最新中考数学专题复习卷:概率专项练习题(含解析)
- 格式:doc
- 大小:263.50 KB
- 文档页数:15
中考数学真题《概率》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(50题)一、单选题1.(2023·湖南·统考中考真题)从6名男生和4名女生的注册学号中随机抽取一个学号,则抽到的学号为男生的概率是()A.25B.35C.23D.342.(2023·湖北十堰·统考中考真题)任意掷一枚均匀的小正方体色子朝上点数是偶数的概率为()A.16B.13C.12D.233.(2023·湖北武汉·统考中考真题)某校即将举行田径运动会“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.1124.(2023·河北·统考中考真题)1有7张扑克牌如图所示将其打乱顺序后背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A.B.C.D.5.(2023·江苏苏州·统考中考真题)如图,转盘中四个扇形的面积都相等任意转动这个转盘1次当转盘停止转动时指针落在灰色区域的概率是()A.14B.13C.12D.346.(2023·湖南永州·统考中考真题)今年2月某班准备从《在希望的田野上》《我和我的祖国》《十送红军》三首歌曲中选择两首进行排练参加永州市即将举办的“唱响新时代筑梦新征程”合唱选拔赛那么该班恰好选中前面两首歌曲的概率是()A.12B.13C.23D.17.(2023·山东临沂·统考中考真题)在项目化学习中“水是生命之源”项目组为了解本地区人均淡水消耗量需要从四名同学(两名男生两名女生)中随机抽取两人组成调查小组进行社会调查恰好抽到一名男生和一名女生的概率是()A.16B.13C.12D.238.(2023·浙江温州·统考中考真题)某校计划组织研学活动现有四个地点可供选择:南麂岛百丈漈楠溪江雁荡山.若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为()A.14B.13C.12D.239.(2023·浙江绍兴·统考中考真题)在一个不透明的袋子里装有2个红球和5个白球它们除颜色外都相同从中任意摸出1个球,则摸出的球为红球的概率是()A.25B.35C.27D.5710.(2023·四川遂宁·统考中考真题)为增强班级凝聚力吴老师组织开展了一次主题班会.班会上他设计了一个如图的飞镖靶盘靶盘由两个同心圆构成小圆半径为10cm大圆半径为20cm每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次)投中“免一次作业”的概率是()A.16B.18C.110D.11211.(2023·安徽·统考中考真题)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用123这三个数字随机组成一个无重复数字的三位数恰好是“平稳数”的概率为()A.59B.12C.13D.2912.(2023·浙江·统考中考真题)某校准备组织红色研学活动需要从梅岐王村口住龙小顺四个红色教育基地中任选一个前往研学选中梅岐红色教育基地的概率是()A.12B.14C.13D.3413.(2023·四川成都·统考中考真题)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目老师提供6张背面完全相同的卡片其中蔬菜类有4张正面分别印有白菜辣椒豇豆茄子图案水果类有2张正面分别印有草莓西瓜图案每个图案对应该种植项目.把这6张卡片背面朝上洗匀小明随机抽取一张他恰好抽中水果类卡片的概率是()A.12B.13C.14D.1614.(2023·四川泸州·统考中考真题)从1 2 3 4 5 5六个数中随机选取一个数这个数恰为该组数据的众数的概率为()A.16B.13C.12D.2315.(2023·广东·统考中考真题)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习每门课程被选中的可能性相等小明恰好选中“烹饪”的概率为()A.18B.16C.14D.12二 填空题16.(2023·山西·统考中考真题)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》 它是儒家思想的核心著作 是中国传统文化的重要组成部分 若从这四部著作中随机抽取两本(先随机抽取一本 不放回 再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是__________.17.(2023·湖南郴州·统考中考真题)在一个不透明的袋子中装有3个白球和7个红球 它们除颜色外 大小 质地都相同.从袋子中随机取出一个球 是红球的概率是___________.18.(2023·浙江杭州·统考中考真题)一个仅装有球的不透明布袋里只有6个红球和n 个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为25,则n =_________.19.(2023·天津·统考中考真题)不透明袋子中装有10个球 其中有7个绿球 3个红球 这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为________.20.(2023·山东滨州·统考中考真题)同时掷两枚质地均匀的骰子,则两枚骰子点数之和等于7的概率是___________.21.(2023·新疆·统考中考真题)在平面直角坐标系中有五个点 分别是()1,2A ()3,4B - ()2,3C --()4,3D ()2,3E - 从中任选一个点恰好在第一象限的概率是______.22.(2023·浙江台州·统考中考真题)一个不透明的口袋中有5个除颜色外完全相同的小球 其中2个红球 3个白球.随机摸出一个小球 摸出红球的概率是________.23.(2023·上海·统考中考真题)在不透明的盒子中装有一个黑球 两个白球 三个红球 四个绿球 这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为________.24.(2023·浙江金华·统考中考真题)下表为某中学统计的七年级500名学生体重达标情况(单位:人) 在该年级随机抽取一名学生 该生体重“标准”的概率是__________. “偏瘦” “标准” “超重” “肥胖”80350462425.(2023·浙江嘉兴·统考中考真题)现有三张正面印有2023年杭州亚运会吉祥物琮琮宸宸和莲莲的不透明卡片卡片除正面图案不同外其余均相同将三张卡片正面向下洗匀从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是___________.26.(2023·四川南充·统考中考真题)不透明袋中有红白两种颜色的小球这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6若袋中有4个白球,则袋中红球有________个.27.(2023·重庆·统考中考真题)一个口袋中有1个红色球有1个白色球有1个蓝色球这些球除颜色外都相同.从中随机摸出一个球记下颜色后放回摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________ .28.(2023·四川自贡·统考中考真题)端午节早上小颖为全家人蒸了2个蛋黄粽3个鲜肉粽她从中随机挑选了两个孝敬爷爷奶奶请问爷爷奶奶吃到同类粽子的概率是________.29.(2023·辽宁大连·统考中考真题)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为_______________.30.(2023·山东·统考中考真题)用数字0 1 2 3组成个位数字与十位数字不同的两位数其中是偶数的概率为__________.三解答题31.(2023·四川内江·统考中考真题)某校为落实国家“双减”政策丰富课后服务内容为学生开设五类社团活动(要求每人必须参加且只参加一类活动):A.音乐社团B.体育社团C.美术社团D.文学社团E.电脑编程社团该校为了解学生对这五类社团活动的喜爱情况随机抽取部分学生进行了调查统计并根据调查结果绘制了如图所示的两幅不完整的统计图.根据图中信息解答下列问题:(1)此次调查一共随机抽取了___________名学生补全条形统计图(要求在条形图上方注明人数)(2)扇形统计图中圆心角α=___________度(3)现从“文学社团”里表现优秀的甲乙丙丁四名同学中随机选取两名参加演讲比赛请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率.32.(2023·湖北宜昌·统考中考真题)“阅读新时代书香满宜昌”.在“全民阅读月”活动中某校提供了四类适合学生阅读的书籍:A文学类B科幻类C漫画类D数理类.为了解学生阅读兴趣学校随机抽取了部分学生进行调查(每位学生仅选一类).根据收集到的数据整理后得到下列不完整的图表:书籍类别学生人数A文学类24B科幻类mC漫画类16D数理类8(1)本次抽查的学生人数是_________ 统计表中的m=_________(2)在扇形统计图中“C漫画类”对应的圆心角的度数是_________(3)若该校共有1200名学生请你估计该校学生选择“D数理类”书籍的学生人数(4)学校决定成立“文学”“科幻”“漫画”“数理”四个阅读社团.若小文小明随机选取四个社团中的一个请利用列表或画树状图的方法求他们选择同一社团的概率.33.(2023·湖北黄冈·统考中考真题)打造书香文化培养阅读习惯崇德中学计划在各班建图书角开展“我最喜欢阅读的书篇”为主题的调查活动学生根据自己的爱好选择一类书籍(A:科技类B:文学类C:政史类D:艺术类E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查根据收集到的数据绘制了两幅不完整的统计图(如图所示).根据图中信息请回答下列问题(1)条形图中的m=________ n=________ 文学类书籍对应扇形圆心角等于________度(2)若该校有2000名学生请你估计最喜欢阅读政史类书籍的学生人数(3)甲同学从A B C三类书籍中随机选择一种乙同学从B C D三类书籍中随机选择一种请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.34.(2023·湖南岳阳·统考中考真题)为落实中共中央办公厅国务院办公厅印发的《关于实施中华优秀传统文化传承发展工程意见》深入开展“我们的节日”主题活动某校七年级在端午节来临之际成立了四个社团:A包粽子B腌咸蛋C酿甜酒D摘艾叶.每人只参加一个社团的情况下随机调查了部分学生根据调查结果绘制了两幅不完整的统计图:(1)本次共调查了_________名学生(2)请补全条形统计图(3)学校计划从四个社团中任选两个社团进行成果展示请用列表或画树状图的方法求同时选中A和C两个社团的概率.35.(2023·山东烟台·统考中考真题)“基础学科拔尖学生培养试验计划”简称“珠峰计划” 是国家为回应“钱学森之问”而推出的一项人才培养计划旨在培养中国自己的杰出人才.已知A B C D E五所大学设有数学学科拔尖学生培养基地并开设了暑期夏令营活动参加活动的每名中学生只能选择其中一所大学.某市为了解中学生的参与情况随机抽取部分学生进行调查并将统计数据整理后绘制了如下不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整(2)在扇形统计图中D所在的扇形的圆心角的度数为_________ 若该市有1000名中学生参加本次活动,则选择A大学的大约有_________人(3)甲乙两位同学计划从A B C三所大学中任选一所学校参加夏令营活动请利用树状图或表格求两人恰好选取同一所大学的概率.36.(2023·江苏苏州·统考中考真题)一只不透明的袋子中装有4个小球分别标有编号1,2,3,4这些小球除编号外都相同.(1)搅匀后从中任意摸出1个球这个球的编号是2的概率为________________.(2)搅匀后从中任意摸出1个球记录球的编号后放回搅匀再从中任意摸出1个球.求第2次摸到的小球编号比第1次摸到的小球编号大1的概率是多少?(用画树状图或列表的方法说明)37.(2023·山东枣庄·统考中考真题)《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布劳动课正式成为中小学的一门独立课程日常生活劳动设定四个任务群:A清洁与卫生B整理与收纳C家用器具使用与维护D烹饪与营养.学校为了较好地开设课程对学生最喜欢的任务群进行了调查并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中一共调查了___________名学生其中选择“C家用器具使用与维护”的女生有___________名“D烹饪与营养”的男生有___________名.(2)补全上面的条形统计图和扇形统计图(3)学校想从选择“C家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率.38.(2023·湖北随州·统考中考真题)中学生心理健康受到社会的广泛关注某校开展心理健康教育专题讲座就学生对心理健康知识的了解程度采用随机抽样调查的方式根据收集到的信息进行统计绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有___________人条形统计图中m的值为___________ 扇形统计图中“非常了解”部分所对应扇形的圆心角的度数为___________(2)若该校共有学生800人根据上述调查结果可以估计出该校学生中对心理健康知识“不了解”的总人数为___________人(3)若某班要从对心理健康知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加心理健康知识竞赛请用列表或画树状图的方法求恰好抽到2名女生的概率.39.(2023·江西·统考中考真题)为了弘扬雷锋精神某校组织“学雷锋争做新时代好少年”的宣传活动根据活动要求每班需要2名宣传员某班班主任决定从甲乙丙丁4名同学中随机选取2名同学作为宣传员.(1)“甲乙同学都被选为宣传员”是_______事件:(填“必然” “不可能”或“随机”)(2)请用画树状图法或列表法求甲丁同学都被选为宣传员的概率.40.(2023·甘肃武威·统考中考真题)为传承红色文化激发革命精神增强爱国主义情感某校组织七年级学生开展“讲好红色故事传承红色基因”为主题的研学之旅策划了三条红色线路让学生选择:A.南梁精神红色记忆之旅(华池县)B.长征会师胜利之旅(会宁县)C.西路军红色征程之旅(高台县)且每人只能选择一条线路.小亮和小刚两人用抽卡片的方式确定一条自己要去的线路.他们准备了3张不透明的卡片正面分别写上字母A B C卡片除正面字母不同外其余均相同将3张卡片正面向下洗匀小亮先从中随机抽取一张卡片记下字母后正面向下放回洗匀后小刚再从中随机抽取一张卡片.(1)求小亮从中随机抽到卡片A的概率(2)请用画树状图或列表的方法求两人都抽到卡片C的概率.41.(2023·四川乐山·统考中考真题)为培养同学们爱劳动的习惯某班开展了“做好一件家务”主题活动要求全班同学人人参与经统计同学们做的家务类型为“洗衣”“拖地”“煮饭”“刷碗”.班主任将以上信息绘制成了统计图表如图所示.家务类型洗衣拖地煮饭刷碗人数(人)101210m根据上面图表信息 回答下列问题:(1)m =__________(2)在扇形统计图中 “拖地”所占的圆心角度数为__________(3)班会课上 班主任评选出了近期做家务表现优异的4名同学 其中有2名男生.现准备从表现优异的同学中随机选取两名同学分享体会 请用画树状图或列表的方法求所选同学中有男生的概率.42.(2023·四川遂宁·统考中考真题)为贯彻落实党的二十大关于深化全民阅读活动的重要部署 教育部印发了《全国青少年学生读书行动实施方案》于是某中学开展了以“书香润校园 好书伴成长”为主题的系列读书活动.学校为了解学生周末的阅读情况 采用随机抽样的方式获取了若干名学生的周末阅读时间数据 整理后得到下列不完整的图表: 类别A 类B 类C 类D 类 阅读时长t (小时)01t ≤< 12t ≤< 23t ≤< 3t ≥ 频数 8 m n 4请根据图表中提供的信息 解答下面的问题:(1)此次调查共抽取了_________名学生 m = _________ n = _________(2)扇形统计图中 B 类所对应的扇形的圆心角是_________度(3)已知在D 类的4名学生中有两名男生和两名女生 若从中随机抽取两人参加阅读分享活动 请用列表或画树状图的方法求出恰好抽到一名男生和一名女生的概率.43.(2023·四川广安·统考中考真题)“双减”政策实施后某校为丰富学生的课余生活开设了A书法B 绘画C舞蹈D跆拳道四类兴趣班.为了解学生对这四类兴趣班的喜爱情况随机抽取该校部分学生进行了问卷调查并将调查结果整理后绘制成两幅不完整的统计图.请根据统计图信息回答下列问题.(1)本次抽取调查学生共有___________人估计该校3000名学生喜爱“跆拳道”兴趣班的人数约为___________人.(2)请将以上两个..统计图补充完整.(3)甲乙两名学生要选择参加兴趣班若他们每人从A B C D四类兴趣班中随机选取一类请用画树状图或列表法求两人恰好选择同一类的概率.44.(2023·四川宜宾·统考中考真题)某校举办“我劳动 我快乐 我光荣”活动.为了解该校九年级学生周末在家的劳动情况 随机调查了九年级1班的所有学生在家劳动时间(单位:小时) 并进行了统计和整理绘制如图所示的不完整统计图.根据图表信息回答以下问题: 类别 劳动时间xA01x ≤< B12x ≤< C23x ≤< D34x ≤< E 4x ≤(1)九年级1班的学生共有___________人 补全条形统计图(2)若九年级学生共有800人 请估计周末在家劳动时间在3小时及以上的学生人数(3)已知E 类学生中恰好有2名女生3名男生 现从中抽取两名学生做劳动交流 请用列表或画树状图的方法 求所抽的两名学生恰好是一男一女的概率.45.(2023·四川南充·统考中考真题)为培养学生劳动习惯 提升学生劳动技能 某校在五月第二周开展了劳动教育实践周活动.七(1)班提供了四类活动:A .物品整理 B .环境美化 C .植物栽培 D .工具制作.要求每个学生选择其中一项活动参加该班数学科代表对全班学生参与四类活动情况进行了统计并绘制成统计图(如图).(1)已知该班有15人参加A类活动,则参加C类活动有多少人?(2)该班参加D类活动的学生中有2名女生和2名男生获得一等奖其中一名女生叫王丽若从获得一等奖的学生中随机抽取两人参加学校“工具制作”比赛求刚好抽中王丽和1名男生的概率.46.(2023·四川凉山·统考中考真题)2023年“五一”期间凉山旅游景点人头攒动热闹非凡州文广旅、、、表局对本次“五一”假期选择泸沽湖会理古城螺髻九十九里邛海沪山风景区(以下分别用A B C D 示)的游客人数进行了抽样调查并将调查情况绘制成如下不完整的两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的游客有多少人?(2)将两幅不完整的统计图补充完整、、、四个景区中的两个用列表或画树状图的方法求他第一个景区恰好选(3)若某游客随机选择A B C D择A的概率.47.(2023·四川达州·统考中考真题)在深化教育综合改革提升区域教育整体水平的进程中某中学以兴趣小组为载体加强社团建设艺术活动学生参与面达100%通过调查统计八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团B.泥塑社团C.陶笛社团D.书法社团E.合唱社团并绘制了如下两幅不完整的统计图.(1)该班共有学生_________人并把条形统计图补充完整(2)扇形统计图中m=___________ n=___________ 参加剪纸社团对应的扇形圆心角为_______度(3)小鹏和小兵参加了书法社团由于参加书法社团几位同学都非常优秀老师将从书法社团的学生中选取2人参加学校组织的书法大赛请用“列表法”或“画树状图法” 求出恰好是小鹏和小兵参加比赛的概率.48.(2023·山东·统考中考真题)某学校为扎实推进劳动教育把学生参与劳动教育情况纳入积分考核.学校随机抽取了部分学生的劳动积分(积分用x表示)进行调查整理得到如下不完整的统计表和扇形统计图.等级劳动积分人数x≥4A90B8090≤<mxC7080≤<20xD6070x≤<8x<3E60请根据以上图表信息解答下列问题:(1)统计表中m _________ C等级对应扇形的圆心角的度数为_________(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生2000人请估计该学校“劳动之星”大约有多少人(3)A等级中有两名男同学和两名女同学学校从A等级中随机选取2人进行经验分享请用列表法或画树状图法求恰好抽取一名男同学和一名女同学的概率.49.(2023·福建·统考中考真题)为促进消费助力经济发展某商场决定“让利酬宾” 于“五一”期间举办了抽奖促销活动.活动规定:凡在商场消费一定金额的顾客均可获得一次抽奖机会.抽奖方案如下:从装有大小质地完全相同的1个红球及编号为①①①的3个黄球的袋中随机摸出1个球若摸得红球,则中奖可获得奖品:若摸得黄球,则不中奖.同时还允许未中奖的顾客将其摸得的球放回袋中并再往袋中加入1个红球或黄球(它们的大小质地与袋中的4个球完全相同)然后从中随机摸出1个球记下颜色后不放回再从中随机摸出1个球若摸得的两球的颜色相同,则该顾客可获得精美礼品一份.现已知某顾客获得抽奖机会.(1)求该顾客首次摸球中奖的概率(2)假如该顾客首次摸球未中奖为了有更大机会获得精美礼品他应往袋中加入哪种颜色的球?说明你的理由50.(2023·湖北荆州·统考中考真题)首届楚文化节在荆州举办前 主办方为使参与服务的志愿者队伍整齐 随机抽取了部分志愿者 对其身高进行调查 将身高(单位:cm )数据分A B C D E 五组制成了如下的统计图表(不完整).组别身高分组 人数 A155160x ≤< 3 B160165x ≤< 2 C165170x ≤< m D170175x ≤< 5 E 175180x ≤< 4根据以上信息回答:(1)这次被调查身高的志愿者有___________人 表中的m =___________ 扇形统计图中α的度数是___________(2)若E 组的4人中 男女各有2人 以抽签方式从中随机抽取两人担任组长.请列表或画树状图 求刚好抽中两名女志愿者的概率.参考答案一 单选题1.(2023·湖南·统考中考真题)从6名男生和4名女生的注册学号中随机抽取一个学号,则抽到的学号为男生的概率是()A.25B.35C.23D.34【答案】B【分析】根据概率公式求解即可.【详解】解:总人数为10人随机抽取一个学号共有10种等可能结果抽到的学号为男生的可能有6种则抽到的学号为男生的概率为:63 105=故选:B.【点睛】本题考查了概率公式求概率解题的关键是熟练掌握概率公式.2.(2023·湖北十堰·统考中考真题)任意掷一枚均匀的小正方体色子朝上点数是偶数的概率为()A.16B.13C.12D.23【答案】C【分析】由题意可知掷一枚均匀的小正方体色子有6种等可能的结果再找出符合题意的结果数最后利用概率公式计算即可.【详解】①任意掷一枚均匀的小正方体色子共有6种等可能的结果其中朝上点数是偶数的结果有3种①朝上点数是偶数的概率为31 62 =.故选:C.【点睛】本题考查简单的概率计算.掌握概率公式是解题关键.3.(2023·湖北武汉·统考中考真题)某校即将举行田径运动会“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.112【答案】C【分析】设“跳高”“跳远”“100米”“400米”四个项目分别为A B C D、、、画出树状图找到所有情况数和满足要求的情况数利用概率公式求解即可.【详解】解:设“跳高”“跳远”“100米”“400米”四个项目分别为A B C D、、、画树状图如下:。
概率中考试题答案及解析一、选择题1. 某次考试中,学生A和学生B的及格概率分别为0.7和0.6,那么他们至少有一人及格的概率是多少?A. 0.1B. 0.3C. 0.8D. 0.9答案:C解析:至少有一人及格的事件是A和B都不及格的对立事件。
A和B都不及格的概率为(1-0.7)×(1-0.6)=0.12,所以至少有一人及格的概率为1-0.12=0.88,最接近的选项是C。
2. 抛一枚硬币3次,出现至少2次正面的概率是多少?A. 0.375B. 0.5C. 0.625D. 0.75答案:C解析:抛硬币3次,每次出现正面的概率为0.5,反面的概率也为0.5。
至少2次正面包括2次正面和3次正面两种情况。
2次正面的概率为C(3,2)×0.5^2×0.5=0.375,3次正面的概率为0.5^3=0.125。
所以至少2次正面的概率为0.375+0.125=0.5,最接近的选项是C。
二、填空题1. 已知随机变量X服从二项分布B(n,p),其中n=10,p=0.3,求X的期望值E(X)。
答案:3解析:二项分布的期望值公式为E(X)=np,代入n=10,p=0.3,得到E(X)=10×0.3=3。
2. 一个袋子里有5个白球和3个黑球,随机抽取3个球,求至少抽到1个黑球的概率。
答案:0.8解析:首先计算没有抽到黑球的概率,即全部抽到白球的概率为C(5,3)/C(8,3)=5/56。
那么至少抽到1个黑球的概率为1-5/56=51/56≈0.8。
三、解答题1. 甲、乙两人进行射击比赛,甲击中目标的概率为0.4,乙击中目标的概率为0.5。
现在他们各射击一次,求甲击中而乙未击中的概率。
答案:0.2解析:甲击中而乙未击中的概率为甲击中的概率乘以乙未击中的概率,即0.4×(1-0.5)=0.2。
2. 一个工厂生产的产品中,次品率为0.05。
现从一批产品中随机抽取10件,求至少有1件次品的概率。
中考数学复习专题《概率》专项训练-附带答案一、选择题1.下列事件为必然事件的是()A.三角形内角和是180°B.打开电视机,正在播放新闻C.明天下雨D.掷一枚质地均匀的硬币,正面朝上2.九年级一班有25名男生和20名女生,从中随机抽取一名作为代表参加校演讲比赛.下列说法正确的是()A.抽到男生和女生的可能性一样大B.抽到男生的可能性大C.抽到女生的可能性大D.抽到男生或女生的可能性大小不能确定3.将分别标有“大”、“美”、“明”、“德”四个汉字的小球装在一个不透明的口袋中,这些小球除汉字以外其它完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字可以组成“明德”的概率是()A.16B.18C.14D.5164.已知抛一枚均匀硬币正面朝上的概率为12,下列说法正确的是().A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次,不可能正面都朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的5.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开,则一位参观者从入口1进入并从出口A离开的概率是()A.12B.13C.14D.166.口袋中有白球和红球共10个,这些球除颜色外其它都相同.小明将口袋中的球搅匀后随机从中摸出一个球,记下颜色后放回口袋中,小明继续重复这一过程,共摸了100次,结果有40次是红球,请你估计下一次操作获到红球的概率是()A.0.3 B.0.4 C.0.5 D.0.67.有三张正面分别写有数字-2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,洗匀后,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.498.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚质地均匀的正六面体的骰子,向上的一面点数是1点的概率B.抛一枚质地均匀的硬币,出现正面朝上的概率C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率D.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率二、填空题9.从√2,0,π,3.14,17中随机抽取一个数,抽到有理数的概率是.10.甲、乙、丙三个人相互传一个球,由甲开始发球,并作为第一次传球,则经过两次传球后,球回到甲手中的概率是。
中考数学总复习《概率初步》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列事件中,是必然事件的是( )A.明天太阳从东方升起B.打开电视机,正在播放体育新闻C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路灯,遇到红灯2.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件3.在不透明的袋子装有9个白球和一个红球,它们除颜色外其余都相同,从袋中随意摸出一个球,则下列说法中正确的是( )A.“摸出的球是白球”是必然事件B.“摸出的球是红球”是不可能事件C.摸出的球是白球的可能性不大D.摸出的球有可能是红球4.某同学午觉醒来发现钟表停了,他打开收音机想听电台整点报时,则他等待的时间不超过15分钟的概率是( )A.12B.13C.14D.155.如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是( )A. B. C. D.6.从-2,-1,2这三个数中任取两个不同的数相乘,积为正数的概率是( ) A.23 B.12 C.13 D.147.小杰想用6个除颜色外均相同的球设计一个游戏,下面是他设计的4个游戏方案.不成功的是( )A.摸到黄球的概率为12,红球的概率为12B.摸到黄、红、白球的概率都为13C.摸到黄球的概率为12,红球的概率为13,白球的概率为16D.摸到黄球的概率为23,摸到红球、白球的概率都是138.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )实验次数100200 300 500 800 1000 2000频率 0.365 0.328 0.330 0.334 0.336 0.332 0.333 A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率9.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一枚质地均匀的正六面体骰子,向上一面的点数是4C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上10.同时抛掷A、B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x、y,并以此确定点P(x,y),那么点P落在抛物线y=-x2+3x上的概率为( )A.118B.112C.19D.16二、填空题11.抛掷一枚质地均匀的硬币,落地后正面朝上的概率是 .12.在分别写有-1,0,1,2的四张卡片中随机抽取一张,所抽取的数字平方后等于1的概率为________.13.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是________.14.游戏是否公平是指双方获胜的可能性是否相同,只有当双方获胜的可能性 (等可能事件发生的概率相同)时,游戏才公平,否则游戏不公平.15.一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球个.16.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).投篮次数(n) 50 100 150 200 250 300 500投中次数(m) 28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.50三、解答题17.一个袋中装有2个红球,3个白球,和5个黄球,每个球除了顔色外都相同,从中任意摸出一个球,分别求出摸到红球,白球,黄球的概率。
中考数学总复习《概率》专项练习题-附带参考答案一、选择题:(本题共8小题,共40分.)1.下列说法不正确的是()A.“抛掷一枚硬币,硬币落地时正面朝上”是随机事件B.“任意打开数学教科书八年级下册,正好是第50页”是不可能事件C.“把4个球放入三个抽屉中,其中必有一个抽屉中至少有2个球”是必然事件D.“在一个不透明的袋子中,有5个除颜色外完全一样的小球,其中2个红球,3个白球,从中任意摸出1个小球,正好是红球”是随机事件2.一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是()A.13B.12C.34D.233.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏()A.对小明有利B.对小亮有利C.游戏公平D.无法确定对谁有利4.某校幵展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是()A.13B.49C.23D.295.有一个可以自由转动且质地均匀的转盘,被分成6 个大小相同的扇形.在转盘的适当地方涂上灰色,未涂色部分为白色.为了使转动的转盘停止时,指针指向灰色的概率为23,则下列各图中涂色方案正确的是()A. B. C.D.6.北京冬奥会志愿者参加花样滑冰、短道速滑、冰球、冰壶4个项目的培训.如果小周和小丽每人随机选择参加其中一个项目培训,则他们恰好选到同一个项目进行培训的概率是()A.116B.14C.18D.167.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是().A.B.C.D.8.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是()A.12B.25C.35D.718二、填空题:(本题共5小题,共15分.)9.有数据1,2,3,5,8,13,21,34,从这些数据中取一个数据,得到偶数的概率为______.10.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为.(结果要求保留两位小数)11.有四张看上去无差别的卡片,正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称,将它们背面朝上,从中随机一张卡片正面写有“葫芦山庄”的概率是.12.某同学家长应邀安参加孩子就读中学的开放日活动,他打算上午随机听一节孩子所在1班的课,下表是他拿到的当天上午1班的课表,如果每一节课被听的机会均等,那么他听数学课的概率是.13.若关于x的方程230x x m-+=有两个不相等的实数根,且3m≥-,则从满足条件的所有整数m中随机选取一个,恰好是负数的概率是____________.三、解答题:(本题共4题,共45分.)14.某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=12.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.先拿又拿15.从2021年起,江苏省高考采用“3+1+2”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在化学、生物、思想政治、地理4科中任选2科.(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是;(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2”中选化学、生物的概率.16.从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为;(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的面数字恰好相同的概率.17.在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果;(2)若m,n都是方程x2-5x+6=0的解时,则小明获胜;若m,n都不是方程x2-5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大?参考答案:1.B2.A3.C4.A5.C6.B7.B8.B9.3810.0.9911.12. 13.1214.(1)∵P (一次拿到8元球)=12∴8元球的个数为4×12=2(个),按照从小到大的顺序排列为7,8,8,9 ∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下: 原来4个球的价格按照从小到大的顺序排列为7,8,8,9∴原来4个球价格的中位数为882=8(元),所剩的3个球价格为8,8,9 ∴所剩的3个球价格的中位数为8元∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个∴乙组两次都拿到8元球的概率为12. 15.(1)在“2”中已选择了地理,从剩下的化学、生物,思想品德三科中选一科,因此选择生物的概率为13; 41故答案为:13; (2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中选中“化学”“生物”的有2种∴P (化学生物)=212=16. 16.(1)四张牌为:2,3,3,6,从中抽取一张,共有四种等可能结果,抽到牌面数字是3的有两种 ∴21342P ==(抽到); (2)解:列表如下: 第二次第一次2 3 3 6 2 ()2,3 ()2,3 ()2,63 ()3,2 ()3,3 ()3,63 ()3,2 ()3,3 ()3,66 ()6,2 ()6,3 ()6,3由上表可知,共有12种等可能的结果,其中牌面数字恰好相同的结果有2种 ∴21126P ==牌面相同. 17.解:(1)树状图如图所示:(2)∵m ,n 都是方程x 2﹣5x+6=0的解∴m =2,n =3,或m =3,n =2由树状图得:共有12个等可能的结果,m,n都是方程x2﹣5x+6=0的解的结果有(2,3)(3,2)(2,2)(3,3)共四种m,n都不是方程x2﹣5x+6=0的解的结果有2个小明获胜的概率为41123=,小利获胜的概率为21126=∴小明获胜的概率大.。
中考数学总复习《概率》专项检测卷及答案学校:___________班级:___________姓名:___________考号:___________【A层·基础过关】1.不透明袋子中装有除颜色外完全相同的2个红球和1个白球,从袋子中随机摸出2个球,下列事件是必然事件的是( )A.摸出的2个球中至少有1个红球B.摸出的2个球都是白球C.摸出的2个球中1个红球、1个白球D.摸出的2个球都是红球2.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( )A.13B.14C.16D.183.从下列一组数-2,π,-12,-0.12,0,-√5中随机抽取一个数,这个数是无理数的概率为( )A.56B.23C.12D.134.如图,在由大小相同的小正方形组成的网格中有一条“心形线”.数学小组为了探究随机投放一个点恰好落在“心形线”内部的概率,进行了计算机模拟试验,得到如下数据:试验总次数100200300500 1 500 2 000 3 000落在“心形线”内部的次数6193165246759996 1 503落在“心形线”内部的频率0.6100.4650.5500.4920.5060.4980.501根据表中的数据,估计随机投放一点落在“心形线”内部的概率为( )A.0.46B.0.50C.0.55D.0.615.如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A.920B.109C.13D.126.(2024·深圳模拟)桌面上有A,B,C三个小球按如图所示堆放,每次只可以取走一个小球,且取走A或B之前需先取走C,直到3个小球都被取走,则第二个取走的小球是A 的概率是( )A .12B .13C .14D .23【B 层·能力提升】7.(2024·青海)如图,一只蚂蚁在树枝上寻觅食物,假定蚂蚁在每个叉路口都随机选择一条路径,它获得食物的概率是 .8.(2024·成都)盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则xy 的值为 .9.(2024·深圳模拟)如图是某路口的部分通行路线示意图,一辆车从入口A 驶入,行至每个岔路口选择前方两条线路的可能性相同,则该车从F 口驶出的概率是 .10.某校七年级开展数学文化节活动,推荐给同学们三本数学课外读物,分别是《生活中的数学》《数学家的故事》《奇妙数世界》.小聪和小华将这三本书的书名写在形状、大小、颜色完全相同的三张卡纸上,并把卡纸反放在桌面,先由小聪随机抽一张卡纸,记录书名后放回,再由小华抽一张卡纸,记录书名.(1)填空:小聪抽到《数学大爆炸》是 事件;(填“必然”“不可能”“随机”)(2)请用树状图或者列表法,求小聪和小华两个人中至少一个人抽中《奇妙数世界》的概率.【C层·素养挑战】11.如图,放在平面直角坐标系中的正方形ABCD的边长为4.现做如下实验:转盘被划分成4个相同的小扇形,并分别标上数字1,2,3,4,分别转动两次转盘,转盘停止后,指针所指向的数字作为平面直角坐标系中M点的坐标(第一次作横坐标,第二次作纵坐标),指针如果指向分界线上,则重新转动转盘.(1)请你用画树状图或列表的方法,求M点落在正方形ABCD面上(含内部与边界)的概率;(2)将正方形ABCD平移整数个单位长度,则是否存在某种平移,使点M落在正方形ABCD面上的概率为3若存在,指出一种具体的平移过程;若不存在,请说明理4由.参考答案【A层·基础过关】1.不透明袋子中装有除颜色外完全相同的2个红球和1个白球,从袋子中随机摸出2个球,下列事件是必然事件的是(A)A.摸出的2个球中至少有1个红球B.摸出的2个球都是白球C.摸出的2个球中1个红球、1个白球D.摸出的2个球都是红球2.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是(A)A.13B.14C.16D.183.从下列一组数-2,π,-12,-0.12,0,-√5中随机抽取一个数,这个数是无理数的概率为(D)A.56B.23C.12D.134.如图,在由大小相同的小正方形组成的网格中有一条“心形线”.数学小组为了探究随机投放一个点恰好落在“心形线”内部的概率,进行了计算机模拟试验,得到如下数据:试验总次数100200300500 1 500 2 000 3 000落在“心形线”内部的次数6193165246759996 1 503落在“心形线”内部的频率0.6100.4650.5500.4920.5060.4980.501根据表中的数据,估计随机投放一点落在“心形线”内部的概率为(B)A.0.46B.0.50C.0.55D.0.615.如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是(D)A.920B.109C.13D.126.(2024·深圳模拟)桌面上有A,B,C三个小球按如图所示堆放,每次只可以取走一个小球,且取走A或B之前需先取走C,直到3个小球都被取走,则第二个取走的小球是A的概率是(A)A.12B.13C.14D.23【B层·能力提升】7.(2024·青海)如图,一只蚂蚁在树枝上寻觅食物,假定蚂蚁在每个叉路口都随机选择一条路径,它获得食物的概率是 13 .8.(2024·成都)盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则xy的值为 35.9.(2024·深圳模拟)如图是某路口的部分通行路线示意图,一辆车从入口A 驶入,行至每个岔路口选择前方两条线路的可能性相同,则该车从F 口驶出的概率是 14 .10.某校七年级开展数学文化节活动,推荐给同学们三本数学课外读物,分别是《生活中的数学》《数学家的故事》《奇妙数世界》.小聪和小华将这三本书的书名写在形状、大小、颜色完全相同的三张卡纸上,并把卡纸反放在桌面,先由小聪随机抽一张卡纸,记录书名后放回,再由小华抽一张卡纸,记录书名.(1)填空:小聪抽到《数学大爆炸》是 事件;(填“必然”“不可能”“随机”) (2)请用树状图或者列表法,求小聪和小华两个人中至少一个人抽中《奇妙数世界》的概率.【解析】(1)由题意得,小聪抽到《数学大爆炸》是不可能事件. 答案:不可能(2)将《生活中的数学》《数学家的故事》《奇妙数世界》分别记为A ,B ,C 画树状图如图:共有9种等可能的结果,其中小聪和小华两个人中至少一个人抽中《奇妙数世界》的结果有:AC,BC,CA,CB,CC,共5种.∴小聪和小华两个人中至少一个人抽中《奇妙数世界》的概率为59【C层·素养挑战】11.如图,放在平面直角坐标系中的正方形ABCD的边长为4.现做如下实验:转盘被划分成4个相同的小扇形,并分别标上数字1,2,3,4,分别转动两次转盘,转盘停止后,指针所指向的数字作为平面直角坐标系中M点的坐标(第一次作横坐标,第二次作纵坐标),指针如果指向分界线上,则重新转动转盘.(1)请你用画树状图或列表的方法,求M点落在正方形ABCD面上(含内部与边界)的概率;(2)将正方形ABCD平移整数个单位长度,则是否存在某种平移,使点M落在正方形ABCD面上的概率为3?若存在,指出一种具体的平移过程;若不存在,请说明理4由.【解析】(1)正方形四个顶点的坐标分别是A(-2,2);B(-2,-2);C(2,-2);D(2,2);设M的坐标为(a,b)列表得:ab12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)M点的坐标所有的情况共有16种其中落在正方形ABCD面上(含内部与边界)的有(1,1),(1,2),(2,1),(2,2),共4种,所以M点落在正方形ABCD面上(含内部与边界)的概率是416=1 4 ;(2)存在.若使点M落在正方形ABCD面上的概率为34,则只有4个点不在正方形内部,所以可把正方形ABCD向右平移2个单位长度,再向上平移1个单位长度或者向右平移1个单位长度,向上平移2个单位长度即可.。
专题27概率(50题)一、单选题1.(2023·湖北武汉·统考中考真题)掷两枚质地均匀的骰子,下列事件是随机事件的是()A.点数的和为1B.点数的和为6C.点数的和大于12D.点数的和小于13【答案】B【分析】根据事件发生的可能性大小判断即可.【详解】解:A、点数和为1,是不可能事件,不符合题意;B、点数和为6,是随机事件,符合题意;C、点数和大于12,是不可能事件,不符合题意;D、点数的和小于13,是必然事件,不符合题意.故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.(2023·辽宁营口·统考中考真题)下列事件是必然事件的是()A.四边形内角和是360°B.校园排球比赛,九年一班获得冠军C.掷一枚硬币时,正面朝上D.打开电视,正在播放神舟十六号载人飞船发射实况【答案】A【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、四边形内角和是360°是必然事件,故此选项符合题意;B、校园排球比赛,九年一班获得冠军是随机事件,故此选项不符合题意;C、掷一枚硬币时,正面朝上是随机事件,故此选项不符合题意;D、打开电视,正在播放神舟十六号载人飞船发射实况是随机事件,故此选项不符合题意;故选:A.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(2023·内蒙古通辽·统考中考真题)在英语单词polynomial (多项式)中任意选出一个字母,选出的字母为“n ”的概率是()A .110B .19C .18D .15【答案】A【分析】直接由概率公式求解即可.【详解】解:单词polynomial 中共有10个字母,其中n 出现了1次,故任意选择一个字母恰好是字母“n ”的概率为:110.故选:A .【点睛】本题主要考查运用概率公式求概率,根据已知条件找出总的情况数和符合条件的情况数是解题关键.6.(2023·湖北恩施·统考中考真题)县林业部门考察银杏树苗在一定条件下移植的成活率,所统计的银杏树苗移植成活的相关数据如下表所示:移植的棵数a 1003006001000700015000成活的棵数b 84279505847633713581成活的频率ba0.840.930.8420.8470.9050.905根据表中的信息,估计银杏树苗在一定条件下移植成活的概率为(精确到0.1)()A .0.905B .0.90C .0.9D .0.8【答案】C【分析】利用表格中数据估算这种树苗移植成活率的概率即可得出答案.【详解】解:由表格数据可得,随着样本数量不断增加,这种树苗移植成活的频率稳定在0.905,∴银杏树苗在一定条件下移植成活的概率为0.9,故选:C .【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即为概率.7.(2023·宁夏·统考中考真题)劳动委员统计了某周全班同学的家庭劳动次数x (单位:次),按劳动次数分为4组:03x ,36x ≤,69x ,912x ,绘制成如图所示的频数分布直方图.从中任选一名同学,则该同学这周家庭劳动次数不足6次的概率是()A .0.6B .0.5【答案】A【分析】利用概率公式进行计算即可.【详解】解:由题意,得:10P 故选A .【点睛】本题考查直方图,求概率.解题的关键是从直方图中有效的获取信息.8.(2023·四川巴中·统考中考真题)下列说法正确的是(对称图形又是中心对称图形的概率是()A .45B .35C .25D .15【答案】C【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断,然后根据概率公式即可求解.【详解】解:共有5个书签图案,既是轴对称图形又是中心对称图形的是第2张与第4张书签图片,共2张,∴小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是25,故选:C .【点睛】本题考查了轴对称图形和中心对称图形的识别,概率公式求概率,熟练掌握以上知识是解题的关键.10.(2023·山东·统考中考真题)一个不透明的袋子中装有2个红球、3个黄球,每个球除颜色外都相同.晓君同学从袋中任意摸出1个球(不放回)后,晓静同学再从袋中任意摸出1个球.两人都摸到红球的概率是()A .110B .225C .425D .25【答案】A【分析】根据题意画出树状图得出所有等可能的情况数,找出两人都摸到红球的情况数,然后根据概率公式即可得出答案.【详解】解:根据题意画树状图如下:【分析】根据列表法求概率即可求解.【详解】解:设,,A B C分别表示植树、种花、除草三个劳动项目,列表如下,A B CA AA AB ACB BA BB BCC CA CB CC共有9种等可能结果,符合题意得出有1种,∴这两个班级恰好都抽到种花的概率是19,故选:D.【点睛】本题考查了列表法求概率,熟练掌握求概率的方法是解题的关键.13.(2023·湖南·统考中考真题)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是()A.16B.14C.13D.12【答案】C【分析】根据题意列出所有可能,根据概率公式即可求解.【详解】∵有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,∴摆出的三位数有456,465,546,564,654,645共6种可能,其中465,645是5的倍数,∴摆出的三位数是5的倍数的概率是2163,故选:C.【点睛】本题考查了列举法求概率,熟练掌握概率公式是解题的关键.14.(2023·内蒙古·统考中考真题)从1,2,3这三个数中随机抽取两个不同的数,分别记作m和n.若点A的坐标记作 ,m n,则点A在双曲线6yx上的概率是()A.13B.12C.23D.56【答案】A【分析】先求出点A的坐标的所有情况的个数,然后求出其中在双曲线6yx上的坐标的个数,根据随机事件概率的计算方法,即可得到答案.B .中考期间一定会下雨是必然事件C .一个样本中包含的个体数目称为样本容量D .已知“1,2,3,4,5”这一组数据的方差为2,将这一组数据分别乘以3,则所得到的一组新数据的方差也为2【答案】C【分析】根据全面调查和抽样调查的定义、必然事件和随机事件的定义、样本容量的定义、方差的定义逐项判断即可.【详解】A 、总体数量较大,应采用抽样调查,说法错误,该选项不符合题意;B 、中考期间一定会下雨,可能发生,也可能不发生,该事件为随机事件,说法错误,该选项不符合题意;C 、说法正确,该选项符合题意;D 、这一组数据分别乘以3,则所得到的一组新数据的方差为18,说法错误,该选项不符合题意.故选:C .【点睛】本题主要考查全面调查和抽样调查、必然事件和随机事件、样本容量、方差,牢记全面调查和抽样调查的定义、必然事件和随机事件的定义、样本容量的定义、方差的定义是解题的关键.17.(2023·湖南常德·统考中考真题)我市“神十五”航天员张陆和他的两位战友已于2023年6月4日回到地球家园,“神十六”的三位航天员已在中国空间站开始值守,空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱,假设“神十六”甲、乙、丙三名航天员从核心舱进入问天实验舱和梦天实验舱开展实验的机会均等,现在要从这三名航天员中选2人各进入一个实验舱开展科学实验,则甲、乙两人同时被选中的概率为()A .12B .13C .14D .15【答案】B【分析】用列表法表示出所有等可能得结果,然后利用概率公式求解即可.1 3C.16A.12B.故相同的概率为3193.故选B .【点睛】本题考查了画树状图法计算概率,熟练掌握画树状图法是解题的关键.19.(2023·湖南张家界·统考中考真题)下列说法正确的是()A .扇形统计图能够清楚地反映事物的变化趋势B .对某型号电子产品的使用寿命采用全面调查的方式C .有一种游戏的中奖概率是15,则做5次这样的游戏一定会有一次中奖D .甲、乙两组数据的平均数相等,它们的方差分别是20.2S 甲,20.03S 乙,则乙比甲稳定【答案】D【分析】根据扇形统计图的特点、全面调查及抽样调查的特点,概率的意义及方差的意义依次判断即可.【详解】解:A 、扇形统计图能够清楚地反映事物所占的比例,选项错误,不符合题意;B 、对某型号电子产品的使用寿命调查有破坏性,适合采用抽样调查,选项错误,不符合题意;C 、有一种游戏的中奖概率是15,则做5次这样的游戏不一定会中奖,选项错误,不符合题意;D 、平均数相等,方差越小,越稳定,选项正确,符合题意;故选:D .【点睛】题目主要考查扇形统计图的特点、全面调查及抽样调查的特点,概率的意义及方差的意义,熟练掌握运用这些知识点是解题关键.20.(2023·湖南怀化·统考中考真题)下列说法错误的是()A .成语“水中捞月”表示的事件是不可能事件B .一元二次方程230x x 有两个相等的实数根C .任意多边形的外角和等于360D .三角形三条中线的交点叫作三角形的重心【答案】B【分析】根据不可能事件、根的判别式、多边形的外角和以及三角形的重心的定义分别进行判断即可.【详解】解:A 、成语“水中捞月”表示的事件是不可能事件,故此选项不符合题意;B 、21413110 ,则一元二次方程230x x 没有实数根,故此选项符合题意;C 、任意多边形的外角和等于360 ,故此选项不符合题意;D 、三角形三条中线的交点叫作三角形的重心,故此选项不符合题意;故选:B.【点睛】本题考查不可能事件、根的判别式、多边形的外角和以及三角形的重心的定义,熟练掌握有关知识点是解题的关键.请根据相关信息解答下列问题:(1)本次竞赛共有______名选手获奖,扇形统计图中扇形(2)补全条形统计图;(3)若该党史馆有一个入口,三个出口.请用树状图或列表法,求参赛选手小丽和小颖由馆内恰好从同一出口走出的概率.【答案】(1)200,108(2)见解析(3)1 3∴C 级的人数为2008020025%1060 名,∴扇形统计图中扇形C 的圆心角度数是60360108200度,故答案为:200,108;(2)解:B 级的人数为20025%50 名,补全统计图如下:(3)解:设这三个出口分别用E 、F 、G 表示,列表如下:EF G E(E ,E )(F ,E )(G ,E )F(E ,F )(F ,F )(G ,F )G (E ,G )(F ,G )(G ,G )由表格可知一共有9种等可能性的结果数,其中参赛选手小丽和小颖由馆内恰好从同一出口走出的结果数有3种,∴参赛选手小丽和小颖由馆内恰好从同一出口走出的概率3193.【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,树状图法或列表法求解概率,正确读懂统计图,画出树状图或列出表格是解题的关键.22.(2023·吉林·统考中考真题)2023年6月4日,“神舟”十五号载人飞船返回舱成功着陆.某校为弘扬爱国主义精神,举办以航天员事迹为主题的演讲比赛,主题人物由抽卡片决定,现有三张不透明的卡片,卡片正面分别写着费俊龙、邓清明、张陆三位航天员的姓名,依次记作A ,B ,C ,卡片除正面姓名不同外,其余均相同.三张卡片正面向下洗匀后,甲选手从中随机抽取一张卡片,记录航天员姓名后正面向下放回,洗匀后乙选手再从中随机抽取一张卡片.请用画树状图或列表的方法,求甲、乙两位选手演讲的主题人物是同一位航天员的概率.【答案】13由树状图可以看出,所有等可能出现的结果一共有所以甲、乙两位选手演讲的主题人物是同一位航天员的概率解法二:用列表法,根据题意,列表结果如下:A B CA AA BA CA【答案】49【分析】依题意画出树状图,运用概率公式求解即可.【详解】解:画树状图如下:共有9种可能,获一等奖即两次颜色不相同的可能有4种,则某同学获一等奖的概率为:49,答:某同学获一等奖的概率为49.【点睛】本题考查了树状图求概率,正确画出树状图是解题的关键.24.(2023·云南·统考中考真题)甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种.记种植辣椒为A ,种植茄子为B ,种植西红柿为C ,假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种被选到的可能性相等.记甲同学的选择为x ,乙同学的选择为y .(1)请用列表法或画树状图法中的一种方法,求 ,x y 所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P .【答案】(1)9(2)13【分析】(1)根据题意列出树状图,即可得到答案;(2)根据(1)列出的情况,找到甲、乙两名同学选择种植同一种蔬菜的情况,得出概率.【详解】(1)解:由题意得:共有种情况,分别是: ,,,,A A A B A C B A 、、、∴甲、乙、丙三人分别从纪念塔、纪念馆这两个景点中选择一个参观,则共有同景点参观共有2种,所以三人选择相同景点的概率为2184P .【点睛】本题主要考查概率,熟练掌握利用树状图求解概率是解题的关键.26.(2023·湖南·统考中考真题)为落实“双减”政策要求,丰富学生课余生活,某校七年级根据学生需求,组建了四个社团供学生选择:A (合唱社团)、B (硬笔书法社团)(1)小明对这4个社团都很感兴趣,如果他随机选择两个社团,请列举出所有的可能结果;(2)小宇和小江在选择过程中,首先都选了社团C(街舞社团),第二个社团他俩决定随机选择,请用列表法或树状图求他俩选到相同社团的概率.【答案】(1),,,,,AB AC AD BC BD CD(2)1 3【分析】(1)根据题意列举出所有可能结果;(2)根据列表法求概率即可求解.【详解】(1)解:依题意,他随机选择两个社团,所有的可能结果为,,,,,AB AC AD BC BD CD;(2)解:列表如下,A B DA AA AB ADB BA BB BDD DA DB DD共有9种等可能结果,其中符合题意的有3种,∴他俩选到相同社团的概率为3193.【点睛】本题考查的是根据概率公式求概率,用列表法求概率.解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.27.(2023·湖北鄂州·统考中考真题)为庆祝建党100周年,让同学们进一步了解中国科技的快速发展,东营市某中学九(1)班团支部组织了一次手抄报比赛.该班每位同学从A.“北斗卫星”;B.“5G时代”;C.“东风快递”;D.“智轨快运”四个主题中任选一个自己喜欢的主题.统计同学们所选主题的频数,绘制成以下不完整的统计图,请根据统计图中的信息解答下列问题:(1)九(1)班共有________名学生;;D ,A D ,B D ,C D ,D D由列表可知,一共有16种等可能的结果,他们选择相同主题的结果有4种,所以P(相同主题)41 164 .【点睛】本题考查了折线统计图与扇形统计图,求概率等知识,理解两幅统计图提供的公共信息是解题第(1)(2)(3)步关键,列表得出所有等可能的结果是解题第(4)步关键.28.(2023·四川巴中·统考中考真题)2023年全国教育工作会议提出要把开展读书活动作为一件大事来抓,引导学生爱读书,读好书,善读书.某校为了推进这项工作,对全校学生一周内平均读书时间进行抽样调查,将调查结果的数据分成A、B、C、D、E五个等级并绘制成表格和扇形统计图如下.等级周平均读书时间t:(单位:小时)人数A01t 4B12t aC21320D34t 15E4t 5(1)求统计图表中a_________,m _________.(2)已知该校共有2800名学生,试估计该校每周读书时间至少3小时的人数为________.(3)该校每月末从每个班读书时间在E等级的学生中选取2名学生参加读书心得交流会,九年级某班共有3名男生1名女生的读书时间在E等级,现从这4名学生中选取2名参加交流会,用画树状图或列表的方法求该班恰好选出1名男生1名女生参加交流会的概率.【答案】(1)6,40(2)1120所有等可能出现的结果总数为12个,事件M 所含的结果数为61()122P M ,∴恰好抽到一男一女概率为12.A 或事件B 的概率.29.(2023·湖南张家界·统考中考真题)2022年4月21日新版《义务教育课程方案和课程标准(2022年版)》正式颁布,优化了课程设置,其中将劳动教育从综合实践活动课程中独立出来.某校为了初步了解学生的劳动教育情况,对九年级学生“参加家务劳动的时间”进行了抽样调查,并将劳动时间x 分为如下四组(A :70x ;B :7080x ;C :8090x ;D :90x ,单位:分钟)进行统计,绘制了如下不完整的统计图.根据以上信息,解答下列问题:(1)本次抽取的学生人数为______人,扇形统计图中m 的值为______;(2)补全条形统计图;(3)已知该校九年级有600名学生,请估计该校九年级学生中参加家务劳动的时间在80分钟(含80分钟)以上的学生有多少人?(4)若D 组中有3名女生,其余均是男生,从中随机抽取两名同学交流劳动感受,请用列表法或树状图法,求抽取的两名同学中恰好是一名女生和一名男生的概率.【答案】(1)50,30(2)见解析(3)300人(4)35【分析】(1)由D 组人数及所占百分比得出总人数,然后利用B 组人数除以总人数即可得出结果;(2)用总人数减去各组人数得出C 组人数,然后补全统计图即可;(3)总人数乘以C 、D 组所占比例即可;(4)方法一、利用列表法求概率;方法二、利用树状图法求概率即可.【详解】(1)解:根据题意得,本次抽取的人数为:510%50 人,∵B 组人数为15人,∴1550100%30% ,故答案为:50;30;(3)解:20560030050(人)答:估计该校九年级学生中参加家务劳动的时间在(4)方法一:列表法:女1女2女1(女1共有20种等可能结果,其中满足条件的有12种,故 123205P一男一女.【点睛】题目主要考查条形统计图与扇形统计图,列表法或树状图法求概率,用样本估计总体等,理解题意,综合运用这些知识点是解题关键.30.(2023·内蒙古通辽·统考中考真题)党的十八大以来,习近平总书记对推动全民阅读、建设书香中国高度重视,多次作出重要指示.×××中学在第28个“世界读书日”到来之际,对全校2000名学生阅读课外书的情况进行了解,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):调查方式抽样调查调查对象×××中学部分学生平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A.8小时以上B.6-8小时C.4~6小时D.0~4小时请解答下列问题:(1)求参与本次抽样调查的学生人数;(2)求图2中扇形A所占百分比;(3)估计该校2000名学生中,平均每周阅读课外书的时间在“6~8小时”人数;(4)在学生众多阅读书籍中,学校推荐阅读书目为四大名著:《三国演义》《红楼梦》《西游记》《水浒传》(分别记为甲、乙、丙、丁),现从这4部名著中选择2部为课外必读书籍,请用列表法或画树状图法中任意一种方法,求《西游记》被选中的概率.【答案】(1)300(2)32%(3)320(4)1 2【分析】(1)结合条形统计图和扇形统计图,根据平均每周阅读课外书的时间在“0~4小时”中人数及其所占百分比可得总人数;(2)用扇形A的圆心角115.2 除以360 即可求得扇形A所占百分比;(3)根据扇形统计图求得平均每周阅读课外书的时间在“6~8小时”所占的百分比,用总人数乘以百分比即共有12种等可能的结果,其中《西游记》被选中的结果有.∴《西游记》被选中的概率为61122【点睛】本题考查了条形统计图和扇形统计图的信息关联,求扇形统计图的相关数据,样本估计总体,列表法或画树状图法求概率等,熟练掌握列表法与树状图法以及用样本估计总体是解题的关键.31.(2023·辽宁·统考中考真题)6月5日是世界环境日,从全校学生的成绩中随机抽取了部分学生的成绩进行分析,C(中);D(合格).并将统计结果绘制成如下两幅统计图.(1)本次抽样调查的学生共有___________名;(2)补全条形统计图;(3)该校共有1200名学生,请你估计本次竞赛获得B等级的学生有多少名?(4)在这次竞赛中,九年级一班共有4人获得了优秀,4人中有两名男同学,两名女同学,班主任决定从这4人中随机选出2人在班级为其他同学做培训,请你用列表法或画树状图法,求所选2人恰好是一男一女的概率.【答案】(1)60(2)见解析(3)估计本次竞赛获得B等级的学生有480名(4)所选2人恰好是一男一女的概率为23【分析】(1)根据A组人数以及百分比计算即可解决问题;(2)求出C组人数,画出条形图即可解决问题;(3)利用样本估计总体即可;(4)先画出树状图,继而根据概率公式可求出两位参赛选手恰好是一男一女的概率.【详解】(1)解:1830%60(名)答:本次抽样调查的学生共有60名;故答案为:60;(2)解:C组人数为:601824315(名),补全条形图如图所示:;(3)解:估计本次竞赛获得B等级的学生有:24120048060(名),答:估计本次竞赛获得B等级的学生有480名;(4)解:画树状图如下:机会均等的可能有12种,其中一男一女的有故被选中的两人恰好是一男一女的概率是:【点睛】此题考查条形统计图和扇形统计图相关联,由样本估计总体,用列表法或树状图法求概率.列表∴一共有16种等可能的情况,恰好抽到景区A和景区B门票的情况有2种,;∴他恰好抽到景区A和景区B门票的概率为21168【点睛】此题考查的是用树状图法求概率,树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验,用到的知识点为:概率=所求情况数与总情况数之比.33.(2023·山东东营·统考中考真题)随着新课程标准的颁布,为落实立德树人根本任务,东营市各学校组织了丰富多彩的研学活动,得到家长、社会的一致好评.某中学为进一步提高研学质量,着力培养学生的核心素养,选取了A.“青少年科技馆”,B.“黄河入海口湿地公园”,C.“孙子文化园”,D.“白鹭湖营地”四个研学基地进行研学.为了解学生对以上研学基地的喜欢情况,随机抽取部分学生进行调查统计(每名学生只能选择一个研学基地),并将调查结果绘制成了两幅不完整的统计图(如图所示).请根据统计图中的信息解答下列问题:(1)在本次调查中,一共抽取了____名学生,在扇形统计图中A所对应圆心角的度数为____;(2)将上面的条形统计图补充完整;(3)若该校共有480名学生,请你估计选择研学基地C的学生人数;(4)学校想从选择研学基地D的学生中选取两名学生了解他们对研学活动的看法,已知选择研学基地D的学生中恰有两名女生,请用列表法或画树状图的方法求出所选2人都是男生的概率.【答案】(1)24,30(名),(3)解:48025%120答:该校选择研学基地C的学生人数是(4)解:选择研学基地D的学生有2名男生和共有12种等可能的结果,其中所选∴P(所选2人都是男生)212【点睛】本题考查列表法与树状图法、条形统计图、扇形统计图,能够读懂条形统计图和扇形统计图,掌握列表法与树状图法以及概率公式是解答本题的关键.34.(2023·山东日照·统考中考真题)2023年3月22日至28日是第三十届“中国水周”,某学校组织开展主题为“节约用水,共护母亲河”的社会实践活动.A 小组在甲,乙两个小区各随机抽取30户居民,统计其3月份用水量,分别将两个小区居民的用水量 3m x 分为5组,第一组:57x ,第二组:79x ,第三组:911x ,第四组:1113 x ,第五组:1315x ,并对数据进行整理、描述和分析,得到如下信息:信息一:甲小区3月份用水量频数分布表用水量(x /m )频数(户)57x 479x 9911x 101113x 51315x 2信息二:甲、乙两小区3月份用水量数据的平均数和中位数如下:甲小区乙小区平均数9.09.1中位数9.2a信息三:乙小区3月份用水量在第三组的数据为:9,9.2,9.4,9.5,9.6,9.7,10,10.3,10.4,10.6.根据以上信息,回答下列问题:。
中考数学复习《概率》专项练习题-附含有答案一、选择题1.下列事件中,不属于随机事件的是()A.明天睢县会下雪B.两条直线被第三条直线所截,同位角相等C.打开电视,正在播放广告D.任意一个四边形的外角和等于360°2.甲,乙两人玩“剪刀、石头、布”游戏,两人玩一次恰好平手的概率是()A.15B.14C.13D.123.已知拋一枚均匀硬币正面朝上的概率为12,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10 次都可能正面朝上C.大量重复拋一枚均匀硬币,平均每100次出现反面朝上50次D.通过抛一枚均匀硬币正面朝上或反面朝上,确定谁先发球的比赛规则是公平的4.在指定的5个男生和3个女生中,随机抽调1人参加“湘湖”志愿服务队,恰好抽到男生的概率是()A.1 B.38C.58D.155.如图,两个转盘被分成几个面积相等的扇形,分别自由转动一次,当转盘停止后,指针各指向一个数字所在的扇形(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止).将两指针所指的两个扇形中的数相加,和为6的概率是()A.16B.13C.12D.566.一个不透明的盒子里有n个除颜色外其它完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是( )A.6 B.10 C.18 D.207.一个盒子里有完全相同的三个小球,球上分别标上数字﹣1、1、2.随机摸出一个小球其数字记为p,不放回再随机摸出另一个小球其数字记为q,则p、q都是关于x的方程x2﹣x﹣2=0的实根的概率是()A.13B.29C.49D.568.在一次用频率估计概率的试验中,甲、乙两名同学统计了某一结果出现的频率,绘制的统计图如图所示,则符合这一结果的试验可能是()A.抛一枚正六面体的骰子,出现1点的概率B.从一个装有除颜色外其他均相同的2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面向上的概率D.在1~100的所有整数中取一个数,这个数能被2整除的概率二、填空题9.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.10.一个不透明的袋子中装有仅颜色不同的1个红球,2个绿球和3个白球,从袋子中随机摸出一个小球,则摸出的小球恰好是一个红球概率为.11.一副扑克牌去掉大小王后,只剩下52张牌,从中任取一张,记下花色,随着试验次数的增加,出现红桃花色的频率将稳定在左右.12.大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的吉祥码示意图,用黑白打印机打印在边长为2cm的正方形区域内,图中黑色部分的总面积为2.4cm2,现在向正方形区域内随机掷点,点落入黑色部分的概率为.13.在-1,3,5,7中随机选取一个数记为a,再从余下的数中随机取一个数记为b,则一次函数y=ax+b 经过一、三、四象限的概率为.三、解答题14.一个不透明的口袋中装有4张卡片,卡片上分别标有数字1,-2,3,-4,这些卡片除数字外都相同.小明从口袋中随机抽取一张卡片,小亮从剩余的三张卡片中随机抽取一张,求两张卡片上数字之积.(1)请你用画树状图或列表的方法,列出两人抽到的数字之积所有可能的结果;(2)求两人抽到的数字之积为正数的概率.15.中国古代有着辉煌的数学成就,《周髀算经》《九章算术》《海岛算经》(孙子算经》等都是我国古代数学的重要文献.(1)某班准备从这4部数学名著中随机选择2部作为数学文化课程学习内容,用适当的方法列举出所有可能的结果.(2)求恰好选中《九章算术》和《孙子算经》的概率.16.2023年春节档电影《满江红》和《流浪地球2》上映后,热度持续不减.小明一家想选择其中的一部一起观看,哥哥想看《满江红》,弟弟想看《流浪地球2》,妈妈让哥哥和弟弟用玩摸小球的游戏来决定听谁的,游戏规则如下:在一只不透明的袋中,装着标有数字3,4,5,7的质地,大小均相同的小球,哥哥和弟弟同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时哥哥获胜,反之弟弟获胜.根据上述规则,解答下列问题:(1)请用画树状图或列表的方法,求哥哥获胜的概率;(2)这个游戏公平吗?请说明理由.17.如图,的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是中心对称图形的概率是;(2)若甲、乙均可在本层移动,用画树状图法或列表法求出黑色方块所构成拼图是轴对称图形的概率.18.2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.根据图表信息,解答下列问题:(1)本次调查的学生总人数为,表中x的值为;(2)该校共有500名学生,请你估计等级为B的学生人数;(3)本次调查中,等级为A的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.参考答案 1.D 2.C 3.A 4.C 5.B 6.D 7.A 8.B 9.512 10.16 11.14 12.35 13.1414.解:(1)画树状图如图所示.(2)由(1),可知一共有12种等可能的结果,两人抽到的数字之积为正数的结果有4种 ∴两人抽到的数字之积为正数的概率是412=13.15.(1)解:将《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》分别记为A ,B ,C ,D ,列表如下: A B C D A (B ,A ) (C ,A ) (D ,A ) B (A ,B ) (C ,B ) (D ,B ) C (A ,C ) (B ,C ) (D ,C ) D(A ,D )(B ,D )(C ,D )则所有可能的结果为BA ,CA ,DA ,AB ,CB ,DB ,AC ,BC ,DC ,AD ,BD ,CD ;(2)解:由列出的表格可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,恰好选中《九章算术》和《孙子算经》的结果有2种,即BD ,DB所以P=212=16.16.(1)解:采用列表法:哥哥弟弟 3 4 5 73 (3,4)(3,5)(3,7)4 (4,3)(4,5)(4,7)5 (5,3)(5,4)(5,7)7 (7,3)(7,4)(7,5)由上表可知:所有可能出现的结果共有12种,它们出现的可能性相等.其中数字之和小于9的有4种:(3,4),(3,5),(4,3),(5,3)∴P(哥哥获胜)(2)解:这个游戏不公平∵P(哥哥获胜)∴P(弟弟获胜)∵P(哥哥获胜)≠P(弟弟获胜)∴这个游戏不公平17.(1)(2)解:总共有9种等可能的结果,黑色方块所构成拼图是轴对称图形的结果5种,所以,所求的概率为.18.(1)50;8%(2)解:等级为B的学生所占的百分比为20÷50=40%∴等级为B的学生人数为500×40%=200人.(3)解:记两名男生为a,b,记两名女生为c,d,列出表格如下:∴一共有12种情况,其中恰有一男一女的有8种∴恰好抽到一名男生和一名女生的概率P=812=23.。
中考数学总复习《概率》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·湖北中考)下列各事件,是必然事件的是( )A.掷一枚正方体骰子,正面朝上恰好是3B.某同学投篮球,一定投不中C.经过红绿灯路口时,一定是红灯D.画一个三角形,其内角和为180°2.(2024·连云港中考)下列说法正确的是( )A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为1,连续抛此硬币2次必有1次正面朝2上3.(2024·贵州中考)小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次4.(2024·内江中考)如图所示的电路中,当随机闭合开关S1,S2,S3中的两个时,灯泡能发光的概率为( )A.23B.12C.13D.165.(2024·上海中考)一个袋子中有若干个白球和绿球,它们除了颜色外都相同.随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有个绿球.6.(2024·重庆中考)重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A,B,C三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B的概率为.7.(2024·临夏州中考)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了A,B,C,D四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.(1)小临从四张卡片中随机抽取一张,抽中C卡片的概率是_________ ;(2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.B层·能力提升8.(2024·深圳中考)二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为( )A.12B.112C.16D.149.(2024·福建中考)哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是( )A.14B.13C.12D.2310.(2024·聊城东昌府区三模)有4条线段,长度分别是2,8,3,6.从中随机抽取三条,能组成三角形的概率等于.11.(2024·潍坊潍城区二模)小莹一家五口周末乘坐动车组列车出游,小莹在网上给五人购票时,五人的座位恰好位于同一车厢的同一排(如图是动车组列车座位示意图).进入该车厢后,小莹的奶奶先从这五个座位中随机选择一个,然后小莹从剩下的四个座位中随机选择一个坐下,则奶奶和小莹的座位相邻(过道两侧也视为座位相邻)的概率是.C层·素养挑战12.(2024·遂宁中考)遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分内容,请完善报告:××小组关于××学校学生“五一”出游情况调查报告数据收集调查方式抽样调查调查对象××学校学生数据的整理与描述景点A:中国死海B:龙凤古镇C:灵泉风景区D:金华山E:未出游F:其他数据分析及运用(1)本次被抽样调查的学生总人数为,扇形统计图中,m=_________ ,“B:龙凤古镇”对应圆心角的度数是_________ ;(2)请补全条形统计图;(3)该学校总人数为1 800人,请你估计该学校学生“五一”假期未出游的人数;(4)未出游中的甲、乙两位同学计划下次假期从A,B,C,D四个景点中任选一个景点旅游,请用树状图或列表的方法求出他们选择同一景点的概率.参考答案A层·基础过关1.(2024·湖北中考)下列各事件,是必然事件的是(D)A.掷一枚正方体骰子,正面朝上恰好是3B.某同学投篮球,一定投不中C.经过红绿灯路口时,一定是红灯D.画一个三角形,其内角和为180°2.(2024·连云港中考)下列说法正确的是(C)A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为12,连续抛此硬币2次必有1次正面朝上3.(2024·贵州中考)小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是(A)A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次4.(2024·内江中考)如图所示的电路中,当随机闭合开关S1,S2,S3中的两个时,灯泡能发光的概率为(A)A.23B.12C.13D.165.(2024·上海中考)一个袋子中有若干个白球和绿球,它们除了颜色外都相同.随机从中摸一个球,恰好摸到绿球的概率是3,则袋子中至少有3个绿球.56.(2024·重庆中考)重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A,B,C三个景点中随机选择一个景点游览,甲、乙两人同.时选择景点B的概率为197.(2024·临夏州中考)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了A,B,C,D四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.(1)小临从四张卡片中随机抽取一张,抽中C卡片的概率是_________;【解析】(1)由题意知,共有4种等可能的结果,其中抽中C卡片的结果有1种,∴抽中C卡片的概率是1.4答案:14(2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.【解析】(2)四张卡片内容中是化学变化的有A,D画树状图如图所示共有12种等可能的结果,其中小夏抽取两张卡片内容均为化学变化的结果有AD,DA,共2种∴小夏抽取两张卡片内容均为化学变化的概率为212=1 6 .B层·能力提升8.(2024·深圳中考)二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为(D)A.12B.112C.16D.149.(2024·福建中考)哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是(B)A.14B.13C.12D.2310.(2024·聊城东昌府区三模)有4条线段,长度分别是2,8,3,6.从中随机抽取三条,能组成三角形的概率等于14.11.(2024·潍坊潍城区二模)小莹一家五口周末乘坐动车组列车出游,小莹在网上给五人购票时,五人的座位恰好位于同一车厢的同一排(如图是动车组列车座位示意图).进入该车厢后,小莹的奶奶先从这五个座位中随机选择一个,然后小莹从剩下的四个座位中随机选择一个坐下,则奶奶和小莹的座位相邻(过道两侧也视为座位相邻)的概率是25.C层·素养挑战12.(2024·遂宁中考)遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分内容,请完善报告:××小组关于××学校学生“五一”出游情况调查报告数据收集调查方式抽样调查调查对象××学校学生数据的整理与描述景点A:中国死海B:龙凤古镇C:灵泉风景区D:金华山E:未出游F:其他数据分析及运用(1)本次被抽样调查的学生总人数为,扇形统计图中,m=_________,“B:龙凤古镇”对应圆心角的度数是_________;(2)请补全条形统计图;(3)该学校总人数为1 800人,请你估计该学校学生“五一”假期未出游的人数;(4)未出游中的甲、乙两位同学计划下次假期从A,B,C,D四个景点中任选一个景点旅游,请用树状图或列表的方法求出他们选择同一景点的概率.【解析】(1)∵30÷30%=100(人)∴本次被抽样调查的学生总人数为100;∵出游C景点的人数为100-(12+20+20+8+30)=10×100=10;∴m=10100×360°=72°∵20100∴“B:龙凤古镇”对应圆心角的度数是72°.答案:1001072°(2)由(1)知:出游景点C的人数为10补全条形统计图如图所示(3)8100×1 800=144(人)答:估计该学校学生“五一”假期未出游的有144人;(4)画树状图如图所示一共有16种等可能的结果,其中两人选择同一景点有4种可能的结果∴P(选择同一景点)=416=1 4 .。
概率中考复习题及答案概率论是数学中的一个重要分支,它在统计学、物理学、经济学等多个领域都有广泛的应用。
以下是一份概率中考复习题及答案,供同学们复习参考。
一、选择题1. 某事件A的概率为0.6,事件B的概率为0.4,若事件A和事件B 互斥,那么事件A和事件B至少发生一个的概率是多少?A. 0.2B. 0.6C. 0.8D. 0.4答案:C2. 抛一枚均匀的硬币,正面朝上的概率是多少?A. 0.5B. 1C. 0.25D. 0.75答案:A3. 如果一个袋子里有3个红球和2个蓝球,随机取出一个球,这个球是红球的概率是多少?A. 1/2B. 3/5C. 2/5D. 1/3答案:B二、填空题4. 事件的必然性概率是______,不可能事件的概率是______。
答案:1;05. 如果事件A和事件B是相互独立事件,那么事件A和事件B同时发生的概率是P(A) × P(B)。
如果P(A) = 0.3,P(B) = 0.4,那么P(A∩B) = ______。
答案:0.12三、计算题6. 假设有一个骰子,每次掷出1点的概率是1/6。
如果连续掷两次骰子,求掷出两个1点的概率。
答案:两个1点的概率是(1/6) × (1/6) = 1/36。
7. 一个班级有30名学生,其中15名男生和15名女生。
如果随机选择两名学生,求选出的两名学生都是男生的概率。
答案:选出的两名学生都是男生的概率是(15/30) × (14/29) =7/48。
四、解答题8. 某工厂有100个产品,其中10个是次品。
如果随机抽取5个产品进行检查,求至少有1个是次品的概率。
答案:首先计算没有次品的概率,即从90个正品中抽取5个,然后用1减去这个概率得到至少有1个次品的概率。
计算如下:P(没有次品) = C(90,5) / C(100,5),P(至少有1个次品) = 1 - P(没有次品)。
9. 某城市在连续两天内下雨的概率都是0.3。
概率一、专练选择题1.下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数【答案】D【解析】:A.∵抛掷1个均匀的骰子,出现6点向上是随机事件,故错误,A不符合题意;B.∵只有两条平行线被第三条直线所截,同位角才相等;故错误,B不符合题意;C.∵一年有365或者366人,∴如果一年正好是366天,则366人中每个人的生日可能都不相同,故错误,C不符合题意;D.∵一个数的绝对值不是正数就是0,故正确,D符合题意;故答案为:D.【分析】A.根据随机事件和必然事件的定义来判断对错;B. 根据平行线性质来判断对错;C. 根据必然事件或随机事件定义来判断对错;D.根据绝对值性质来判断对错.2.下列语句描述的事件中,是随机事件的为()A. 水能载舟,亦能覆舟 B.只手遮天,偷天换日C. 瓜熟蒂落,水到渠成 D.心想事成,万事如意【答案】D【解析】:A、水能载舟,亦能覆舟,是必然事件,故不符合题意;B、只手遮天,偷天换日,是不可能事件,故不符合题意;C、瓜熟蒂落,水到渠成,是必然事件,故不符合题意;D、心想事成,万事如意,是随机事件,故符合题意.故答案为:D.【分析】所谓随机事件,就是可能发生,也可能不会发生的事件,根据概念即可一一判断。
3.下列说法正确的是()A. 了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查 B. 甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C. 三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是 D. “任意画一个三角形,其内角和是”这一事件是不可能事件【答案】D【解析】:A、了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,不符合题意;B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,不符合题意;C、三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是,不符合题意;D、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,符合题意.故答案为:D.【分析】根据全面调查及抽样调查适用的条件;根据方差越大数据的波动越大;根据中心对称图形,轴对称图形的概念,三角形的内角和;一一判断即可。
4.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为()A.B.C.D.【答案】C【解析】:设小正方形边长为a,∴小正方形对角线长为:a,∴S阴=a2,即圆的直径为a,∴大正方形的边长为a,∴S大正=(a)2=2a2,∴小球停在小正方形内部(阴影)区域的概率P= = .故答案为:C.【分析】设小正方形边长为a,分别算出阴影部分的面积和大正方形的面积,根据概率公式即可求出小球停在小正方形内部(阴影)区域的概率.5.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为,他明天将参加一场比赛,下面几种说法正确的是( )A. 小亮明天的进球率为B. 小亮明天每射球10次必进球1次C. 小亮明天有可能进球 D.小亮明天肯定进球【答案】C【解析】∵根据以往比赛数据统计,小亮进球率为,∴他明天参加比赛,有可能进球。
故答案为:C【分析】根据已知条件小亮进球率为,得出他明天参加比赛,有可能进球,即可得出答案。
6.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.B.C.D.【答案】D【解析】:指针指向的结果有:1,2,3,4,5,6,其中大于3的结果有:4,5,6,这3种情况,∴P(指针指向大于3的数)=故答案为:D.【分析】得出任意转动正六边形转盘一次指针指向的所有结果数n,得出大于3的结果数m,则P= .7.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.【答案】C【解析】:∵从正面分别写有数字1,2,3,4,5的卡片中随机抽取一张共有5种情况,正面的数字是偶数的有2,4两种情况,∴正面的数字是偶数的概率P= .故答案为:C.【分析】根据题意随机抽取一张卡片有5种情况,正面的数字是偶数的有2种情况,根据概率公式即可得出答案.8.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. B.C.D.【答案】D【解析】:根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D。
【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案。
9.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.【答案】B【解析】:根据题意可知,这个两位数可能是:31、32、33、34、35、36,,一共有6种可能得到的两位数是3的倍数的有:33、36两种可能∴P(两位数是3的倍数)=【分析】利用列举法求出所有可能的结果数及得到的两位数是3的倍数的可能数,利用概率公式求解即可。
10.甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,分别写有数字1和2,从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.B.C.D.【答案】C【解析】:依题可得:∴一共有4种情况,而取出的两个小球上都写有数字2的情况只有1种,∴取出的两个小球上都写有数字2的概率为:P= .故答案为:C.【分析】根据题意画出树状图,由图可知一共有4种情况,而取出的两个小球上都写有数字2的情况只有1种,再根据概率公式即可得出答案.11.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A.B.C.D.【答案】A【解析】:抛掷一枚质地均匀的立方体骰子一次,则朝上一面的数字共出现六种等可能情况,其中朝上一面的数字为2的只有一种情况,则朝上一面的数字为2的概率是故答案为:A,【分析】抛掷一枚质地均匀的立方体骰子一次,则朝上一面的数字可以是1,2,3,4,5,6六种情况,其中朝上一面的数字为2的只有一种情况,根据概率公式计算即可。
12.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A. B.C.D.【答案】B【解析】【解答】解:P(指针停止后落在黄色区域)= ,故答案为:B。
【分析】角度占360°的比例,即为指针转到该区域的概率。
二、专项练习填空题13.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是________.【答案】【解析】∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.【分析】不透明袋子中装有11个球,这些球除颜色外无其他差别,从袋子中随机取出1个球,共有11种等可能的结果,其中红球有6个,故摸出红球共有6种情况,根据概率公式计算即可。
14.在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图像恰好经过第一、二、四象限的概率为________.【答案】【解析】:画树状图为:共有12种等可能的结果数,满足a<0,b>0的结果数为4,所以该二次函数图象恰好经过第一、二、四象限的概率= .故答案为:【分析】根据抛物线的图像与系数之间的关系,二次函数y=ax2+bx+1的图象恰好经过第一、二、四象限,则满足a<0,b>0;根据题意画出树状图,由图知共有12种等可能的结果数,满足a<0,b>0的结果数为4,根据概率公式即可得出该二次函数图象恰好经过第一、二、四象限的概率。
15.一枚质地均匀的正方体骰子,骰子的六个面上分別刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是________.【答案】【解析】:∵1到6的点数,一共有6个数,是3的倍数的只有3和6两个∴故答案为:【分析】根据题意可知1到6的点数,一共有6个数,是3的倍数的只有3和6两个,再利用概率公式,求解即可。
16.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是________(明确到0.01).【答案】0.90【解析】:由表可知:该射手击中靶心的概率的估计值为0.90.故答案为0.90.【分析】用频率来表示概率,由此即可得出答案.17.有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.【答案】【解析】:这5个图形中既是轴对称图形,又是中心对称图形有①⑤∴其正面图形既是轴对称图形,又是中心对称图形的概率:.【分析】根据题意得出5个图形中满足条件的只有2种,根据概率公式即可求解。
18.若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是________.【答案】【解析】:列表如下:由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果,所以点M在第二象限的概率是..故答案为:.【分析】根据题意,从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,列出表格得出M点的横纵坐标的所有可能结果,由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果,根据概率公式即可得出答案。
19.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是________.【答案】【解析】:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,二种;故其概率为:.【分析】根据题意,用列举法列举出从有4根细木棒中任取3根所有的取法,从而得出所有等可能的结果共有4中,其中根据三角形三边的关系得出能搭成三角形的共有2种,根据概率公式即可得出答案。
20.小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜。