正态分布的数学期望与方差
- 格式:doc
- 大小:30.50 KB
- 文档页数:3
概率论与数理统计公式概率论是一门研究随机现象规律的数学学科,是现代数学的基础之一、而数理统计则是利用概率论的工具和方法,分析和处理统计数据,从而得出推断、估计、决策等信息的科学。
在概率论与数理统计的学习过程中,掌握一些重要的公式是非常关键的。
下面是一些概率论与数理统计中常用的公式:1.概率公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法公式:P(A∩B)=P(A)*P(B,A)-条件概率公式:P(A,B)=P(A∩B)/P(B)2.期望与方差公式:-期望:E(X)=∑(x*P(X=x))- 方差:Var(X) = E((X-μ)^2) = ∑((x-μ)^2 * P(X=x))3.常用概率分布及其特征:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!-正态分布:f(x)=(1/(σ*√(2π)))*e^(-((x-μ)^2)/(2*σ^2))4.样本与总体统计量公式:-样本均值:x̄=(∑x)/n-样本方差:s^2=(∑(x-x̄)^2)/(n-1)-样本标准差:s=√(s^2)5.参数估计公式:-点估计:-总体均值估计:μ的点估计为x̄-总体方差估计:σ^2的点估计为s^2-区间估计:-总体均值的置信区间:x̄±Z*(σ/√n)-总体比例的置信区间:p±Z*√((p*(1-p))/n)6.假设检验公式:-均值检验:-单样本均值检验:t=(x̄-μ0)/(s/√n)-双样本均值检验:t=(x̄1-x̄2)/√((s1^2/n1)+(s2^2/n2))-比例检验:-单样本比例检验:z=(p-p0)/√((p0*(1-p0))/n)-双样本比例检验:z=(p1-p2)/√((p*(1-p))*((1/n1)+(1/n2)))以上是概率论与数理统计中一些常用的公式,这些公式为解决问题提供了有力的工具和方法。
期望、方差、正态分布 期望、方差知识回顾:1.数学期望: 一般地,若离散型随机变量ξ的概率分布为ξ x 1 x 2 … x n … Pp 1p 2…p n…则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 特别提醒:1. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平2. 平均数、均值:在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p …n p n 1==,=ξE +1(x +2x …nx n 1)⨯+,所以ξ的数学期望又称为平均数、均值 2.期望的一个性质: ()E a b ξ+=aE b ξ+ 3.若ξ~B (p n ,),则ξE =np4.方差:ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+n n p E x ⋅-2)(ξ+….5.标准差: ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ.6.方差的性质: ξξD a b a D 2)(=+; 若ξ~B (p n ,),则=ξD )1(p np - 特别提醒:1. 随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;2. 随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;3. 标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛 正态分布知识回顾:1.若总体密度曲线就是或近似地是函数R ,21)(222)(∈=--x ex f x σμσπ的图象,则其分布叫正态分布,常记作),(2σμN .)(x f 的图象称为正态曲线.三条正态曲线:①5.0,1==σμ;②1,0==σμ;③2,1==σμ,其图象如下图所示:观察以上三条正态曲线,得以下性质: ①曲线在x 轴的上方,与x 轴不相交.②曲线关于直线μ=x 对称,且在μ=x 时位于最高点.③当μ<x 时,曲线上升;当μ>x 时,曲线下降.并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近.④当μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.注意: 当1,0==σμ时,正态总体称为标准正态总体,相应的函数表示式是R ,21)(22∈=-x e x f x π.相应的曲线称为标准正态曲线.2. 正态总体的概率密度函数:,,21)(222)(R x ex f x ∈=--σμσπ式中σμ,是参数,分别表示总体的平均数(期望值)与标准差; 当0μ=时得到标准正态分布密度函数:()()22,,26xf x e x π-=∈-∞+∞.3.正态曲线的性质:① 曲线位于x 轴上方,与x 轴不相交; ② 曲线是单峰的,关于直线x =μ 对称; ③ 曲线在x =μ处达到峰值πσ21;④ 曲线与x 轴之间的面积为1;4. σμ,是参数σμ,是参数的意义:① 当σ一定时,曲线随μ质的变化沿x 轴平移;② 当μ一定时,曲线形状由σ确定:σ越大,曲线越“矮胖”,表示总体分布越集中; σ越小,曲线越“高瘦”,表示总体分布越分散。
标准正态分布的方差标准正态分布是统计学中非常重要的一种概率分布,它具有许多重要的性质和特点。
在实际应用中,我们经常需要对标准正态分布的方差进行分析和计算。
本文将对标准正态分布的方差进行深入的探讨,希望能够为读者提供一些帮助。
首先,我们来回顾一下标准正态分布的定义。
标准正态分布又称为Z分布,它的概率密度函数是一个关于均值为0,标准差为1的正态分布。
其概率密度函数的表达式为:f(x) = (1/√(2π)) e^(-x^2/2)。
其中,e是自然对数的底,π是圆周率。
标准正态分布的概率密度函数是一个关于x的偶函数,其图像关于y轴对称。
标准正态分布的均值为0,标准差为1,其分布曲线呈钟型,且在均值处达到最大值。
接下来,我们来探讨标准正态分布的方差。
方差是衡量随机变量离散程度的一个重要指标,它描述了随机变量与其均值之间的离散程度。
对于标准正态分布来说,其方差为1。
这意味着标准正态分布的数据点相对于其均值的离散程度是已知的,这为我们在实际应用中的数据分析提供了便利。
在实际应用中,我们经常需要计算标准正态分布的方差。
为了计算标准正态分布的方差,我们可以利用方差的定义公式:Var(X) = E((X-μ)^2)。
其中,Var(X)表示随机变量X的方差,E表示数学期望,μ表示随机变量X的均值。
对于标准正态分布来说,其均值为0,因此方差的计算可以简化为:Var(X) = E(X^2)。
接下来,我们来计算标准正态分布的方差。
由于标准正态分布的概率密度函数是一个偶函数,因此其在整个实数轴上的积分值是1。
我们可以利用这一性质来计算标准正态分布的方差。
利用方差的定义公式,我们可以得到:Var(X) = ∫(x^2 f(x))dx。
其中,f(x)是标准正态分布的概率密度函数。
将标准正态分布的概率密度函数代入上式,进行积分计算,即可得到标准正态分布的方差。
通过计算,我们可以得到标准正态分布的方差为1。
这一结果与我们之前的预期是一致的。
高中数学中的概率统计应用概率分布计算期望与方差的技巧概率统计是高中数学的重要内容之一,其应用广泛且重要。
在概率统计中,我们经常遇到需要计算随机变量的期望和方差的问题。
概率分布是解决这些问题的关键工具之一。
在本文中,我们将介绍一些高中数学中常见的概率分布,以及计算期望和方差的技巧。
1. 离散概率分布离散概率分布指的是随机变量只能取有限个或可列个值的概率分布。
其中,最常见的离散概率分布有二项分布、泊松分布和几何分布。
1.1 二项分布二项分布在实际问题中经常出现,特别是在重复试验的情况下。
假设有n个独立的重复试验,每次试验有成功和失败两种可能结果。
如果成功的概率为p,失败的概率为q=1-p,则随机变量X表示n次试验中成功的次数。
二项分布的概率密度函数为:P(X=k) = C(n,k) * p^k * q^(n-k)其中,C(n,k)表示组合数。
二项分布的期望和方差的计算公式如下:E(X) = npVar(X) = npq1.2 泊松分布泊松分布适用于描述单位时间或空间内随机事件发生的次数。
例如,某地区每小时的交通事故数、每天接到的电话数等。
泊松分布的概率密度函数为:P(X=k) = (λ^k * e^(-λ)) / k!其中,λ代表单位时间或单位空间内平均发生的次数。
泊松分布的期望和方差的计算公式如下:E(X) = Var(X) = λ1.3 几何分布几何分布用于描述一系列独立重复试验中,首次成功所需的试验次数。
例如,投掷一枚硬币直到首次出现正面的次数等。
几何分布的概率密度函数为:P(X=k) = q^(k-1) * p其中,p表示成功的概率,q=1-p表示失败的概率。
几何分布的期望和方差的计算公式如下:E(X) = 1/pVar(X) = q/(p^2)2. 连续概率分布连续概率分布指的是随机变量可以取某个区间内的任意值的概率分布。
最常见的连续概率分布有均匀分布、正态分布和指数分布。
2.1 均匀分布在均匀分布中,随机变量在某一区间内的取值是等可能的。
正态分布的方差公式推导正态分布的方差公式推导过程如下:1、设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]其实就是均值是u,方差是t^2。
2、于是:∫e^[-(x-u)^2/2(t^2)]dx=(√2π)t(*)积分区域是从负无穷到正无穷,下面出现的积分也都是这个区域。
3、(1)求均值对(*)式两边对u求导:∫{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0约去常数,再两边同乘以1/(√2π)t得:∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0把(u-x)拆开,再移项:∫x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx也就是∫x*f(x)dx=u*1=u这样就正好凑出了均值的定义式,证明了均值就是u。
4、(2)方差过程和求均值是差不多的,我就稍微略写一点了。
5、对(*)式两边对t求导:∫[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π移项:∫[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2也就是∫(x-u)^2*f(x)dx=t^2正好凑出了方差的定义式,从而结论得证。
6、扩展资料:若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。
7、其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。
8、当μ = 0,σ = 1时的正态分布是标准正态分布。
9、在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。
10、为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。
11、由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。
数学期望与方差及正态分布__________________________________________________________________________________ __________________________________________________________________________________1.理解离散型变量的数学期望与方差的概念.2.熟练掌握离散型变量的数学期望与方差的公式.3.熟练掌握离散型变量的数学期望与方差的性质.4.能利用数学期望与方差解决简单的实际问题.5.理解概率密度曲线和正态分布的概念.1.离散型随机变量X 的数学期望一般地,若离散型随机变量X 的概率分布如下表所示,则称______________________为离散型随机变量X 的数学期望,记为______,其中0i p ≥,i =1,2,…,n ,12p p + 1.n p ++=L2.离散型随机变量X 的方差一般地,若离散型随机变量X 的概率分布如下表所示,则称____________________________________为离散型随机变量X 的方差,记为_________,即2;σi p ≥0,i =1,2,…,n ,121,n p p p +++=L ()E X μ=3.离散型随机变量X 的标准差随机变量X 的方差也称为X 的概率分布的方差,X 的方差V (X )的算术平方根称为X 的标准差,即σ=_____________4.必备公式(1)离散型随机变量:X 的数学期望(均值)公式、方差公式、标准差公式 E(X)=____________________________;V (X )=_____________________________________________; σ=______________.(2)二项分布的数学期望、方差的计算公式 当X ~B (n ,p )时,E (X )=np ;V (X )=np(1-p). 5.离散型随机变量方差的性质设ξ是离散型随机变量,则其方差具有如下性质: (1)V (k )=_____(k 为常数); (2)()_________;V k ξ= (3)()V k ξ+=___________;(4)()___________(,).V a b a b ξ+=∈R6.概率密度曲线(1)若数据无限增多且组距无限缩小,那么频率直方图的顶边无限缩小乃至形成一条光滑的曲线,我们将此曲线称为概率密度曲线.(2)正态密度曲线的函数表达式为22()2()e,,0,x P x x μσσμ--=∈>∈R R7.正态分布(1)若X 是一个随机变量,对任给区间(a ,b ],P (a <X ≤b )恰好是正态密度曲线下方和X 轴上(a ,b ]上方所围成的图形的面积;我们就称随机变量X 服从参数为μ和2σ的正态分布,简记为X ~N (2,μσ).(2)我们将正态分布N (0,1)称为标准正态分布,通过查标准正态分布表可以确定服从标准正态分布的随机变量的有关概率.8.正态密度曲线图象的特征(1)当x <μ时,曲线上升;当x >μ时,曲线下降;当曲线向左右两边无限延伸以____为渐近线. (2)正态曲线关于直线x =μ对称;(3)σ越大,正态曲线越________;σ越小,正态曲线越________. (4)在正态曲线下方和x 轴上方范围内的区域面积为_____.类型一.离散型随机变量X 的数学期望则E (X )等于( ) A.0B.-1C.13-D.12-练习1:某学校要从5名男生和2名女生中选出2人做上海世博会志愿者,若用随机变量表示选出的志愿者中女生的人数,则数学期望E ξ______.(结果用最简分数表示) 类型二.离散型随机变量的方差、标准差例2:已知随机变量X 的分布表为:求V (X ).练习1:甲、乙两名射手在同一条件下进行射击,分布表如下: 射手甲:射手乙:类型三.二项分布的数学期望与方差例3:已知随机变量ξ~B (n ,p ),且 2.4, 1.44,E V ξξ==则n ,p 的值为( ) A.8,0.3B.6,0.4C.2,0.2D.5,0.6练习3:设随机变量ξ服从二项分布,即ξ~(,)B n P ,且13,,7E P ξ==则n =______,D ξ=______. 类型四.离散型随机变量方差的性质例4:一次测试有25道选择题,每题选对得4分,选错或不选得0分,满分为100分,某生选对每道题的概率为0.8,则这名考生在这次考试中成绩的数学期望与标准差为( )A.80,8B.80,64C.70,4D.70,3练习4:已知ξ的分布列如下表,设23,ηξ=+则E η=()A .3B .4C .-1D .1类型五.数学期望与方差的计算与应用例5:一个人每天开车上班,从他家到上班的地方有6个交通岗,假设他在各交通岗遇到红灯的事件互相独立,并且概率都是1.3假定他只在遇到红灯或到达上班地点时才停止前进.(1)设ξ为这个人的首次停止前经过的路口数.求ξ的分布表;(2)设η为这个人的途中遇到红灯的次数,求η的期望和方差;(3)求这个人首次停止前已经过两个交通岗的概率.练习5:有一名运动员投篮的命中率为0.6,现在他进行投篮训练,若没有投进则继续投篮,若投进则停止,但最多投篮5次,求他投篮次数的数学期望.类型六.正态密度曲线的特征例6:下面给出了关于正态曲线的四个叙述:①曲线在x 轴上方且与x 轴不相交;②当x >μ时,曲线下降;当x <μ时,曲线上升;③当μ一定时,σ越小,总体分布越分散;σ越大,总体分布越集中;④曲线关于直线x =μ对称,且当x =μ时,位于最高点.其中正确的是( )A.1个B.2个C.3个D.4个练习6:若2(1)2(),x f x x R --=∈,则下列判断正确的是( )A .f (x )有最大值,也有最小值B .f (x )有最大值,无最小值C .f (x )无最大值,有最小值D .f (x )无最大值,也无最小值 类型七.正态分布例7:已知正态总体的数据落在区间(-3,-1)内的概率和落在(3,5)内的概率相等,那么这个正态总体的数学期望为________.练习7:设随机变量ξ服从标准正态分布N (0,1),已知( 1.96)0.025Φ-=,那么(|| 1.96)P ξ<=( )A .0.025B .0.050C .0.950D .0.9751.若某篮球运动员投篮命中率P =0.6,则其两次投篮命中次数η的数学期望为( ) A .0.6B .1.2C .1.3D .0.82.设某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则(0)P ξ==( )A .0B.12C.13D.233.已知连续型随机变量ξ的概率密度函数f (x )=()()01,1(14),504,x x x <-⎧⎪⎪-≤≤⎨⎪⎪>⎩则P (ξ=3)的值为( )A.15B .0C .3D .不确定4.如果随机变量ξ服从(,0)N μ,而且()P C ξ≤=()P C ξ>=P ,那么P 等于( ) A .0 B .0.5 C .1 D .不确定5.若从1,2,4,6,9这5个数字之中任取2个,则这2个数之积的数学期望是( ) A .8 B .17.3 C .9 D .9.56.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的教学期望E ξ=______.7.某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(1)求从甲、乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工人的概率;(3)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.8.设篮球队A 与B 进行比赛,每场比赛均有一球队获胜,若一球队胜4场,则比赛结束,假定A ,B 两队在每场比赛中获胜的概率都是12,试求需要比赛场数ξ的分布列及数学期望._________________________________________________________________________________ _________________________________________________________________________________基础巩固1.如果两名士兵在一次射击比赛中,士兵甲得1分,2分,3分的概率分别为0.4,0.1,0.5;士兵乙得1分,2分,3分的概率分别为0.1,0.6,0.3,那么两名士兵得胜希望较大的是( )A .甲B .乙C .甲与乙相同D .无法确定2.同时抛掷2枚相同的均匀硬币,随机变量ξ=1表示结果中有正面向上的,ξ=0表示结果中没有正面向上的,则E ξ=( )A .0.6B .0.75C .0.85D .0.953.如果ξ是离散型随机变量,32,ηξ=+那么( ) A.32,9E E D D ηξηξ=+= B.3,32E E D D ηξηξ==+ C.32,94E E D E ηξηξ=+=+D.34,32E E D D ηξηξ=+=+4.某地有A ,B ,C ,D 四人先后感染了甲型H1N1流感,其中只有A 到过疫区,B 肯定是受A 感染的,对于C ,因为难以断定他是受A 还是受B 感染,于是假定他受A 和受B 感染的概率都是12,同样也假定D 受A ,B 和C 感染的概率都是13,在这种假定之下,B ,C ,D 中直接受A 感染的人数X 就是一个随机变量,X 的均值(即数学期望)=( )A.125 B.116 C.87D.23 5.设随机变量ξ服从二项分布,即ξ~(,)B n P ,且13,,7E P ξ==则n =______,D ξ=______.6.在某次测量中,测量结果ξ服从正态分布N (1,2σ)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为______.7.(2014浙江卷)随机变量X 的取值为0,1,2.若P (X =0)=15,E (X )=1,则D (X )=________.8.(2015东城二模)某校高一年级开设A ,B ,C ,D ,E 五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选A 课程,不选B 课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.(1)求甲同学选中C 课程且乙同学未选中C 课程的概率;(2)用X 表示甲、乙、丙选中C 课程的人数之和,求X 的分布列和数学期望.能力提升1.如果~(5,0.1)B ξ,那么P (ξ≤2)=( )A .0.0729B .0.00856C .0.91854D .0.991442.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .4003.1盒产品中有9件正品和3件废品,若每次取1件产品,取出后不再放回,则在取得正品前已取出的废品数ξ的数学期望E ξ=______.4.某射击选手每次射击击中目标的概率为0.8,现在他连续向一个目标射击,直到第一次击中目标为止,则射击次数ξ这一随机变量的数学期望为______.5.从分别标有数字1,2,3,…,n 的n 张卡片中任取一张,若卡片上数字ξ是随机变量,则ξ的数学期望为______.6.(2014湖南卷)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.7.(2015湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.8.(2014天津)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.。
正态分布的数学期望与方差
正态分布:
密度函数为:分布函数为
的分布称为正态分布,记为N(a, σ2).
密度函数为:
或者
称为n元正态分布。
其中B是n阶正定对称矩阵,a是任意实值行向量。
称N(0,1)的正态分布为标准正态分布。
(1)验证是概率函数(正值且积分为1)
(2)基本性质:
(3)二元正态分布:
其中,
二元正态分布的边际分布仍是正态分布:
二元正态分布的条件分布仍是正态分布:
即(其均值是x的线性函数)
其中r可证明是二元正态分布的相关系数。
(4)矩,对标准正态随机变量,有
(5)正态分布的特征函数
多元正态分布
(1)验证其符合概率函数要求(应用B为正定矩阵,L为非奇异阵,然后进行向量线性变换)
(2)n元正态分布结论
a) 其特征函数为:
b) 的任一子向量,m≤n 也服从正态分布,分布为其中,为保留B 的第,…行及列所得的m阶矩阵。
表明:多元正态分布的边际分布还是正态分布
c) a,B分别是随机向量的数学期望及协方差矩阵,即
表明:n元正态分布由它的前面二阶矩完全确定
d) 相互独立的充要条件是它们两两不相关
e) 若,为的子向量,其中是,的协方差矩阵,则是,相应分量的协方差构成的相互协方差矩阵。
则相互独立的充要条件为=0
f) 服从n元正态分布N(a,b)的充要条件是它的任何一个线性组合服
从一元正态分布
表明:可以通过一元分布来研究多元正态分布
g) 服从n元正态分布N(a,b),C为任意的m×n阶矩阵,则服从m元正态分布
表明:正态变量在线性变换下还是正态变量,这个性质简称正态变量的线性变换不变性
推论:服从n元正态分布N(a,b),则存在一个正交变化U,使得是一个具有独立正态分布分量的随机向量,他的数学期望为Ua,而他的方差分量是B的特征值。
条件分布
若服从n元正态分布N(a,b),,则在给定下,的分布还是正态分布,其条件数学期望:
(称为关于的回归)
其条件方差为:
(与无关)。