;B .−abc 2的系数是−12,此选项错误;C .xy 2的系数是1,次数是3,此选项错误;D .−23x 2y 的系数是−23,次数是3,此选项正确;故选:D .5. 若关于x ,y 的单项式﹣x m y n﹣1与mx 2y 3的和仍是单项式,则m ﹣2n 的值为( ) A .0 B .﹣2 C .﹣4D .﹣6 【解答】解:由题意可知:﹣x m y n﹣1与mx 2y 3是同类项,∴m =2,n ﹣1=3,∴m =2,n =4,∴m ﹣2n =2﹣8=﹣6,故选:D . 考点五:多项式(看“+,-”,几次几项式,零次项)6. 多项式15x 2y |m|−(m +1)y +17是关于x ,y 的三次二项式,则m 的值是 ﹣1 . 【解答】解:∵多项式15x 2y |m|−(m +1)y +17是关于x ,y 的三次二项式,∴|m |+2=3,m +1=0,解得:m =﹣1.故答案为:﹣1.7. 已知关于x ,y 的多项式x 4+(m +2)x n y ﹣xy 2+3,其中n 为正整数.当m ,n 为 n =4,m ≠﹣2 时,它是五次四项式.【解答】解:∵多项式x 4+(m +2)x n y ﹣xy 2+3是五次四项式,∴n +1=5,m +2≠0,解得,n =4,m ≠﹣2,故答案为:n =4,m ≠﹣2.8. 要使关于x ,y 的多项式my 3+3nx 2y +2y 3﹣x 2y +y 不含三次项,求2m +3n 的值.【解答】解:∵多项式my 3+3nx 2y +2y 3﹣x 2y +y =(m +2)y 3+(3n ﹣1)x 2y +y 不含三次项,∴m +2=0,3n ﹣1=0,∴m =﹣2,n =13,∴2m +3n =2×(﹣2)+3×13=−3. 考点六:同类项(要求:①相同字母,②相同字母指数相同,合并同类项)9. 若a m +4b 与23a 2m+2b n+3是同类项,那么m +n = . 答案是:0.10.若25x 5m +2n +2y 3与−34x 6y 3m﹣2n ﹣1的差是一个单项式,则m = .答案为:1.11.去括号,并合并同类项:(1)(3a +1.5b )﹣(7a ﹣2b )(2)(8xy ﹣x 2+y 2)﹣4(x 2﹣y 2+2xy ﹣3)【解答】解:(1)(3a +1.5b )﹣(7a ﹣2b )=3a +1.5b ﹣7a +2b =﹣4a +3.5b ;(2)(8xy ﹣x 2+y 2)﹣4(x 2﹣y 2+2xy ﹣3)=8xy ﹣x 2+y 2﹣4x 2+4y 2﹣8xy +12=﹣5x 2+5y 2+12;考点七:整式加减类型一、整式加减的基础应用12.两个多项式A 和B ,A =▄▄▄,B =x 2+4x +4.A ﹣B =3x 2﹣4x ﹣20.其中A 被墨水污染了.(1)求多项式A ;(2)x 取其中适合的一个数:2,﹣2,0,求B A 的值. 【解答】解:(1)∵B =x 2+4x +4.A ﹣B =3x 2﹣4x ﹣20,∴A =x 2+4x +4+3x 2﹣4x ﹣20=4x 2﹣16;(2)当x =0时,B A =4−16=−14. 13.李老师让同学们计算“当a =﹣2018,b =2019时,代数式3a 2+(ab ﹣a 2)﹣2(a 2+12ab ﹣1)的值小滨错把“a =﹣2018,b =2019”抄成了“a =2018,b =﹣2019”,但他最终的计算结果并没错误,请问是什么原因呢?【解答】解:原式=3a 2+ab ﹣a 2﹣2a 2﹣ab +2=2,结果与a 与b 的值无关,故小滨错把“a =﹣2018,b =2019”抄成了“a =2018,b =﹣2019”,但他最终的计算结果并没错误.类型二、几何问题14. 如图,一个大正方形的两个角被两个大小相同的小正方形覆盖,用图中所给的a ,b 来表示未被覆盖的阴影部分面积与空白部分面积的差为( )A .4ab ﹣3b 2B .2a 2﹣b 2C .3a 2﹣2abD .4ab ﹣a 2﹣b 2【解答】解:设小正方形的边长为x ,a +x =b +2x ,解得,x =a ﹣b ,未被覆盖的阴影部分面积与空白部分面积的差为:[(a +x )2﹣2x 2]﹣2x 2=a 2+2ax +x 2﹣2x 2﹣2x 2=a 2+2ax ﹣3x 2=a 2+2a (a ﹣b )﹣3(a ﹣b )2=a 2+2a 2﹣2ab ﹣3a 2+6ab ﹣3b 2=4ab ﹣3b 2,故选:A .15. 完全相同的4个小矩形如图所示放置,形成了一个长、宽分别为m 、n 的大长方形,则图中阴影部分的周长是( )A .4mB .4nC .2m +nD .m +2n 【解答】解:设小矩形的长为a ,宽为b ,可得a +2b =m ,可得左边阴影部分的长为2b ,宽为n ﹣a ,右边阴影部分的长为m ﹣2b ,宽为n ﹣2b ,图中阴影部分的周长为2(2b +n ﹣a )+2(m ﹣2b +n ﹣2b )=4b +2n ﹣2a +2m +2n ﹣8b=2m +4n ﹣2a ﹣4b=2m +4n ﹣2(a +2b )=2m +4n ﹣2m=4n ,故选:B .16.方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?【解答】解:第一个窗户射进的阳光的面积为ab −12×π(b 2)2=ab −πb 28 第二个窗户射进的阳光的面积为ab ﹣2×π(b 8)2=ab −πb 232 ∵πb 28>πb 232∴第一个窗户射进的阳光的面积<第二个窗户射进的阳光的面积.类型三、花费与方案问题17.某超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠办法 少于200元不予优惠 低于500元但不低于200元九折优惠 500元或超过500元 其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)王老师一次性购物600元,他实际付款 530 元.(2)若顾客在该超市一次性购物x 元,当x 小于500元但不小于200时,他实际付款 0.9x 元,当x 大于或等于500元时,他实际付款 (0.8x +50) 元.(用含x 的代数式表示).(3)如果王老师两次购物货款合计820元,第一次购物的货款为a 元(200<a <300),用含a 的代数式表示:两次购物王老师实际付款多少元?【解答】解:(1)500×0.9+(600﹣500)×0.8=530;(2)0.9x;500×0.9+(x﹣500)×0.8=0.8x+50;(3)0.9a+0.8(820﹣a﹣500)+450=0.1a+706.18.小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔买水性笔的费用.(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.【解答】解:(1)在甲商店需要:10×1.5+0.6×1.5×(x﹣10)=0.9x+6(元),在乙商店需要:1.5×0.8×x=1.2x(元),(2)当x=30时,0.9x+6=33,1.2x=36,因为33<36,所以小明要买30支笔应到甲商店买比较省钱.考点八:代数式化简求值(先化简后求值,整体部分可约分,注意分母不为0)19.化简求值3(a2﹣ab+2b2)﹣2(2a2﹣ab+b2),其中a=12,b=﹣1.【解答】解:原式=3a2﹣3ab+6b2﹣4a2+2ab﹣2b2=﹣a2﹣ab+4b2,当a=12,b=﹣1时,原式=−14+12+4=414.考点九:整体法求值(整体换元,整体思想)例题:已知代数式m2+m+1=0,那么代数式2018-2m2-2m的值是()A.2016B.-2016C.2020D.-2020【解答】解:∵m2+m+1=0,∴m2+m=-1.∴-2m2-2m=2.∴原式=2108+2=2020.故选:C.考点十:规律探索(找不变,看变化,找到自然数变化)20.定义程序例题1:如图,是一个运算程序的示意图,若开始输入x的值为81,则第2019次输出的结果为()A.27B.9C.3D.1选:C.21:对正有理数a,b,定义运算*如下:a*b=aba+b,则3*(-4)=______答案为:12.四、线段与角1.线段的定义及性质④线段、直线、射线的特征:险段、射线可以看成直线的一部分。
一、填空题1.下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1b a=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab 互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶解析:④【分析】利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可.【详解】①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误;②0a b 时,a ,b 互为相反数,但是对于等式1b a=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确.综上,正确的有④.故答案为:④.【点睛】本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.2.比较大小:364--_____________()6.25--.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小解析:<【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】∵3276 6.7544--=-=-,()6.25 6.25--=, 由于 6.75 6.25-<, ∴36( 6.25)4--<--, 故答案为:<.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.3.已知2x =,3y =,且x y <,则34x y -的值为_______.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 4.如果数轴上原点右边 8 厘米处的点表示的有理数是 32,那么数轴上原点左边 12 厘米处的点表示的有理数是__________.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm 即1cm 表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm 表示4个单位长度即可求得这个数的绝对值【详解】数解析:﹣48【分析】数轴上原点右边 8厘米处的点表示的有理数是 32,即单位长度是14cm ,即 1cm 表示 4个单位长度,数轴左边12厘米处的点表示的数一定是负数,再根据 1cm 表示 4个单位长度,即可求得这个数的绝对值.数轴左边 12 厘米处的点表示的有理数是﹣48.故答案为﹣48.【点睛】本题主要考查了在数轴上表示数.借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小既直观又简捷.5.在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ .-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时当点在表示-2的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-2的点的左边时数为-2-3=-5;②当点在表示-2的点的解析:-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时,当点在表示-2的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-2的点的左边时,数为-2-3=-5;②当点在表示-2的点的右边时,数为-2+3=1;故答案为-5或1.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况.在数轴上到一个点的距离相等的点有两个,一个在这个点的左边,一个在这个点的右边.6.化简﹣|+(﹣12)|=_____.﹣12;【分析】利用绝对值的定义化简即可【详解】﹣|+(﹣12)|=故答案为﹣12【点睛】本题考查了绝对值化简熟练掌握绝对值的定义是解题关键解析:﹣12;【分析】利用绝对值的定义化简即可.【详解】--=-﹣|+(﹣12)|=|12|12故答案为﹣12.【点睛】本题考查了绝对值化简,熟练掌握绝对值的定义是解题关键.7.绝对值小于100的所有整数的积是______.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了绝对值的性质要求掌握绝【分析】先找出绝对值小于100的所有整数,再求它们的乘积.【详解】:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,因为在因数中有0所以其积为0.故答案为0.【点睛】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.在一次区级数学竞赛中,某校8名参赛学生的成绩与全区参赛学生平均成绩80分的差分别为(单位:分):5,2-,8,14,7,5,9,6-,则该校8名参赛学生的平均成绩是______ .85【解析】分析:先求出总分再求出平均分即可解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+(−2)+(−6)+8=40(分)∴该校8名参赛学生的平均成绩是80+(40解析:85【解析】分析:先求出总分,再求出平均分即可.解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+[(−2)+(−6)+8]=40(分),∴该校8名参赛学生的平均成绩是80+(40÷8)=85(分).故答案为85.点睛:本题考查的是正数和负数,熟知正数和负数的概念是解答此题的关键.9.等边三角形ABC (三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A ,B 对应的数分别为0和1-,若ABC 绕着顶点顺时针方向在数轴上翻转1次后,点C 所对应的数为1,则再翻转3次后,点C 所对应的数是________.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C 在数轴上∴点C 对应的数是故答案为:4【点睛】本题考查了数轴及数的解析:4【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C在数轴上,∴点C对应的数是1134+⨯=.故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.10.点A表示数轴上的一个点,将点A向右移动10个单位长度,再向左移动8个单位长度,终点恰好是原点,则点A到原点的距离为______.2【分析】设点A表示的数为x 然后根据向右平移加向左平移减列出方程再解方程即可得出答案【详解】设A 表示的数是x依题意可得:x+10-8=0解得:x=-2则点A到原点的距离为2故答案为:2【点睛】本题主解析:2【分析】设点A表示的数为x,然后根据向右平移加,向左平移减列出方程,再解方程即可得出答案.【详解】设A表示的数是x,依题意可得:x+10-8=0,解得:x=-2,则点A到原点的距离为2.故答案为:2.【点睛】本题主要考查的是数轴,解题时需注意点在数轴上移动,向右平移加,向左平移减.11.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:0.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.12.计算:(1)(2)(3)(4)(2019)(2020)++-+++-++++-=_____.【分析】第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.13.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.32【分析】观察分析题图中数的排列规律可知:第n行第一列是且第n行第一列到第n列的数从左往右依次减少1所以第六行的第一个数是36减去4即可得到第五个数【详解】解:观察分析题图中数的排列规律可知:第n解析:32【分析】观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列的数从左往右依次减少1,所以第六行的第一个数是36,减去4,即可得到第五个数.【详解】解:观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列-=-=.的数从左往右依次减少1,所以第六行第五个数是26436432故答案为:32.【点睛】本题主要考查了数字规律题,能够观察出第一个数是行数的平方,再依次减少是解决本题的关键.14.某工厂在2018年第一季度的效益如下:一月份获利润150万元,二月份比一月份少获利润70万元,三月份亏损5万元.则:(1)一月份比三月份多获利润____万元;(2)第一季度该工厂共获利润____万元.225【分析】(1)根据有理数的加减运算即可求出答案;(2)把三个月的利润相加即可得到答案【详解】解:(1)根据题意则150(5)=155(万元);故答案为:155;(2)二月份获利为:15070= 解析:225【分析】(1)根据有理数的加减运算,即可求出答案;(2)把三个月的利润相加,即可得到答案.【详解】解:(1)根据题意,则150-(-5)=155(万元);故答案为:155;(2)二月份获利为:150-70=80(万元),∴第一季度该工厂共获利润:150+80+(5-)=225(万元);故答案为:225;【点睛】本题考查了有理数的加减混合运算,解题的关键是熟练掌握运算法则进行解题.15.定义一种正整数的“H运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果为11,经过3次“H运算”的结果为46,那么数28经过2020次“H运算”得到的结果是_________.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.16.在有理数3.14,3,﹣12,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x,正整数的个数为y,则x+y的值等于__.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】负分数为:﹣12,﹣313,共2个;正整数为: 3, 6005共2个,则x+y=2+2=4,故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键.17.一个班有45个人,其中45是_____数;大门约高1.90 m,其中1.90是_____数.准确近似【分析】根据准确数和近似数的定义对数据进行判断【详解】一个班有45个人其中45是准确数;大门约高190m其中190是近似数故答案为:准确;近似【点睛】本题考查了近似数近似数与精确数的接近程度解析:准确近似【分析】根据准确数和近似数的定义对数据进行判断.【详解】一个班有45个人,其中45是准确数;大门约高1.90 m,其中1.90是近似数.故答案为:准确;近似.【点睛】本题考查了近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位.18.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中是准确数的有_____,是近似数的有_____.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm 的圆,它的周长约31.4 cm ,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.19.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后解析:乘方 乘法 加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可.【详解】解:原式=-9+5+16=12.故答案为:乘方,乘法,加法,12【点睛】本题主要考查了有理数混合运算的运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.20.计算:3122--=__________;︱-9︱-5=______.-24【分析】直接根据有理数的减法运算即可;先运算绝对值再进行减法运算【详解】=-=-2;︱-9︱-5==9-5=4故答案为-24【点睛】本题考查了绝对值的化简以及有理数的运算解题的关键是掌握有理数解析:-2 4【分析】直接根据有理数的减法运算即可;先运算绝对值,再进行减法运算.【详解】3122--=-42=-2;︱-9︱-5==9-5=4, 故答案为-2,4.【点睛】本题考查了绝对值的化简以及有理数的运算,解题的关键是掌握有理数的运算法则. 21.把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.22.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.23.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.24.截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____.7×106【分析】根据科学记数法形式:a×10n 其中1≤a <10n 为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n ,其中1≤a <10,n 为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n,其中1≤a<10,n为正整数.25.数轴上A、B两点所表示的有理数的和是 ________.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A表示的数是﹣3,点B表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.26.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是___.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x 的值是131或26或5或45. 故答案为131或26或5或45. 【点睛】 此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键. 27.若230x y ++-= ,则x y -的值为________.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.28.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B '=可得点A '为12,再根据A 与A '以C 为折点对折,即C 为A ,A '中点即可求解.【详解】解:翻折后A'在B右侧,且3A B'=.所以点A'为12,∵A与A'以C为折点对折,则C为A,A'中点,即1216:22C-=-.【点睛】本题考查数轴上两点间的距离,得到C为A,A'中点是解题的关键.29.3-的平方的相反数的倒数是___________.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:1 9 -【分析】根据倒数,相反数,平方的概念可知.【详解】−3的平方是9,9的相反数是-9,-9的倒数是1 9 -故答案为1 9 -.【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.30.校运动会的拔河比赛真是紧张刺激!规定拔河时,任意一方拉过30cm就算获胜.小胖他们班在每次喊过“拉”声之后都可拉过7cm,但又会被拉回3cm.如此下去,该班在第________次喊过“拉”声后就可获得胜利.7【分析】根据题意得到当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取得胜利【详解】解:由题意得喊过一次拉声之后可拉过当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取解析:7【分析】根据题意得到当喊到第6次时,一共拉过了6(73)24(cm)⨯-=,离胜利还差30246(cm)-=,所以再喊一次后拉过7cm,超过了30cm,即可取得胜利.【详解】解:由题意得喊过一次“拉”声之后可拉过4cm.当喊到第6次时,一共拉过了6(73)24(cm)⨯-=.离胜利还差30246(cm)-=,所以再喊一次后拉过7cm,超过了30cm,即可取得胜利.故答案为:7.【点睛】此题考查了有理数的混合运算的应用,正确理解题意,掌握有理数的各运算法则是解题的关键.。
一、填空题1.若有a ,b 两个数满足关系式:1a b ab +=-,则称a ,b 为“共生数对”,记作(),a b .例如:当2,3满足23231+=⨯-时,则()23,是“共生数对”.若()2x -,是“共生数对”,则x =__________.【分析】根据共生数对的定义进行分析列式求解即可【详解】由已知可得解得x=故答案为:【点睛】考核知识点:解一元一次方程理解题意是关键 解析:13【分析】根据共生数对的定义进行分析,列式,求解即可.【详解】由已知可得221x x -=--解得x=13故答案为:13 【点睛】考核知识点:解一元一次方程.理解题意是关键.2.我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺.问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布__________尺.【解析】【分析】设第一天织布x 尺则第二天织布2x 尺第三天织布4x 尺第四天织布8x 尺第五天织布16x 尺根据5日共织布5尺列方程求解即可【详解】设第一天织布x 尺则第二天织布2x 尺第三天织布4x 尺第四天织 解析:531【解析】【分析】设第一天织布x 尺,则第二天织布2x 尺,第三天织布4x 尺,第四天织布8x 尺,第五天织布16x 尺,根据5日共织布5尺列方程求解即可.【详解】设第一天织布x 尺,则第二天织布2x 尺,第三天织布4x 尺,第四天织布8x 尺,第五天织布16x 尺,根据题意可得:x+2x+4x+8x+16x =5,解得:5x 31, 即该女子第一天织布531尺, 故答案为531. 【点睛】 本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 3.有一位工人师傅要锻造底面直径为40cm 的“矮胖”形圆柱,可他手上只有底面直径是10cm 、高为80cm 的“瘦长”形圆柱,若不计损耗,则锻造出的“矮胖”形圆柱的高为________.5cm 【分析】设矮胖形圆柱的高是xcm 根据锻造前后圆柱体积相等建立方程求解即可【详解】解:设矮胖形圆柱的高是xcm 由题意得π×80=πx 解得:x=5故答案为5cm 【点睛】本题考查一元一次方程的应用熟解析:5cm【分析】设“矮胖”形圆柱的高是xcm ,根据锻造前后圆柱体积相等建立方程求解即可.【详解】解:设“矮胖”形圆柱的高是xcm ,由题意得,210()2π×80=240()2πx , 解得:x=5.故答案为5cm .【点睛】本题考查一元一次方程的应用,熟练掌握并准确计算是解题的关键.4.在甲处工作的有27人,在乙处工作的有19人,现另外调20人去支援,使在甲处工作的人数是乙处的2倍,则往甲处调_____人,乙处调_____人.3【解析】【分析】设调往甲处的人数为x 则调往乙处的人数为20-x 根据甲处的人数是在乙处人数的2倍列方程求解【详解】设应调往甲处x 人依题意得:27+x=2(19+20−x)解得:x=17∴20−x=3解析:3【解析】【分析】设调往甲处的人数为x ,则调往乙处的人数为20-x ,根据甲处的人数是在乙处人数的2倍列方程求解.【详解】设应调往甲处x 人,依题意得:27+x=2(19+20−x),解得:x=17,∴20−x=3,答:应调往甲处17人,调往乙处3人【点睛】此题考查一元一次方程的应用,解题关键在于列出方程.5.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是______g. 17【解析】【分析】由图①可知4块巧克力质量等于2个果冻质量可设一块巧克力质量为xg 则一个果冻质量为2xg 再根据图②列出关于x 的方程求解即可【详解】解:由图①设一块巧克力质量为xg 则一个果冻质量为2解析:17【解析】【分析】由图①可知4块巧克力质量等于2个果冻质量,可设一块巧克力质量为xg ,则一个果冻质量为2xg ,再根据图②列出关于x 的方程求解即可.【详解】解:由图①设一块巧克力质量为xg ,则一个果冻质量为2xg ,由图②可列方程为:x+2x=51,解得x=17.故答案为:17.【点睛】本题主要考查一元一次方程的应用,解此题的关键在于读懂题图巧克力与果冻的质量关系,设出未知数,列出方程求解.6.把方程|21|5x -=化成两个一元一次方程是___________________.【解析】【分析】数轴上表示数的点到原点的距离叫做这个数的绝对值根据绝对值的性质可得一个数的绝对值是5则这个数是5或-5【详解】根据绝对值的性质将方程方程化成两个一元一次方程是故答案为:【点睛】本题主解析:215x -=,215x -=-【解析】【分析】数轴上表示数的点到原点的距离叫做这个数的绝对值,根据绝对值的性质可得,一个数的绝对值是5,则这个数是5或-5.【详解】根据绝对值的性质,将方程方程|21|5x -=化成两个一元一次方程是215x -=,215x -=-,故答案为: 215x -=,215x -=-.【点睛】本题主要考查绝对值的基本性质,解决本题的关键是要熟练掌握绝对值的基本性质. 7.要使代数式154t +与15()4t -的值互为相反数,则t 的值是_________.【解析】【分析】只有符号不同的两个数是互为相反数且互为相反数的两个数的和等于0根据相反数的性质可列方程求解【详解】因为代数式与的值互为相反数所以+=0解得:t=【点睛】本题主要考查列方程解方程解决本 解析:110【解析】【分析】只有符号不同的两个数是互为相反数,且互为相反数的两个数的和等于0,根据相反数的性质可列方程求解.【详解】 因为代数式154t +与15()4t -的值互为相反数, 所以154t ++15()4t -=0, 解得:t =110, 【点睛】本题主要考查列方程解方程,解决本题的关键是要熟练根据相反数的性质列出方程即可求解. 8.已知21535a x y -和2547a x y +是同类项,则可得关于a 的方程为________.2a-1=a+2【解析】【分析】根据同类项的定义:所含字母相同并且相同字母的指数也相同可得出关于a 的一元一次方程【详解】∵和是同类项∴2a-1=a+2故答案为:2a-1=a+2【点睛】本题考查了由实解析:2a-1=a+2【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得出关于a 的一元一次方程.【详解】 ∵21535a x y -和2547a x y +是同类项, ∴2a-1=a+2.故答案为:2a-1=a+2.【点睛】本题考查了由实际问题抽象出元一次方程的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同,据此列方程.9.校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x场,则可列方程为__________________.3x+(8-x)=18【解析】【分析】根据题意列出相应的方程即可【详解】根据题意得:3x+(8-x)=18故答案为:3x+(8-x)=18【点睛】此题考查了由实际问题抽象出一元一次方程弄清题意是解本解析:3x+(8-x)=18【解析】【分析】根据题意列出相应的方程即可.【详解】根据题意得:3x+(8-x)=18,故答案为:3x+(8-x)=18,【点睛】此题考查了由实际问题抽象出一元一次方程,弄清题意是解本题的关键.10.在某张月历表上,若前三个星期日的数字之和是42,则第一个星期_______号.【解析】【分析】根据题意先设中间一个的数字为x即可解答【详解】设中间一个的数字为x其他两个为x+7x-7则x+7+x+x-7=42解答x=14所以第一个是14-7=7日故答案为:7【点睛】此题考查一解析:7【解析】【分析】根据题意先设中间一个的数字为x,即可解答.【详解】设中间一个的数字为x,其他两个为x+7,x-7,则x+7+x+x-7=42,解答x=14,所以第一个是14-7=7日,故答案为:7.【点睛】此题考查一元一次方程的应用,解题关键在于找出等量关系.11.有一旅客携带了30公斤行李从重庆江北国际机场乘飞机去武汉,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格是______.800元【分析】该题目中的等量关系:该旅客购买的行李票=飞机票价格×15×超重公斤数根据题意列方程求解【详解】设他的飞机票价格是x元可列方程x⋅15×(30−20)=120解得:x=800则他的飞机解析:800元【分析】该题目中的等量关系:该旅客购买的行李票=飞机票价格×1.5%×超重公斤数,根据题意列方程求解.【详解】设他的飞机票价格是x元,可列方程x⋅1.5%×(30−20)=120解得:x=800则他的飞机票价格是800元.故答案为:800.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意列出方程.12.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券,也不得找零. 小明只购物买了单价别为60元,80元和120元的物品各一件,使用购物券后,他的实际花费为_________元.200元或210元【分析】根据购物顺序不同分类讨论即可【详解】①若先买单价为120元的物品赠送一张50元购物券再去买单价为60元和80元的物品实际花费为:120+60+80-50=210元;②若先买解析:200元或210元【分析】根据购物顺序不同分类讨论即可.【详解】①若先买单价为120元的物品,赠送一张50元购物券,再去买单价为60元和80元的物品,实际花费为:120+60+80-50=210元;②若先买60元和80元的物品,赠送一张50元购物券,再去买120元的物品,实际花费为:60+80+120-50=210元;③若先买60元和120元的物品,赠送一张50元购物券,再去买80元的物品,实际花费为:60+120+80-50=210元;④若先买80元和120元的物品,赠送两张50元购物券,再去买60元的物品,此时购物券可抵扣60元,实际花费为:120+80=200元;故答案为200元或210元.【点睛】此题考查的是分类讨论的数学思想.13.日历中同一竖列相邻三个数的和是63,则这三个数分别是______________.142128【分析】根据日历同一竖列相邻三个数依次相差7的关系设中间的数为x则上面的为x-7下面的是x+7然后根据题意列出方程求解进一步计算即可【详解】设中间的数为x 则上面的为x-7下面的是x+7则解析:14,21,28【分析】根据日历同一竖列相邻三个数依次相差7的关系设中间的数为x ,则上面的为x-7,下面的是x+7,然后根据题意列出方程求解进一步计算即可.【详解】设中间的数为x ,则上面的为x-7,下面的是x+7,则:77x x x -+++=63,解得:21x =,∴其余两个数为:14,28.所以答案为14,21,28.【点睛】本题主要考查了一元一次方程的实际运用,掌握日历中竖列相邻数的排列关系是解题关键. 14.某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).【解析】【分析】首先设标价x 元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x 的值【详解】设标价x 元由题意得:80x ﹣b=a 解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关 解析:5()4a b + 【解析】【分析】首先设标价x 元,由题意得等量关系:标价×打折﹣利润=进价,代入相应数值,再求出x 的值.【详解】设标价x 元,由题意得:80%x ﹣b=a ,解得:x=5()4a b +, 故答案为:5()4a b +. 【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,标价×打折﹣利润=进价.15.如图,一个酒瓶的容积为500毫升,瓶子内还剩有一些黄酒.当瓶子正放时,瓶内黄酒的高度为12厘米,倒放时,空余部分的高度为8厘米,则瓶子的底面积为______厘米2.(1毫升=1立方厘米)25【分析】设瓶子的底面积为xcm2根据瓶子中的液体体积相同列出方程求出方程的解即可【详解】设瓶子底面积为xcm2根据题意得:12x=500-8x解得:x=25故答案为:25【点睛】此题考查了一元一解析:25【分析】设瓶子的底面积为xcm2,根据瓶子中的液体体积相同列出方程,求出方程的解即可.【详解】设瓶子底面积为xcm2,根据题意得:12x=500-8x,解得:x=25故答案为:25【点睛】此题考查了一元一次方程的应用,弄清题意,找到等量关系是解答本题的关键.16.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程“.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=a是“和解方程”,则a的值为_____;(2)已知关于x的一元一次方程﹣2x=ab+b是“和解方程“,并且它的解是x=b,则a+b 的值为_____.【详解】解:(1)解方程3x=a得x=∵关于x的一元一次方程3x=a是和解方程∴=3+a解得a=﹣;(2)∵方程﹣2x=ab+b的解是x=b∴﹣2b=ab+b∵方程﹣2x=ab+b是和解方程∴b=a解析:92-113-【详解】解:(1)解方程3x=a得x=,∵关于x的一元一次方程3x=a是“和解方程”,∴=3+a,解得a=﹣;(2)∵方程﹣2x=ab+b的解是x=b,∴﹣2b=ab+b,∵方程﹣2x=ab+b是“和解方程“,∴b=ab+b﹣2,即b =﹣2b ﹣2,解得b =﹣,∴a =﹣3,∴a +b =﹣3﹣=﹣. 故答案为﹣,﹣.17.5个人用5天完成了某项工程的14,如果再增加工作效率相同的10个人,那么完成这项工作前后共用_____天.10【分析】由已知5个人用5天完成了某项工程的那么1个人用的天数为5×5再增加工作效率相同的10个人完成剩下的设用x 天则1个人用(5+10)x 因为工作效率相同根据题意列方程求解【详解】设增加10人再 解析:10【分析】由已知5个人用5天完成了某项工程的14,那么1个人用的天数为5×5,再增加工作效率相同的10个人完成剩下的34,设用x 天,则1个人用(5+10)x ,因为工作效率相同,根据题意列方程求解.【详解】设增加10人再完成剩余的34为x 天,根据题意列方程得: (5+10)x =3×5×5,解得:x =5,5+5=10(天).故答案为:10.【点睛】本题考查的是一元一次方程的应用,解答此题的关键是根据已知找出等量关系,其等量关系是后面的工作量是前面的工作量的3倍.18.小石在解关于x 的方程225a x x -=时,误将等号前的“2x -”看作“3x -”,得出解为1x =-,则a 的值是_________,原方程的解为__________ .-4;【分析】把x=-1代入中求出a 的值再求出原方程的解即可【详解】解:根据题意得:x=-1是的解∴把x=-1代入得:解得:∴原方程为:-8-2x=5x 解得:故答案为:-4;【点睛】本题考查了一元一解析:-4; 87-【分析】把x=-1代入235a x x -=中求出a 的值,再求出原方程的解即可【详解】解:根据题意,得:x=-1是235a x x -=的解,∴把x=-1代入235a x x -=得:23(1)5(1)a -⨯-=⨯-解得:4a =-∴原方程为:-8-2x=5x 解得:87x 故答案为:-4;87-【点睛】 本题考查了一元一次方程,熟练掌握运算法则是解题的关键19.若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则m n +的值是_________.45【分析】取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0分别求出mn 的值即可【详解】解:取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0移项得:合并同类项得:∴∴m= 解析:45【分析】x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则化简以后方程的一次项系数以及常熟项都是0,分别求出m ,n 的值即可.【详解】解:x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则化简以后方程的一次项系数以及常熟项都是0,移项得:(23)251(3)+-=+-m x x m n ,合并同类项得:(222)13-=+-m x m n ,∴222=0-m ,13=0+-m n ,∴m=11,n=34,∴m+n=45,故答案为:45.【点睛】本题考查了解一元一次方程,理解若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立的条件是解决本题的关键. 20.定义一种运算:1(1)(1)x a b a b a b *=++++,若设5213*=,则34*=________.【分析】根据定义新运算及求出x 的值即可求出的值【详解】解:∵∴∴∴∴故答案为:【点睛】本题主要考查定义新运算的知识解答此题的关键是根据所给出的式子得出x 的值再利用新的运算方法解决问题 解析:1935【分析】 根据定义新运算及5213*=,求出x 的值,即可求出34*的值. 【详解】解:∵1(1)(1)x a b a b a b *=++++,5213*= ∴15=21(21)(11)3++++x ∴=8x ∴18(1)(1)*=++++a b a b a b ∴181934=34(31)(41)35*=++++ 故答案为:1935【点睛】 本题主要考查定义新运算的知识,解答此题的关键是,根据所给出的式子,得出x 的值,再利用新的运算方法解决问题.21.某公司销售,,A B C 三种电子产品,在去年的销售中,产品C 的销售额占总的销售额的60%,由于受新冠肺炎疫情的影响,估计今年,A B 两种产品的销售额都将比去年减少45%,公司将产品C 定为今年销售的重点,要使今年的总销售额与去年持平,那么今年产品C 的销售额应比去年增加__________.【分析】把去年的总销售金额看作整体1设今年产品C 的销售金额应比去年增加x 根据今年的销售总金额和去年的销售总金额相等列出方程再求解即可【详解】解:设今年产品的销售金额应比去年增加由题意得解得:答:今年解析:30%【分析】把去年的总销售金额看作整体1.设今年产品C 的销售金额应比去年增加x ,根据今年的销售总金额和去年的销售总金额相等,列出方程,再求解即可.【详解】解:设今年产品C 的销售金额应比去年增加x ,由题意得,60%(1)(160%)(145%)1x ++--=,解得:30%x =.答:今年产品C 的销售金额应比去年增加30%.故答案为:30%.【点睛】本题考查了一元一次方程的应用,关键在于设未知数,列方程,难点在于涉及百分数,运算易出错.此题注意把去年的总销售额看作整体1,即可分别表示出去年A 和B 的销售金额和C 的销售金额.根据今年的销售总金额和去年的销售总金额相等即可列方程. 22.自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按2元收费;用水超过10吨,超过10吨的部分按每吨3元收费.王老师家三月份水费为50元,则王老师家三月份用水________吨.20【分析】设王老师家三月份用水x 吨根据水费=10×2+超出10吨的部分×3及水费=50即可得出关于x 的一元一次方程解之即可得出结论【详解】解:设王老师家三月份用水x 吨依题意:解得故答案为20【点睛解析:20【分析】设王老师家三月份用水x 吨,根据水费=10×2+超出10吨的部分×3及水费=50,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设王老师家三月份用水x 吨.依题意:102(10)350x ⨯+-⨯=,解得20x ,故答案为20.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 23.如图,折线AC -CB 是一条公路的示意图,8km AC =,甲骑摩托车从A 地沿这条公路到B 地,速度为40km/h ,乙骑自行车从C 地沿这条公路到B 地,速度为10km/h ,两人同时出发,结果甲比乙早到6分钟.则这条公路的长为________.12km 【分析】首先设这条公路的长为xkm 由题意得等量关系:乙骑自行车行驶(x-8)千米的时间-6分钟=甲骑摩托车从A 地沿这条公路到B 地的时间根据等量关系列出方程即可【详解】解:设这条公路的长为xk 解析:12km【分析】首先设这条公路的长为xkm ,由题意得等量关系:乙骑自行车行驶(x-8)千米的时间-6分钟=甲骑摩托车从A 地沿这条公路到B 地的时间,根据等量关系列出方程即可.【详解】解:设这条公路的长为xkm .由题意,得86401060x x -=-. 解得:12x =.故答案为:12km .【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.24.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.28【解析】设这种电子产品的标价为x元由题意得:09x−21=21×20解得:x=28所以这种电子产品的标价为28元故答案为28解析:28【解析】设这种电子产品的标价为x元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.25.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.15【分析】根据题中的数值转换机计算即可求出所求【详解】解:根据题意得:3x﹣2=127解得:x=43可得3x﹣2=43解得:x=15则输入的数是15故答案为15【点睛】考核知识点:解一元一次方程理解析:15【分析】根据题中的“数值转换机”计算即可求出所求.【详解】解:根据题意得:3x﹣2=127,解得:x=43,可得3x﹣2=43,解得:x=15,则输入的数是15,故答案为15【点睛】考核知识点:解一元一次方程.理解程序意义是关键.26.某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于_________元【分析】设亏本的那双皮鞋的进价为x元则亏本的那双皮鞋的售价为(1-10)x元盈利的那双皮鞋的售价为200-(1-10)x元盈利的那双皮鞋的进价为元根据商贩在这次销售中要有盈利即可得出关于x的一元一次解析:150设亏本的那双皮鞋的进价为x 元,则亏本的那双皮鞋的售价为(1-10%)x 元,盈利的那双皮鞋的售价为[200-(1-10%)x]元,盈利的那双皮鞋的进价为200(110%)130%x --+元,根据商贩在这次销售中要有盈利,即可得出关于x 的一元一次不等式,解之即可得出结论.【详解】 解:设亏本的那双皮鞋的进价为x 元,则亏本的那双皮鞋的售价为(1-10%)x 元,盈利的那双皮鞋的售价为[200-(1-10%)x]元,盈利的那双皮鞋的进价为200(110%)130%x --+元, 依题意,得:(1-10%)x-x+[200-(1-10%)x]200(110%)130%x ---+>0, 解得:x <150.故答案为:150.【点睛】本题考查了一元一次不等式的应用,找准等量关系,正确列出一元一次不等式是解题的关键.27.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛.4【解析】8个班进行友谊赛也就是说每个班级要和其余7个班级比赛根据总比赛场数为7设赢了x 场则3x+(7-x)=15解得x=4故答案为:4解析:4【解析】8个班进行友谊赛,也就是说每个班级要和其余7个班级比赛,根据总比赛场数为7,设赢了x 场,则3x +(7-x )=15,解得x =4,故答案为:4.28.如果3m -与21m +互为相反数,则m =________.-4【分析】根据互为相反数的两个数的和为0列出方程解方程即可【详解】∵3-m 与2m+1互为相反数∴3-m=-(2m+1)去括号得:3-m=-2m-1移项并合并同类项得:m=-4故答案是:-4【点睛】解析:-4【分析】根据互为相反数的两个数的和为0列出方程,解方程即可.【详解】∵3-m 与2m+1互为相反数,∴3-m=-(2m+1)去括号,得:3-m=-2m-1移项并合并同类项,得:m=-4.故答案是:-4.考查了用一元一次方程解决相反数的问题;用到的知识点为:a 的相反数为-a,则它们的和为0.29.学校组织一次数学知识竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得到76分,那么他答对了______道题.16【分析】由题意可知小明的得分=答对题目的得分-答错或不答所扣的分据此列方程求解即可【详解】解:设小明答对了x 道题则答错或没答的题有(20-x)道由题意得5x -(20-x)=76解得x =16故答案解析:16【分析】由题意可知,小明的得分=答对题目的得分-答错或不答所扣的分,据此列方程求解即可.【详解】解:设小明答对了x 道题,则答错或没答的题有(20-x)道,由题意得5x -(20-x)=76,解得x =16.故答案为:16.【点睛】本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.30.所谓方程的解就是使方程中等号左右两边相等的未知数的值。
人教版七年级数学上册第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。
有理数的运算是全章的重点。
在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
1.有理数:(1)凡能写成形式的数,都是有理数, 和 统称有理数.)0p q ,p (pq≠为整数且注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是;a+b 的相反数是;(3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: 或 ;⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧≤-≥=)0()0(a a a a a (3);;0a 1a >⇔=0a 1a <⇔-=(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
知识点:1、科学计数法:把一个大于10的数表示成aX10n的形式(其中a大于或等于1 且小于10, n是正整数)。
例如0=X1082、(1)近似数:接近准确数但与准确数有区别。
例如学校约有200名同学参加了数学辅导班,而实际参加数学辅导班的有213人。
(2)近似数与准确数的接近程度,可以用精确度表示。
按四舍五入法对圆周率n取近似数时,有n^3 (精确到个位)冗^ (精确到,或叫做精确到十分位)冗^ (精确到,或叫做精确到百分位)兀^ (精确到,或叫做精确到)^^ (精确到,或叫做精确到)(3)一般地,一个近似数,四舍五入到哪一位,就说这个近似数到哪一位;科学记数法1.填空(1)一般地,一个大于10的数可以表示成aX10n的形式,其中1W|a|<10, n 是正整数,这种记数方法叫做.(2)a与n的取法:在aX 10n形式中,n是原数整数位数减1, a的范围是.2.我省各级人民政府非常关注“三农问题”。
截止到年底,我省农村居民年人均纯收入已连续二十一年位居全国各省区首位,据统计局公布的数据,年我省农村居民年人均纯收入约7660元用科学记数法应记为()0X104元元元元3.用科学记数法表示下列各数.(1)503 000;(2) 200 000;(3);(4)X109.4.2002年5月15日,我国发射的海洋1号气象卫星进入预定轨道后,若绕地球运行的速度为X103米/秒,则运行2X102秒走过的路程是(用科学记数法表示)()A. 15.8X105米B. X105米C. X107 米D. X106米5.地球绕太阳转动每小时通过的路程约是X 105千米,用科学记数法表示地球转动一天(24小时)通过的路程约是()千米千米千米X104千米6.用科学记数法表示下列各数:(1) 1 000 000;(2) 57 000 000;(3)—851 340;(4)-12 300.7.下列用科学记数法表示出来的数,原数是多少?(1)X105;(2)—X104;(3)X102.8. (1)用科学记数法表示1 080 000 000 000;(2)用科学记数法表示数X 106的原数是什么?近似数和有效数字1.台湾是我国最大的岛屿,总面积为35平方千米.用科学记数法应表示为(保留三个有效数字)( )A.3.59 X 106平方千米平方千米平方千米平方千米2.填空(1)一般地,一个近似数,四舍五入到哪一位,就说这个近似数到哪一位;(2)一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都叫做这个数的;(3)除了四舍五入法,常用的近似数的取法还有两种,和.3.判断下列各题中哪些是精确数,哪些是近似数.(1)某班有32人;⑵半径为10 cm的圆的面积约为314 cm2;⑶张明的身高约为1.62米;⑷取n为.4.用四舍五入法取近似值,49精确到的近似数是,保留三个有效数字的近似数是.5.用四舍五入法得到的近似值精确到位,万精确到位.百度文库-让每个人平等地提升自我6.用四舍五入法取近似值,精确到十位的近似数是;保留两个有效数字的近似数是.7.下列由四舍五入得到的数各精确到哪一位?各有哪几个有效数字?(1);(2) 8;(3)万;(4)X1068.用四舍五入法,求出下列各数的近似数.(1)8 (精确到);(2) 2 (精确到个位);(3) 47 155 (精确到百位);(4)(保留4个有效数字);(5) 460 215 (保留3个有效数字);(6) 0 (精确到百分位).9.有玉米吨,用5吨的卡车一次运完,需要多少辆卡车?10.计算:一 ,2、,9、(1) X (-12) XX (+ —) X32;9 113 34 5(2)(-105) X [ - - 4- (--) ]-178X【巩固练习】5 7 31.填空:(1)地球上的海洋面积为36 100 000千米2,用科学记数法表示为;⑵光速约3X108米/秒,用科学记数法表示的数的原数是.2.据测算,我国每天因土地沙漠化造成的经济损失为亿元.若一年按365天计算,用科学记数法表示我国一年因沙漠化造成的经济损失为( )(元) 5X1010 (元)5X1011 (元) 475X 108 (元)3.设n为正整数,则10八是( )个n相乘后面有n个零=0 D.是一个(n+1)位整数百度文库-让每个人平等地提升自我4.分别用科学记数法表示下列各数:(1)100 万;(2) 10 000;(3)44;(4)679 000;(5) 30 000;(6).5.已知 a=2,b=3,求(a b—b a)(b a—a b).7.少林武术节开幕式上有一个大型团体操的节目,表演要求在队伍变成10行、15行、18行、24行时,队形都能成为矩形.教练最少要挑选多少演员?8.聪明一休萌发了个奇怪的念头,他想造一个巨形图书馆,这个图书馆大约有 1 0001 000 000本书就够了.这些书中包含了过去的、现在的和未来的所有著作,包括地球上的,也包括许多星球上住着的能说话、会印刷和学习数学的居民们所用的各种书籍.你能想象一下1 0001 000 000这个数有多大吗?能用科学记数法把这个数表示出来吗?9.近似数有个有效数字,4精确到的近似值是.10.地球上陆地的面积为149 000 000平方千米,用科学记数法表示为.11.若有理数a, b满足|3a—1|+b2=0,则a(b+1)的值为.12.年我国国内生产总值(GDP)为22 257亿美元,用科学记数法表示约为亿美元(四舍五入保留三个有效数字).13.下列由四舍五入得到的近似数,各精确到哪一位?(1);(2) 402;(3)万;百度文库-让每个人平等地提升自我(4)4 000;(5)4X104;(6)X102.14.下列各近似数有几个有效数字?分别是哪些?(1); (2) 800;⑶万;⑷X10315.按四舍五入法,按括号里的要求对下列各数求近似值.(1) 2(精确到;⑵(精确到;⑶X105(精确到千位).16.把一个准确数四舍五入就可得到一个近似数,这个准确数就是这个近似数的真值.试说明近似数和有什么不同,其真值有何不同?17.求近似数,,4, 8的和(结果保留三个有效数字).18.甲、乙两学生的身高都是X102 cm,但甲学生说他比乙高9 cm.问有这种可能吗.若有,请举例说明.。
人教版七年级数学上册知识点及练习题第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
【能力训练】一、选择题。
1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42.a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b <-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( )A a>0,b>0B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
北师大版七年级数学上册知识点总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版七年级数学上册知识点总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版七年级数学上册知识点总结(word版可编辑修改)的全部内容。
3、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n 棱柱有两个底面,n 个侧面,共(n+2)个面;3n 条棱,n 条侧棱;2n 个顶点.4、正方体的平面展开图:11种总结规律:一线不过四,田凹应弃之;相间、Z 端是对面,间二、拐角邻面知。
5、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
可能出现的:锐角三角型、等边、等腰三角形, 正方形、矩形、非矩形的平行四边形、 非等腰梯形、 等腰梯形、五边形、六边形、正六边形不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形3—3型2—2—2型6、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
第一章丰富的图形世界一、填空题(每空2分,共36分):1、圆锥是由________个面围成,其中________个平面,________个曲面.2、在棱柱中,任何相邻的两个面的交线都叫做______,相邻的两个侧面的交线叫做_______。
3、从一个多边形的某个顶点出发,分别连接这个点和其余各顶点,可以把这个多边形分割成十个三角形,则这个多边形的边数为_____。
初中七年级数学上必考知识点+答题技巧1.数轴⑴数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。
数轴的三要素:原点,单位长度,正方向。
⑵数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。
(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。
)⑶用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。
2.相反数⑴相反数的概念:只有符号不同的两个数叫做互为相反数。
⑵相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
⑶多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
⑷规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
3.绝对值⑴概念:数轴上某个数与原点的距离叫做这个数的绝对值。
①互为相反数的两个数绝对值相等。
②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数。
③有理数的绝对值都是非负数。
⑵如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a。
②当a是负有理数时,a的绝对值是它的相反数﹣a。
③当a是零时,a的绝对值是零。
即|a|={a(a>0)0(a=0)﹣a(a<0)4.有理数大小比较⑴有理数的大小比较比较有理数的大小可以利用数轴,他们从左到右的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。
⑵有理数大小比较的法则:①正数都大于0。
②负数都小于0。
③正数大于一切负数。
④两个负数,绝对值大的其值反而小。
规律方法·有理数大小比较的三种方法:a.法则比较:正数都大于0,负数都小于0,正数大于一切负数。
人教版七年级数学知识点(填空版 )一、一元一次方程及其应用1. 叫做方程。
2. 这样的方程叫做一元一次方程。
解方程就是求出使方程中等号左右两边相等的 ,等式两边 ,结果仍相等。
等式两边 ,或 ,结果仍相等。
5.把等式一边的某项后移到另一边,6.工作量= .7.①路程= ,②速度= ,③时间=④v顺= ⑤ v逆=8.相遇问题基本相等关系:两人相距的距离=9.追及问题基本相等关系:两人相距的距离=10(1)①售价= + ②利润= -③进价= -(2)①利润= ×②进价= ÷③利润率= ÷×100%(3)①售价=进价(1+ )②售价= + ×利润率③利润率=(4) =标价×10折扣(5)①新价=原价(1+ )②新价=原价(1- )11.税率=收入应纳税额×100% 收入=税率应纳税额应纳税额= 收入×12.利率=本金单期利息×100% 利息=本金×利率×存期本息和=二、相交线和平行线1.有一个公共的顶点,有一条公共的边,另外一边互为 ,2.两条直线相交有对邻补角,邻补角的大小。
3.有公共的顶点,角的两边 ,4.两条直线相交,有2对对顶角。
n条直线两两相交,一定有对顶角n(n-1)对。
对顶角性质:。
6.两条直线相交,所成的四个角中有一个角是 ,其中一条直线叫做另一条直线的 ,它们的交点叫做。
7.一条直线的垂线有无数条。
:。
, 。
10. ,11.在同一平面内, 两条直线互相平行记作:a∥b。
12.同一平面内两条直线的关系只有两种:。
平行公理:。
14.如果两条直线都与第三条直线平行,那么这两条直线也。
15.方法1简单说成:。
16.方法2简单说成:。
17.方法3简单说成:。
18.性质1 简单说成:。
19.性质2 简单说成:。
20.性质3 简单说成:。
21. 一件事情的语句叫做命题。
命题的分类:。
命题的结构:。
人教版七年级数学上册知识点归纳(附例题解析)第一章:有理数一、有理数的基础知识1、三个重要的定义(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。
概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。
②正数和负数的应用:正数和负数通常表示具有相反意义的量。
③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;例1 下列说法正确的是( )A、一个数前面有“-”号,这个数就是负数;B、非负数就是正数;C、一个数前面没有“-”号,这个数就是正数;D、0既不是正数也不是负数;例2 把下列各数填在相应的大括号中 8,43,0.125,0,31-,6-,25.0-,正整数集合{}整数集合{}负整数集合{}正分数集合{}例3 如果向南走50米记为是50-米,那么向北走782米记为是____________, 0米的意义是______________。
例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么5-克表示_________________________知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。
例5 若0>a,则a是;若0<a,则a是;若ba<,则ba-是;若ba>,则ba-是;(填正数、负数或0)2、有理数的概念及分类整数和分数统称为有理数。
第一章 有理数1.1正数和负数比0( )的数叫做正数,比0( )的数叫做负数。
( )既不是正数也不是负数,它是正数与负数的分界点。
在正数前面加上符号“-”的数就是( )。
例1、3.2、0.4、25%、15等都是( )数;-3.2、-0.4、-25%、-15等都是()数。
正数前面可以加上符号“+”,也( )省略这个符号。
但负数前面的符号“-”()省略。
(填“可以”或 “不可以”)例2、13可以写成( ),+13也可以省略“+”号,写成( )。
但是-13不能省略“-”号写作13 。
0和正数统称为( ),0和负数统称为( )。
正数和负数可以分别用来表示( )的量。
例3、存入100元记为+100,则取出200元记为( )。
例4、向北走50米记为+50,则向南走70米记为( )。
0不仅可以表示“没有”,还可以表示其它意思。
例5、0是正数和负数的分界。
例6、0℃不代表没有温度,相反,0℃是一个确定的温度。
1.2有理数( )统称为整数,即:整数{ ( )( )( )( )统称为分数,即:分数{( )( )( )统称为有理数。
有理数的分类:按定义分类 按性质分类有理数{ ( ){ ( )( )( )( ){( )( ) 有理数{( ){( )( )( )( ){( )( )与小学不同,在初中,如果一个小数能化成分数,那么这个小数也是( )。
例1、因为0.2=15,1.5=32,2.666=223,所以0.2、1.5、2.666都是( )。
例2、无限不循环小数,如π、1.010010001…等都( )分数。
(填“是”或“不是”)引入负数之后,奇数和偶数的范围扩大了。
例3、不仅1、3、5、7……是奇数,而且-1、-3、-5、-7……也是奇数。
例4、不仅0、2、4、6、8……是偶数,而且-2、-4、-6、-8……也是偶数。
用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:①在直线上任取一个点表示数0,这个点叫做( )。
一、填空题1.一列火车匀速行驶,经过一条长600米的隧道需要45秒的时间,隧道的顶部一盏固定灯,在火车上垂直照射的时间为15秒,则火车的长为_____.【分析】设火车的长度为x 米则火车的速度为根据列车的速度×时间=列车长度+隧道长度列方程求解即可【详解】设火车的长度为x 米则火车的速度为依题意得:45×=600+x 解得:x=300故答案为:300【点解析:【分析】设火车的长度为x 米,则火车的速度为15x ,根据列车的速度×时间=列车长度+隧道长度列方程,求解即可.【详解】设火车的长度为x 米,则火车的速度为15x ,依题意得: 45×15x =600+x 解得:x =300.故答案为:300.【点睛】本题考查了一元一次方程的应用,学生理解题意的能力,根据隧道顶部一盏固定灯在火车上垂直照射的时间为15秒钟,可知火车的速度为15x ,根据题意可列方程求解. 2.若关于x 的方程3x m -2-m =0是一元一次方程,则m =________,方程的解为________.x =1【解析】【分析】根据一元一次方程的定义得到:m-2=1进而求得M 结合m 的值可得原方程为3x-3=0求解可得方程的解【详解】由题意得:m-2=1解得:m=3所以原方程为3x-3=0解得x=1【点解析:x =1【解析】【分析】根据一元一次方程的定义得到:m-2=1,进而求得M ,结合m 的值可得原方程为3x-3=0,求解可得方程的解【详解】由题意得:m-2=1,解得:m=3所以原方程为3x-3=0解得x=1【点睛】此题考查一元一次方程的知识,熟练掌握一元一次方程的定义是关键3.关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.或或x=-3【分析】利用一元一次方程的定义判断即可【详解】解:关于的方程如果是一元一次方程(1)当即即解得:(2)当m=0时解得:(3)当2m-1=0即m=时方程为解得:x=-3故答案为x=2或x=解析:2x =或2x =-或x=-3.【分析】利用一元一次方程的定义判断即可.【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,(1)当2m 11﹣=,即m 1=, 即x 20﹣=解得:x 2=,(2)当m=0时,x 20--=,解得:x 2=-(3)当2m-1=0,即m=12时, 方程为112022x --= 解得:x=-3, 故答案为x=2或x=-2或x=-3.【点睛】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键. 4.有一位工人师傅要锻造底面直径为40cm 的“矮胖”形圆柱,可他手上只有底面直径是10cm 、高为80cm 的“瘦长”形圆柱,若不计损耗,则锻造出的“矮胖”形圆柱的高为________.5cm 【分析】设矮胖形圆柱的高是xcm 根据锻造前后圆柱体积相等建立方程求解即可【详解】解:设矮胖形圆柱的高是xcm 由题意得π×80=πx 解得:x=5故答案为5cm 【点睛】本题考查一元一次方程的应用熟解析:5cm【分析】设“矮胖”形圆柱的高是xcm ,根据锻造前后圆柱体积相等建立方程求解即可.【详解】解:设“矮胖”形圆柱的高是xcm ,由题意得,210()2π×80=240()2πx , 解得:x=5.故答案为5cm .【点睛】本题考查一元一次方程的应用,熟练掌握并准确计算是解题的关键.5.要使代数式154t +与15()4t -的值互为相反数,则t 的值是_________.【解析】【分析】只有符号不同的两个数是互为相反数且互为相反数的两个数的和等于0根据相反数的性质可列方程求解【详解】因为代数式与的值互为相反数所以+=0解得:t=【点睛】本题主要考查列方程解方程解决本 解析:110【解析】【分析】只有符号不同的两个数是互为相反数,且互为相反数的两个数的和等于0,根据相反数的性质可列方程求解.【详解】 因为代数式154t +与15()4t -的值互为相反数, 所以154t ++15()4t -=0, 解得:t =110, 【点睛】本题主要考查列方程解方程,解决本题的关键是要熟练根据相反数的性质列出方程即可求解. 6.校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x 场,则可列方程为__________________.3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可【详解】根据题意得:3x+(8-x )=18故答案为:3x+(8-x )=18【点睛】此题考查了由实际问题抽象出一元一次方程弄清题意是解本解析:3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可.【详解】根据题意得:3x+(8-x )=18,故答案为:3x+(8-x )=18,【点睛】此题考查了由实际问题抽象出一元一次方程,弄清题意是解本题的关键.7.如果ma mb =,那么下列等式一定成立的是_______.①a b =;②66ma mb -=-;③1122ma mb -=-;④88ma mb +=+;⑤3131ma mb -=-;⑥33ma mb -=+.②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母等式仍成立即可解决【详解】当m =0时a =b 不一定成立故解析:②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立; ②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【详解】当m =0时,a =b 不一定成立.故①错误;ma =mb ,根据等式的性质1,两边同时减去6,就得到ma−6=mb−6.故②正确;根据等式的性质2,两边同时乘以−12,即可得到1122ma mb -=-,故③正确; 根据等式的性质1,两边同时加上8就可得到ma +8=mb +8.故④正确; 根据等式的性质2,两边同时乘以3,即可得到33ma mb =,根据等式的性质1,两边同时减去1就可得到3ma-1=3mb-1,故⑤正确;根据等式的性质1,ma mb =两边同时加或减3,结果仍相等,故⑥错误,故答案为:②③④⑤.【点睛】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.8.一个圆柱形铁块,底面半径是20cm ,高16cm .若将其锻造成为长、宽分别是20cm 、8cm 的长方体,如果设长方体的高为cm x .根据题意,列出方程为___________.【解析】【分析】等量关系为:圆柱体的体积=长方体的体积把相关数值代入即可求解【详解】设长方体的高为xcm 故答案为:【点睛】此题考查一元一次方程的应用解题关键在于找到等量关系解析:2π2016208x ⨯⨯=⨯【解析】【分析】等量关系为:圆柱体的体积=长方体的体积,把相关数值代入即可求解.【详解】设长方体的高为xcm ,2π2016208x ⨯⨯=⨯,故答案为:2π2016208x ⨯⨯=⨯.【点睛】此题考查一元一次方程的应用,解题关键在于找到等量关系.9.解方程:2(1)3x --=-.解:去括号,得__________;移项,得____________;合并同类项,得____________.【解析】【分析】根据解方程的过程方程去括号移项合并把x 系数化为1即可求出解【详解】去括号得;移项得;合并同类项得【点睛】本题考查了解一元一次方程熟练掌握计算法则是解题关键解析:213x -+=-, 321x =--+, 4x =-.【解析】【分析】根据解方程的过程,方程去括号,移项合并,把x 系数化为1,即可求出解.【详解】2(1)3x --=-.去括号,得213x -+=-;移项,得321x =--+;合并同类项,得4x =-【点睛】本题考查了解一元一次方程,熟练掌握计算法则是解题关键.10.在公式5(32)9c f =-中,已知20c =,则f =_____________.68【解析】【分析】把C=20代入C 与f 之间的关系式解方程就可以求出f 的值【详解】由题意得当C=20时20=180=5f−160−5f=−340f=68故答案为:68【点睛】本题考查解一元一次方程熟解析:68【解析】【分析】把C=20代入C 与f 之间的关系式5(32)9c f =-,解方程就可以求出f 的值. 【详解】由题意,得当C=20时, 20=5(32)9f -, 180=5f−160,−5f=−340,f=68.故答案为:68.【点睛】 本题考查解一元一次方程,熟练掌握运算法则是解题关键.11.如果代数式453m -的值等于5-,那么m 的值是_________.【解析】【分析】根据题意列出方程求出方程的解即可得出m 的值【详解】由题意得:=去分母得:4m-5=-15解得m=【点睛】本题考查解一元一次方程熟练掌握计算法则是解题关键 解析:52-【解析】【分析】根据题意列出方程,求出方程的解即可得出m 的值.【详解】 由题意得:453m -=5- 去分母得:4m-5=-15 解得m=52-【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.12.某长方形足球场的周长为340米,长比宽多20米,问这个足球场的长和宽各是多少米. (1)若设这个足球场的宽为x 米,那么长为_______米。
一、填空题1.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab 分子用ab 表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子 解析:a b -a a b +=a b ×a a b+ 【分析】 从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a ,b ,分子用a ,b 表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积. 设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.2.观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考 解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯…∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=-故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键. 3.在整式:32x y -,98b -,336b y -,0.2,57mn n --,26a b +-中,有_____个单项式,_____个多项式,多项式分别是_______.4【分析】根据单项式与多项式的概念即可求出答案【详解】解:单项式有2个:02多项式有4个:【点睛】本题考查单项式与多项式的概念解题的关键是正确理解单项式与多项式之间的联系本题属于基础题型解析:4 32x y -、336b y -、57mn n --、26a b +- 【分析】根据单项式与多项式的概念即可求出答案.【详解】解:单项式有2个:98b -,0.2,,多项式有4个:32x y -,336b y -,57mn n --26a b +- 【点睛】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型.4.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.5.已知22211m mn n ++=,26mn n +=,则22m n +的值为______.5【分析】观察多项式之间的关系可知将已知两式相减再化简即可得到结果【详解】∵∴∴的值为5【点睛】本题考查整式的加减观察得出整式之间的关系再进行去括号化简是解题的关键解析:5【分析】观察多项式之间的关系可知,将已知两式相减,再化简即可得到结果.【详解】∵22211m mn n ++=,26mn n +=,∴()22222222221165mn m mn n m n n mn nm mn n ---=+++=++=-=+, ∴22m n +的值为5.【点睛】本题考查整式的加减,观察得出整式之间的关系再进行去括号化简是解题的关键. 6.如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______.0【分析】根据同类项的定义先得到k 的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础解析:0【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可.【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项,比较基础.7.仅当b =______,c =______时,325x y 与23b c x y 是同类项。
一、填空题1.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠, ∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 2.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.2【分析】根据四次三项式的定义可知该多项式的最高次数为4项数是3所以可确定m 的值【详解】解:∵多项式3x |m |y2+(m+2)x2y-1是四次三项式∴+2=4∴m=2故答案为2【点睛】本题考查了与多解析:2【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m 的值.【详解】解:∵多项式3x |m |y 2+(m +2)x 2y -1是四次三项式, ∴m +2=4,20m +≠∴m=2.故答案为2.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.3.图中阴影部分的面积为______.【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积 解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】 解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键. 4.如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______.0【分析】根据同类项的定义先得到k 的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础解析:0【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可.【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项,比较基础.5.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.6.多项式234324x x x -+-按x 的降幂排列为______.【分析】先分清多项式的各项然后按多项式降幂排列的定义排列【详解】多项式的各项是3x2−2x3−4x4按x 降幂排列为故答案为:【点睛】本题考查了多项式我们把一个多项式的各项按照某个字母的指数从大到小或解析:432432x x x -++-【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】多项式234324x x x -+-的各项是3x 2,−2,x 3,−4x 4,按x 降幂排列为432432x x x -++-.故答案为:432432x x x -++-.【点睛】本题考查了多项式.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.7.多项式223324573x x y x y y --+-按x 的降幂排列是______。
人教版七年级数学上册4.2直线、射线、线段知识点归纳过两点有且只有()条直线。
简称:()直线、射线、线段都是()的,都由()个点构成。
直线、射线、线段的特征:①直线:()端点,向()无限延长,长度()测量。
②射线:有()个端点,从这个端点开始向()无限延长,长度()测量。
③线段:有()个端点,从一个端点连向另一个端点,长度()测量。
线段向一个方向无限延长,就成了();线段向两个方向无限延长,就成了()。
点的表示方式:用一个()表示。
如点A、点M、点P。
直线、射线、线段的表示方式:①直线用一个()或两个()表示,例如直线a或直线AB 。
温馨提示:直线AB和直线BA()同一条直线。
②射线用一个()或两个()表示,例如射线a或射线AB 。
温馨提示:射线AB指从A射向B,射线BA指从B射向A,()同一条射线。
③线段用一个()或两个()表示,例如线段a或线段AB 。
温馨提示:线段AB和线段BA()同一条线段。
点与直线的位置关系有两种:①点在直线()。
这时我们也可以说,这条直线()这个点。
②点在直线()。
这时我们也可以说,这条直线()这个点。
当两条不同的直线有一个公共点时,我们就说这两条直线()。
这个公共点叫做它们的()。
用()的直尺和圆规作图,叫做尺规作图。
尺规作图:作一条线段AB等于已知线段a。
步骤①:用直尺画一条()。
步骤②:用圆规在射线AC上截取()。
比较两条线段长短的方法:①度量法。
用刻度尺测量它们的长度,再进行比较。
②叠合法。
用圆规把其中一条线段移到另一条线段上,再进行比较。
把一条线段分为两条相等线段的点,叫做这条线段的()。
线段的中点到线段两端的距离()。
如图,点P是AB的中点写法规范如下:∵点P是AB中点∴PA=()=()把一条线段平均分成三份的点,叫做这条线段的();把一条线段平均分成四份的点,叫做这条线段的();把一条线段平均分成五份的点,叫做这条线段的();…依次类推。
两点的所有连线中,()最短。
一、填空题1.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后解析:乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可.【详解】解:原式=-9+5+16=12.故答案为:乘方,乘法,加法,12【点睛】本题主要考查了有理数混合运算的运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.2.计算:(-0.25)-134⎛⎫-⎪⎝⎭+2.75-172⎛⎫+⎪⎝⎭=___.-175【分析】根据减法法则将减法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算【详解】解:原式=-025+325+275-75=(-025-75)+(325+275)=-775+解析:-1.75【分析】根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.【详解】解:原式=-0.25+3.25+2.75-7.5=(-0.25-7.5)+( 3.25+2.75)=-7.75+6=-1.75.故答案为:-1.75.【点睛】本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算.3.在数轴上,距离原点有2个单位的点所对应的数是________.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x 由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型解析:2±【分析】由绝对值的定义可知:|x |=2,所以x =±2.【详解】设距离原点有2个单位的点所对应的数为x ,由绝对值的定义可知:|x |=2,∴x =±2.故答案为±2.【点睛】本题考查了绝对值的性质,属于基础题型.4.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米,则20(70)207090--=+=(米),即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.5.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.6.若三个互不相等的有理数,既可以表示为3,a b+,b的形式,也可以表示为0,3a b ,a的形式,则4a b-的值________.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==解析:15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3ab=-3,解得b=-3.a=3,然后代入4a b-进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b+、b的形式,也可以表示为0、3ab、a的形式∴0b≠,∴a b+=0,∴3a3b=-,∴b=3-,a=3,∴4a b-=123+=15.故答案为15.【点睛】本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3ab=-3是解答本题的关键.7.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.8.截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,9.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约℃【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥为______.城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解:解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可.【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯168.58=-7.42=(℃);答:此时泰山顶部的气温大约为7.42℃.故答案为:7.42.【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 10.气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键. 11.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;-+---=-++-=.当输入2-时,输出的结果为24(3)524350故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键.12.等边三角形ABC(三条边都相等的三角形是等边三角形)在数轴上的位置如图所-,若ABC绕着顶点顺时针方向在数轴上翻转1次示,点A,B对应的数分别为0和1后,点C所对应的数为1,则再翻转3次后,点C所对应的数是________.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C在数轴上∴点C对应的数是故答案为:4【点睛】本题考查了数轴及数的解析:4【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C在数轴上,+⨯=.∴点C对应的数是1134故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.13.点A表示数轴上的一个点,将点A向右移动10个单位长度,再向左移动8个单位长度,终点恰好是原点,则点A到原点的距离为______.2【分析】设点A表示的数为x 然后根据向右平移加向左平移减列出方程再解方程即可得出答案【详解】设A 表示的数是x依题意可得:x+10-8=0解得:x=-2则点A到原点的距离为2故答案为:2【点睛】本题主解析:2【分析】设点A表示的数为x,然后根据向右平移加,向左平移减列出方程,再解方程即可得出答案.【详解】设A表示的数是x,依题意可得:x+10-8=0,解得:x=-2,则点A到原点的距离为2.故答案为:2.【点睛】本题主要考查的是数轴,解题时需注意点在数轴上移动,向右平移加,向左平移减. 14.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变解析:6÷3×10+4【分析】灵活利用运算符号将3、4、6、10连接,使结果为24即可解答本题.【详解】由题意可得,6÷3×10+4.故答案为:6÷3×10+4.【点睛】本题考查了有理数的混合运算,关键是明确题意,进行灵活变化,最终求出问题的答案. 15.下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1b a=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab 互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶解析:④【分析】利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可.【详解】①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误;②0a b 时,a ,b 互为相反数,但是对于等式1b a=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确.综上,正确的有④.故答案为:④.【点睛】本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.16.把67.758精确到0.01位得到的近似数是__.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.17.运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算.18.已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab<0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:解析:±8【分析】首先根据绝对值的性质得出两数,进而分析得出答案.【详解】设|a|=5,|b|=3,则a=±5,b=±3,∵ab<0,∴当a=5时,b=-3,∴5-(-3)=8;当a=-5时,b=3,∴-5-3=-8.故答案为:±8.【点睛】本题主要考查了绝对值的性质以及有理数的混合运算,熟练掌握绝对值的性质是解题关键.19.若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a (a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a(a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a(a≠0),则它的相反数为-a,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.20.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10na 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.21.已知a 是7的相反数,b 比a 的相反数大3,则b 比a 大____.17【分析】先根据相反数的定义求出a 和b 再根据有理数的减法法则即可求得结果【详解】由题意得a =-7b =7+3=10∴b -a =10-(-7)=10+7=17故答案为:17【点睛】本题考查了有理数的减法解析:17【分析】先根据相反数的定义求出a 和b ,再根据有理数的减法法则即可求得结果.【详解】由题意,得a =-7,b =7+3=10.∴b -a =10-(-7)=10+7=17.故答案为:17.【点睛】本题考查了有理数的减法,解答本题的关键是熟练掌握有理数的减法法则∶减去一个数等于加上这个数的相反数.22.若有理数a ,b 满足()26150a b -+-=,则ab =__________.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab 的值再把ab 的值代入ab 中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a ,b 的值,再把a 、b 的值代入ab 中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0. 23.截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____.7×106【分析】根据科学记数法形式:a×10n 其中1≤a <10n 为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n,其中1≤a<10,n为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n,其中1≤a<10,n为正整数.24.数轴上A、B两点所表示的有理数的和是 ________.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A表示的数是﹣3,点B表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.25.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.26.大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.27.数轴上表示 1 的点和表示﹣2 的点的距离是_____.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键解析:3【分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.28.已知|a|=3,|b|=2,且ab<0,则a﹣b=_____.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b解析:5或﹣5【分析】先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a﹣b 中求值即可.【详解】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴当a=3时b=﹣2;当a=﹣3时b=2,∴a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.29.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.30.定义一种正整数的“H运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果为11,经过3次“H运算”的结果为46,那么数28经过2020次“H运算”得到的结果是_________.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.。
七年级数学上册全册知识填空有理数1. 大于0的数叫做正数。
2.在正数前面加上负号“-”的数叫做负数。
3.整数和分数统称为有理数。
4.人们通常用一条直线上的点表示数,这条直线叫做数轴。
5.直线任取一个点表示数0,这个点叫做原点。
6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
7. 由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8.正数大于0,0大于负数,正数大于负数。
9.两个负数,绝对值大的反而小。
10. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11.有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13.有理数减法法则:减去一个数,等于加上这个数的相反数。
14.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15.有理数中仍然有:乘积是1的两个数互为倒数。
16.一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17. 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18. 一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
20.两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
21. 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an 中,a叫做底数,n叫做指数。
22.根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
根据七年级上册数学知识点填空(全)第一章有理数
1. 当两个正数相除时,商为正数。
正数。
2. 两个(不含零)相反数的和为零。
零。
3. 分子为0,分母不为0的有理数是 0 。
0。
4. -1/4是负数。
负数。
5. 容斥原理是指两个集合并集等于这两个集合的元素和减去交集,即A∪B= A+B - A∩B。
6. 倒数的概念是:一个非零数的倒数是这个数与1的比值,这
个数叫做这个非零数的倒数。
倒数。
7. 下面说法正确的是:-4/5< -1/3,因为-4乘以3小于-5乘以1。
8. 有理数14和-7,哪个是正数?答案是: 14 。
14。
9. 如果一个数的3倍加上5的结果等于17,这个数是 4 。
4。
10. 计算 -11/14 + 1/7的结果是: -5/14 。
-5/14。
第二章整式与方程式
1. 一个整数,在相加相减后,符号仍为正的情况是该数是正数。
正数。
2. 右开线段的坐标为x≥ 2 。
2。
3. -3(x+5)-2(x-6)化简的结果是: -5x-23 。
-5x-23。
4. 一个解方程式的方法是将算式中的未知数替换为数值,求
算式的结果。
未知数替换为数值,求算式的结果。
5. 解方程 5x - 4 = 3x + 8 ,得到的解是: x=6 。
x=6。
6. 一个方程式的根是指使得该方程式成立的未知数的值,对于
二次方程式ax²+bx+c=0而言,它有两个根,可以通过公式 x=[-
b±√b²-4ac]/2a求得。
7. 下列四个算式中,无项数最少的算式是: 3x + 6 。
3x + 6。
8. 解方程式x/4 - 3 = (2 - x)/3 ,可以得到: x=2 。
x=2。
9. 已知方程式2x + 10 = 0,那么x是 -5 。
-5。
10. 线性方程中,未知量的最高次数是 1次。
1次。
第三章几何图形初步
1. 一张可以折成四个等分零件的图形叫做图样。
图样。
2. 两个角的度数之和是 180度。
180度。
3. 角度制与弧度制可以互相转换,30度= π/6弧度。
π/6弧度。
4. 一个等角梯形,两个底角的度数相等,是一个直角梯形,真假?假。
假。
5. 下列五个图形中,是封闭曲线并且是凸图形的是:大正方形。
大正方形。
6. 用直尺和圆规可以做出很多几何图形,其中圆规的作用是:画圆和画弧。
画圆和画弧。
7. 甲乙两人往东走,甲走了7米又返回原点,乙走了9米又返回原点,下列说法正确的是:乙比甲走了更远。
远。
8. 下列五个形状中,对称图形的个数最少的是:三角形。
三角形。
9. 下列五个图形中,是折线的是: WXY 。
WXY。
10. 一个角的补角是指两角度数之和是180度的两个角,如角x 和它的补角之和等于180度,则该角x的度数是 90度。
90度。
第四章等比例函数
1. 等比数列是指:从第二项开始,每一项是前一项的固定倍数。
固定倍数。
2. 用f(x)表示 y =3x-2的函数,f(3)的函数值是: 7 。
7。
3. 在下列五组函数中,是定义域为全体实数集的函数是:
y=2x+1 。
y=2x+1。
4. 在平面直角坐标系中,点(2,3)的坐标是: x=2,y=3 。
x=2,
y=3。
5. 下列说法正确的是:等比数列的公比是第2项除以第1项。
6. 下列说法正确的是:函数y=kx中,k被称为函数的比例系数。
7. 如果y=kx是一次函数,那么y=2kx是同一函数。
同一函
数。
8. 函数y=kx中,x取何值时,y的值最大?答案是:当k>0时,取正无穷大;当k<0时,取负无穷大。
9. 定义域为正整数的等比数列,如果第一项是2,公比是3,
它的第3项是: 18 。
18。
10. 用f(x)表示y = kx 的函数,当k=5时,该函数的代数式是:f(x)=5x 。
f(x)=5x。
第五章数据分析
1. 结构良好的数据可以更直观地反映问题的本质,便于进行统计分析。
统计分析。
2. 下列是离散型随机变量的是:掷一颗骰子得到的点数。
掷一颗骰子得到的点数。
3. 下列各组数据的方差最大的是: 1,4,7,10,13 。
1,4,7,10,13。
4. 用一条垂直于横坐标轴的直线,将一个柱状图分成两部分,使得这两部分的面积之和相等,这条直线的位置可以通过平均值求出。
平均值求出。
5. 下列影响统计结论可靠性的因素中,不包括:样本容量和样本均值。
样本容量和样本均值。
6. 一份小明家的收入调查表如下,求小明家的平均收入:1000,2000,3000。
小明家的平均收入是: 2000元。
2000元。
7. 已知五个数的平均数是8,如果其中四个数的平均数是6,那么剩下那个数的值是: 14。
14。
8. 假设a,b是两个整数,其中a>b,令c=(a+b)/2,d=(a-b)/2,则下列表示c和d的代数式正确的是:c=(a+b)/2,d=(a-b)/2 。
c=(a+b)/2,d=(a-b)/2。
9. 拉普拉斯定理是指:当样本量增大时,样本均值的频率分布将越来越接近于正态分布。
正态分布。
10. 下列说法正确的是:双方差异达到显著水平,说明两个样本之间差异具有统计学意义。