初中数学正弦函数公式定理表总结
- 格式:doc
- 大小:15.18 KB
- 文档页数:5
初中数学三角函数公式最全三角函数是数学中重要的概念和工具之一,在初中数学中也是一个重要的知识点。
掌握了三角函数的基本概念和公式,可以解决很多几何和物理相关的问题。
下面将介绍一些初中数学中三角函数的常见公式。
1.正弦定理:在任意三角形ABC中,边长分别为a,b,c,对应的角度为A,B,C。
则有:a/sin A = b/sin B = c/sin C2.余弦定理:在任意三角形ABC中,边长分别为a,b,c,对应的角度为A,B,C。
则有:c^2 = a^2 + b^2 - 2ab cos C3.正弦函数的性质:sin(A ± B) = sin A cos B ± cos A sin Bsin(180° ± θ) = ±sin θsin²θ + cos²θ = 1sin²θ = 1/2(1 - cos 2θ)4.余弦函数的性质:cos(A ± B) = cos A cos B ∓ sin A sin Bcos(180° ± θ) = -cos θcos²θ + sin²θ = 1cos²θ = 1/2(1 + cos 2θ)5.正切函数的性质:tan(A ± B) = (tan A ± tan B) / (1 ∓ tan A tan B) tan(180° ± θ) = ±tan θ6.三角函数的周期性:sin(θ ± 360°n) = sin θcos(θ ± 360°n) = cos θtan(θ ± πn) = tan θ7.三角函数的倒数关系:sin θ = 1 / csc θcos θ = 1 / sec θtan θ = 1 / cot θ8.三角函数的和差化积公式:sin(A ± B) = sin A cos B ± cos A sin Bcos(A ± B) = cos A cos B ∓ sin A sin Btan(A ± B) = (tan A ± tan B) / (1 ∓ tan A tan B)9.三角函数的倍角公式:sin 2θ = 2sin θ cos θcos 2θ = cos²θ - sin²θ= 2cos²θ - 1= 1 - 2sin²θtan 2θ = 2tan θ / (1 - tan²θ)10.三角函数的半角公式:sin(θ/2) = ±√[(1 - cos θ)/2]cos(θ/2) = ±√[(1 + cos θ)/2]tan(θ/2) = ±√[(1 - cos θ)/(1 + cos θ)]以上是初中数学中常见的三角函数公式,可以通过这些公式来解决各种三角函数的计算问题。
初中数学三角函数公式三角函数是初中数学中非常重要的一个内容,它涉及到角的概念和计算。
掌握好三角函数的公式和性质,对于解题和提高数学能力都是至关重要的。
下面是一些常用的三角函数公式:1、正弦函数的公式正弦函数的公式是:sin(A+B)=sinAcosB+cosAsinB,sin(A-B)=sinAcosB-cosAsinB。
2、余弦函数的公式余弦函数的公式是:cos(A+B)=cosAcosB-sinAsinB,cos(A-B)=cosAcosB+sinAsinB。
3、正切函数的公式正切函数的公式是:tan(A+B)=(tanA+tanB)/(1-tanAtanB),tan(A-B)=(tanA-tanB)/(1+tanAtanB)。
4、和差化积公式sinA+sinB=2sin((A+B)/2)cos((A-B)/2),sinA-sinB=2cos((A+B)/2)sin((A-B)/2)cosA+cosB=2cos((A+B)/2)cos((A-B)/2),cosA-cosB=−2sin((A+B)/2)sin((A-B)/2)tanA+tanB=(sinA+sinB)/(cosAcosB),tanA-tanB=(sinA-sinB)/(cosAcosB)。
5、倍角公式sin2θ=2sinθcosθ,cos2θ=cos^2θ-sin^2θ,tan2θ=(2tanθ)/(1-tan^2θ)。
6、半角公式sin(θ/2)=±√[(1-cosθ)/2],cos(θ/2)=±√[(1+cosθ)/2],tan(θ/2)=(sinθ)/(1+cosθ)。
7、辅助角公式sin180°=0,cos180°=-1sin90°=1,cos90°=0,tan90°=无穷大sin0°=0,cos0°=1,tan0°=0。
三角函数定理知识点总结一、正弦定理正弦定理是三角形中的一条重要定理,用于求解三角形的边长或角度。
正弦定理的表述如下:在△ABC中,有a/sinA=b/sinB=c/sinC其中a、b、c分别表示△ABC的三条边,A、B、C分别表示△ABC的三个内角。
正弦定理的推导如下:设△ABC中有一个高h,为BC的高sinA=h/c,sinB=h/a,sinC=h/b根据sinA=h/c,sinB=h/a,sinC=h/b可得a/sinA=b/sinB,a/sinA=c/sinC,b/sinB=c/sinC即可得正弦定理。
正弦定理的应用:1. 根据已知两个角和相对应的边,利用正弦定理求解第三边的长度。
2. 根据已知三边长度和其中一个角,利用正弦定理求解另外两个角的大小。
二、余弦定理余弦定理是用来求解三角形的边长或角度的重要定理。
余弦定理的表述如下:在△ABC中,有a²=b²+c²-2bc*cosA其中a、b、c分别表示△ABC的三条边,A、B、C分别表示△ABC的三个内角。
余弦定理的推导如下:根据余弦定理可以得到以下公式:cosA=(b²+c²-a²)/2bccosB=(a²+c²-b²)/2accosC=(a²+b²-c²)/2ab其中cosA、cosB、cosC分别表示△ABC的三个内角的余弦值然后利用余弦定理可以求解相关问题。
余弦定理的应用:1. 根据已知三个边长,求解三个内角。
2. 根据已知两个边长和夹角,求解第三边的长度。
3. 根据已知两个角和一个边长,求解另外两个边长。
三、正切定理正切定理是用来求解三角形的边长的重要定理。
正切定理的表述如下:在△ABC中,有tanA=(2*小边的乘积)/(大边²-小边²)其中A表示△ABC的一个内角,小边表示这个角对的小边,大边表示这个角对的大边正切定理的推导如下:根据tanA=(2ab)/(a²-b²)以及tanB=(2bc)/(b²-c²)以及tanC=(2ca)/(c²-a²)可以得到以下公式:a=tanA/(2b/(a²-b²))=tanA/(b/sinA)即可得tanA=(2*小边的乘积)/(大边²-小边²)正切定理的应用:主要是用来求解边长问题,例如给出两个角和一个边长,通过正切定理可以求解另外两个边长的长度。
初中数学必背三角函数公式大全初中数学必背的知识点,三角函数公式大全同学们总结归纳过吗?如果没有快来小编这里瞧瞧。
下面是由小编为大家整理的“初中数学必背三角函数公式大全”,仅供参考,欢迎大家阅读。
初中数学必背三角函数公式大全常用三角函数公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB- ctgA+ctgBsin(A+B)/sinAsinB拓展阅读:三角函数导数公式大全(sinx)' = cosx(cosx)' = - sinx(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx(cscx)'=-cotx·cscx(arcsinx)'=1/(1-x^2)^1/2(arccosx)'=-1/(1-x^2)^1/2(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)(arcsecx)'=1/(|x|(x^2-1)^1/2)(arccscx)'=-1/(|x|(x^2-1)^1/2)(sinhx)'=coshx(coshx)'=sinhx(tanhx)'=1/(coshx)^2=(sechx)^2(coth)'=-1/(sinhx)^2=-(cschx)^2(sechx)'=-tanhx·sechx(cschx)'=-cothx·cschx。
初中数学三角函数公式三角函数是数学中重要的一部分,它在几何、物理等领域有广泛的应用。
在初中数学中,我们主要学习正弦函数、余弦函数和正切函数,以及它们之间的关系。
本文将详细介绍这些三角函数的定义、性质和常用公式。
一、正弦函数正弦函数是最基本的三角函数之一,它反映了角度和边长之间的关系。
定义:设角A的终边与单位圆交于点P(x,y),则角A的正弦值sinA定义为点P的纵坐标y。
即sinA=y。
性质:1. sin(90°)=1,即sinA的最大值为1;2. sin(-A)=-sinA,即正弦函数具有奇对称性;3. sin(180°+A)=-sinA,即正弦函数具有周期性。
常用公式:1. 三角恒等式:sin(A±B)=sinAcosB±cosAsinB;2. 万能公式:sin2A=2sinAcosA;3. 正弦的平方:sin²A+cos²A=1二、余弦函数余弦函数与正弦函数相似,也是描述角度和边长之间关系的函数。
定义:设角A的终边与单位圆交于点P(x,y),则角A的余弦值cosA定义为点P的横坐标x。
即cosA=x。
性质:1. cos(0°)=1,即cosA的最大值为1;2. cos(-A)=cosA,即余弦函数具有偶对称性;3. cos(180°+A)=-cosA,即余弦函数具有周期性。
常用公式:1. 三角恒等式:cos(A±B)=cosAcosB∓sinAsinB;2. 万能公式:cos2A=cos²A-sin²A;3. 余弦的平方:sin²A+cos²A=1三、正切函数正切函数是正弦函数和余弦函数的比值,它在三角函数中也是重要的一员。
定义:设角A的终边与单位圆交于点P(x,y),且x≠0,则角A的正切值tanA定义为y/x。
即tanA=y/x。
性质:1. tan(0°)=0,即tanA的最小值为0;2. tan(-A)=-tanA,即正切函数具有奇对称性;3. tan(180°+A)=tanA,即正切函数具有周期性。
初中数学三角函数值公式表大全正弦函数值公式表$\\sin 0 = 0$$\\sin \\frac{\\pi}{6} = \\frac{1}{2}$$\\sin \\frac{\\pi}{4} = \\frac{\\sqrt{2}}{2}$ $\\sin \\frac{\\pi}{3} = \\frac{\\sqrt{3}}{2}$ $\\sin \\frac{\\pi}{2} = 1$$\\sin \\pi = 0$$\\sin \\frac{3\\pi}{2} = -1$$\\sin 2\\pi = 0$余弦函数值公式表$\\cos 0 = 1$$\\cos \\frac{\\pi}{6} = \\frac{\\sqrt{3}}{2}$ $\\cos \\frac{\\pi}{4} = \\frac{\\sqrt{2}}{2}$ $\\cos \\frac{\\pi}{3} = \\frac{1}{2}$$\\cos \\frac{\\pi}{2} = 0$$\\cos \\pi = -1$$\\cos \\frac{3\\pi}{2} = 0$$\\cos 2\\pi = 1$正切函数值公式表$\\tan 0 = 0$$\\tan \\frac{\\pi}{6} = \\frac{\\sqrt{3}}{3}$$\\tan \\frac{\\pi}{4} = 1$$\\tan \\frac{\\pi}{3} = \\sqrt{3}$$\\tan \\frac{\\pi}{2}$ 不存在$\\tan \\pi = 0$$\\tan \\frac{3\\pi}{2} = 0$$\\tan 2\\pi = 0$余切函数值公式表$\\cot 0$ 不存在$\\cot \\frac{\\pi}{6} = \\sqrt{3}$$\\cot \\frac{\\pi}{4} = 1$$\\cot \\frac{\\pi}{3} = \\frac{\\sqrt{3}}{3}$ $\\cot \\frac{\\pi}{2} = 0$$\\cot \\pi$ 不存在$\\cot \\frac{3\\pi}{2} = 0$$\\cot 2\\pi = 0$正割函数值公式表$\\sec 0 = 1$$\\sec \\frac{\\pi}{6} = \\frac{2}{\\sqrt{3}}$ $\\sec \\frac{\\pi}{4} = \\sqrt{2}$$\\sec \\frac{\\pi}{3} = 2$$\\sec \\frac{\\pi}{2} = \\infty$$\\sec \\pi = -1$$\\sec \\frac{3\\pi}{2} = \\infty$$\\sec 2\\pi = 1$余割函数值公式表$\\csc 0 = \\infty$$\\csc \\frac{\\pi}{6} = 2$$\\csc \\frac{\\pi}{4} = \\sqrt{2}$$\\csc \\frac{\\pi}{3} = \\frac{2}{\\sqrt{3}}$$\\csc \\frac{\\pi}{2} = 1$$\\csc \\pi = \\infty$$\\csc \\frac{3\\pi}{2} = -\\infty$$\\csc 2\\pi = \\infty$以上是初中数学中常见的三角函数值公式表,通过这些公式可以快速计算各角度下的三角函数值,希望可以帮助大家更好地理解三角函数的性质和应用。
(完整)初中常用三角函数公式初中常用三角函数公式
三角函数是数学中常见的概念,它们在初中阶段的数学研究中起着重要的作用。
以下是一些常用的三角函数公式:
1. 正弦函数公式:
- 正弦函数的定义:在直角三角形中,对于一个锐角角度A,正弦函数的值等于对边与斜边的比值,可以表示为sin(A) = 对边/斜边。
2. 余弦函数公式:
- 余弦函数的定义:在直角三角形中,对于一个锐角角度A,余弦函数的值等于邻边与斜边的比值,可以表示为cos(A) = 邻边/斜边。
3. 正切函数公式:
- 正切函数的定义:在直角三角形中,对于一个锐角角度A,正切函数的值等于对边与邻边的比值,可以表示为tan(A) = 对边/邻边。
4. 余切函数公式:
- 余切函数的定义:在直角三角形中,对于一个锐角角度A,余切函数的值等于邻边与对边的比值,可以表示为cot(A) = 邻边/对边。
5. 正割函数公式:
- 正割函数的定义:在直角三角形中,对于一个锐角角度A,正割函数的值等于斜边与邻边的比值,可以表示为sec(A) = 斜边/邻边。
6. 余割函数公式:
- 余割函数的定义:在直角三角形中,对于一个锐角角度A,余割函数的值等于斜边与对边的比值,可以表示为csc(A) = 斜边/对边。
这些公式是初中数学中常用的三角函数公式,它们可以用来解决与三角函数相关的各种问题。
熟练掌握这些公式并灵活运用,有助于提高数学解题能力和理解几何概念的能力。
三角函数公式正弦(sin):角α的对边比上斜边余弦(cos):角α的邻边比上斜边正切(tan):角α的对边比上邻边余切(cot):角α的邻边比上对边正割(sec):角α的斜边比上邻边余割(csc):角α的斜边比上对边sin30°=1/2sin45°=根号2/2sin60°=根号3/2cos30°=根号3/2cos45°=根号2/2cos60°=1/2tan30°=根号3/3tan45°=1tan60°=根号3两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinB ?cos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA) ?cot(A-B) = (cotAcotB+1)/(cotB-cotA)[编辑本段]倍角公式Sin2A=2SinA?CosACos2A=Cos^A-Sin^A=1-2Sin^A=2Cos^A-1 tan2A=2tanA/1-tanA^2[编辑本段]三倍角公式tan3a = tan a · tan(π/3+a)· tan(π/3-a)[编辑本段]半角公式[编辑本段]和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB[编辑本段]积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)][编辑本段]诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tanA=tanA = sinA/cosA[编辑本段]万能公式[编辑本段]其它公式[编辑本段]其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)[编辑本段]双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -si nαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A·sin(ωt+θ)+ B·sin(ωt+φ) =√{(A^2 +B^2 +2ABcos(θ-φ)} ? sin{ ωt + arcsin[ (A?sinθ+B?sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }√表示根号,包括{……}中的内容函数名正弦余弦正切余切正割余割在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P 点的坐标为(x,y)有正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y(斜边为r,对边为y,邻边为x。
初中三角函数常用公式大全1.正弦定理:a/sinA = b/sinB = c/sinC其中,a、b、c分别为三角形的边长,A、B、C分别为对应的角度。
2.余弦定理:c^2 = a^2 + b^2 - 2abcosC其中,a、b、c分别为三角形的边长,C为对应的角度。
3.正弦函数的定义:sinA = 对边/斜边4.余弦函数的定义:cosA = 临边/斜边5.正切函数的定义:tanA = 对边/临边6.余切函数的定义:cotA = 临边/对边7.三角函数的正负关系:在单位圆上,正弦函数 sinA 的值等于点 P(x, y) 的 y 坐标值,余弦函数 cosA 的值等于点 P(x, y) 的 x 坐标值。
8.三角函数的周期性:sin(A ± 2πn) = sinAcos(A ± 2πn) = cosAtan(A ± πn) = tanA其中,n为整数。
9.三角函数的倒数关系:cosecA = 1/sinAsecA = 1/cosAcotA = 1/tanA10.三角函数的互补关系:sin(90° - A) = cosAcos(90° - A) = sinAtan(90° - A) = cotAcot(90° - A) = tanA11.三角函数的和差化积公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB - sinAsinBtan(A ± B) = (tanA ± tanB)/(1 ∓ tanA tanB)其中,A、B为角度。
12.二倍角公式:sin2A = 2sinAcosAcos2A = cos^2A - sin^2Atan(2A) = 2tanA/(1 - tan^2A)13.半角公式:sin(A/2) = ±√[(1 - cosA)/2]cos(A/2) = ±√[(1 + cosA)/2]tan(A/2) = ±√[(1 - cosA)/(1 + cosA)]14.和差化积的反函数:sinA + sinB = 2sin[(A + B)/2]cos[(A - B)/2]sinA - sinB = 2cos[(A + B)/2]sin[(A - B)/2]cosA + cosB = 2cos[(A + B)/2]cos[(A - B)/2]cosA - cosB = -2sin[(A + B)/2]sin[(A - B)/2]15.和差化积的和差公式:sin(A + B) + sin(A - B) = 2sinAcosBsin(A + B) - sin(A - B) = 2cosAsinBcos(A + B) + cos(A - B) = 2cosAcosBcos(A + B) - cos(A - B) = -2sinAsinB。
初中数学正弦函数公式定理表总结
不管是什么样的数学公式要领,都有着其最初的定义和性质,
正弦函数也不例外。
正弦函数
锐角正弦函数的定义
在直角三角形ABC中,∠C=90°,AB是∠C的对边c,BC是∠A 的对边a,AC是∠B的对边b正弦函数就是sinA=a/c,即sinA=BC/AB.
定义与定理
定义:对于任意一个实数x都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正弦值sinx,这样,对于任意一个实数x都有唯一确定的值sinx与它对应,按照这个对应法则
所建立的函数,表示为y=sinx,叫做正弦函数。
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/sinA=b/sinB=c/sinC
在直角三角形ABC中,∠C=90°,y为一条直角边,r为斜边,x为另一条直角边(在坐标系中,以此为底),则sinA=y/r,r=√
(x^2+y^2)
正弦函数是三角函数的一种,它同余弦函数是一对同胞兄弟。
初中数学正方形定理公式
关于正方形定理公式的内容精讲知识,希望同学们很好的掌握
下面的内容。
正方形定理公式
正方形的特征:
①正方形的四边相等;
②正方形的四个角都是直角;
③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;
正方形的判定:
①有一个角是直角的菱形是正方形;
②有一组邻边相等的矩形是正方形。
希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。
初中数学平行四边形定理公式
同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。
平行四边形
平行四边形的性质:
①平行四边形的对边相等;
②平行四边形的对角相等;
③平行四边形的对角线互相平分;
平行四边形的判定:
①两组对角分别相等的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③对角线互相平分的四边形是平行四边形;
④一组对边平行且相等的四边形是平行四边形。
上面对数学中平行四边形定理公式知识的讲解学习,同学们都
能很好的掌握了吧,相信同学们会从中学习的更好的哦。
初中数学直角三角形定理公式
下面是对直角三角形定理公式的内容讲解,希望给同学们的学
习很好的帮助。
直角三角形的性质:
①直角三角形的两个锐角互为余角;
②直角三角形斜边上的中线等于斜边的一半;
③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);
④直角三角形中30度
角所对的直角边等于斜边的一半;
直角三角形的判定:
①有两个角互余的三角形是直角三角形;
②如果三角形的三边长a、b、c有下面关系a^2+b^2=c^2
,那么这个三角形是直角三角形(勾股定理的逆定理)。
以上对数学直角三角形定理公式的内容讲解学习,同学们都能
很好的掌握了吧,希望同学们都能考试成功。
初中数学等腰三角形的性质定理公式
下面是对等腰三角形的性质定理公式的内容学习,希望同学们
认真看看。
等腰三角形的性质:
①等腰三角形的两个底角相等;
②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)
上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。
初中数学三角形定理公式
对于三角形定理公式的学习,我们做下面的内容讲解学习哦。
三角形
三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;
三角形的内角和定理:三角形的三个内角的和等于180度;
三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;
三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;
三角形的三条角平分线交于一点(内心);
三角形的三边的垂直平分线交于一点(外心);
三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;
以上对三角形定理公式的内容讲解学习,希望同学们都能很好的掌握,并在考试中取得很好的成绩哦。