2019-2020年中考数学总复习教案 课时17 反比例函数
- 格式:doc
- 大小:365.50 KB
- 文档页数:7
第13讲:反比例函数一、复习目标1、理解反比例函数的意义,能根据已知条件确定反比例函数的解析式,能画出反比例函数的图象2、能够将反比例函数有关的实际应用题转化为函数问题二、课时安排1课时三、复习重难点1、反比例函数图象与性质2、反比例函数图象、性质的应用四、教学过程(一)知识梳理反比例函数的图象与性质·PN=|y|·|x|=(二)题型、技巧归纳考点1:反比例函数的概念技巧归纳:判断点是否在反比例函数图象上的方法有两种:一是口算选项中点的横坐标与纵坐标乘积是否都等于比例系数,二是将选项中点的坐标诸个代入反比例函数关系式,看能否使等式成立.考点2:反比例函数的图象与性质技巧归纳:1、比较反比例函数值的大小,在同一个象限内根据反比例函数的性质比较,在不同象限内,不能按其性质比较,函数值的大小只能根据特征确定.2、过反比例函数y =kx的图象上的某点向两坐标轴作垂线,两垂线与坐标轴围成的矩形的面积就等于|k |,故而常过图象上某点向坐标轴作一条或两条垂线,引出三角形或矩形的面积来解决问题.考点3反比例函数的应用技巧归纳:先根据双曲线上点C 的坐标求出m 的值,从而确定点C 的坐标,再将点C 的坐标代入一次函数关系式中确定n 的值,在求出两个函数关系式后结合条件可求出三角形的面积.过反比例函数y =k x的图象上的某点向两坐标轴作垂线,两垂线与坐标轴围成的矩形的面积就等于|k |,故而常过图象上某点向坐标轴作一条或两条垂线,引出三角形或矩形的面积来解决问题.(三)典例精讲例1 某反比例函数的图象经过(-1,6),则下列各点中,此函数图象也经过的点是( ) A .(-3,2) B .(3,2) C .(2,3) D .(6,1)[解析] 设反比例函数的关系式为y =kx,把点(-1,6)代入可求出k =-6,所以反比例函数的关系式为y =-6x,故此函数也经过点(-3,2),答案选A.例2在反比例函数y =k x (k <0)的图象上有两点()-1,y 1,⎝ ⎛⎭⎪⎫-14,y 2,则y 1-y 2的值是( ) A .负数 B .非正数C .正数D .不能确定 [解析] 反比例函数y =kx :当k <0时,该函数图象位于第二、四象限,且在每一象限内,y 随x 的增大而增大.又∵点(-1,y 1)和⎝ ⎛⎭⎪⎫-14,y 2均位于第二象限,-1<-14, ∴y 1<y 2,∴y 1-y 2<0,即y 1-y 2的值是负数,故选A.例3 如图点A ,B 在反比例函数y = (k>0,x>0)的图象上,过点A ,B 作x 轴的垂线,垂足分别为M ,N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为________.[解析] ∵S △AOC =6,OM =MN =NC =13OC ,∴S △OAC =12×OC×AM,S △AOM =12×OM×AM=13 S △OAC =2=12|k|.又∵反比例函数的图象在第一象限,k >0,则k =4.例4 如图13-2,在平面直角坐标系xOy 中,直线y =2x +n 与x 轴、y 轴分别交于点A 、B ,与双曲线y =4y x=在第一象限内交于点C (1,m ). (1)求m 和n 的值;(2)过x 轴上的点D (3,0)作平行于y 轴的直线l ,分别与直线AB 和双曲线y = 交于点P 、Q ,求△APQ 的面积.解:(1) ∵点C(1,m)在双曲线y =4x上,∴m =4,将点C(1,4)代入y =2x +n 中,得n =2;(2)在y =2x +2中,令y =0,得x =-1,即A(-1,0).将x =3代入y =2x +2和y =4x,得点P(3,8),Q ⎝ ⎛⎭⎪⎫3,43,∴PQ =8-43=203.又∵AD =3-(-1)=4,∴△APQ 的面积=12×4×203=403. (四)归纳小结本部分内容要求熟练掌握反比例函数的求法,能画出反比例函数的图象,能够将反比例函数有关的实际应用题转化为函数问题(五)随堂检测1、已知点A(-2,y 1)、B(1,y 2)和C(2,y 3)都在反比例函数ky x= (k<0)的图象上,那么y 1、y 2和y 3的大小关系如何?2、已知反比例函数7y x=-图象上三个点的坐标分别是A(-2,y 1)、B(-1,y 2)、C(2,y 3),能正确反映y 1、y 2、y 3的大小关系的是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 2>y 1>y 3D .y 2>y 3>y 13、已知反比例函数y=(k 为常数,k≠0)的图象经过点A (2,3). (Ⅰ)求这个函数的解析式;(Ⅱ)判断点B (﹣1,6),C (3,2)是否在这个函数的图象上,并说明理由; (Ⅲ)当﹣3<x <﹣1时,求y 的取值范围.4、如图,在平面直角坐标系xOy 中,正比例函数y=kx 的图象与反比例函数y=的图象有一个交点A (m ,2).(1)求m 的值;(2)求正比例函数y=kx 的解析式;(3)试判断点B(2,3)是否在正比例函数图象上,并说明理由.五、板书设计反比例函数六、作业布置反比例函数课时作业七、教学反思借助多媒体形式,使同学们能直观感受本模块内容,以促进学生对所学知识的充分理解与掌握。
备战2020年中考数学一轮专项复习——反比例函数综合问题一、反比例函数的概念:知识要点:1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。
注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:(A )y = xk (k ≠ 0) ; (B )xy = k (k ≠ 0); (C )y=kx -1(k ≠0) 二、反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。
2、位置:(1)当k>0时,双曲线分别位于第一、三象限内;(2)当k<0时, 双曲线分别位于第二、四象限内。
3、增减性:(1)当k>0时,y = xk (k ≠ 0)为减函数,y 随x 的增大而减小; (2)当k<0时,y = xk (k ≠ 0)为增函数,y 随x 的增大而增大。
4、变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点成中心对称;(2)对于k 取互为相反数的两个反比例函数(如:y =x 6 和y = x 6 )来说,它们是关于x 轴,y 轴成轴对称。
一、选择题:1.下列函数,①y =2x ,②y =x ,③y =x ﹣1,④y =是反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个【分析】根据反比例函数的定义,反比例函数的一般式是(k ≠0)判定则可. 【解析】①y =2x 是正比例函数;②y =x 是正比例函数;③y =x ﹣1是反比例函数;④y=不是反比例函数,是反比例关系;所以共有1个.故选:B.2.(2019•济南)函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【解析】a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D符合;故选:D.3.如图,过原点的直线l与反比例函数y=﹣的图象交于M,N两点,根据图象猜想线段MN的长的最小值是()A.B.2C.2 D.1【分析】设N的横坐标是a,则纵坐标是﹣,利用a即可表示出ON的长度,然后根据不等式的性质即可求解.【解析】设N的横坐标是a,则纵坐标是﹣.则OM=ON=≥.则MN的最小值是2.故选:B.4.(2019•阜新)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y 轴上,则△ABC的面积为()A.3 B.2 C.D.1【解析】连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB,而S△OAB=|k|=,∴S△CAB=,故选:C.5.(2019•遵义)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为()A.2 B.3 C.4 D.6【解析】过点A作x轴的垂线,交CB的延长线于点E,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为4,2,∴A(,4),B(,2),∴AE=2,BE=k﹣k=k,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE==1∴k=1,∴k=4.故选:C.6.如图,在菱形ABOC中,∠ABO=120°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则该反比函数的表达式为()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【分析】点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解析】过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:B.7.(2019•淄博)如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y =(x>0)的图象上.则y1+y2+…+y10的值为()A.2B.6 C.4D.2【解析】过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…其斜边的中点C1在反比例函数y=,∴C(2,2)即y1=2,∴OD1=D1A1=2,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=得:a(4+a)=4,解得:a=,即:y2=,同理:y3=,y 4=,……∴y1+y2+…+y10=2+++……=,故选:A.8.如图,已知点A,B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P 是AC的中点.若△ABP的面积为4,则k的值为().A.16 B.8 C.4 D.24【分析】由△ABP的面积为4,知BP•AP=8.根据反比例函数y=中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.【解答】解:∵△ABP 的面积为•BP •AP =4,∴BP •AP =8,∵P 是AC 的中点,∴A 点的纵坐标是B 点纵坐标的2倍,又∵点A 、B 都在双曲线y =(x >0)上,∴B 点的横坐标是A 点横坐标的2倍,∴OC =DP =BP ,∴k =OC •AC =BP •2AP =16.故选A.二、填空题:9.(2019山西)如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数)0(>=x xk y 的图象恰好经过点C ,则k 的值为 .【解析】过点D 作DE ⊥AB 于点E ,则AD=5,∵四边形ABCD 为菱形,∴CD=5∴C (4,4),将C 代入x k y =得:44k =,∴16=k10.(2019遂宁中考 第15题 4分)如图,在平面直角坐标系中,矩形OABC 的顶点O 落在坐标原点,点A 、点C 分别位于x 轴,y 轴的正半轴,G 为线段OA 上一点,将△OCG 沿CG 翻折,O 点恰好落在对角线AC 上的点P 处,反比例函数y =经过点B .二次函数y =ax 2+bx +c (a ≠0)的图象经过C (0,3)、G 、A 三点,则该二次函数的解析式为 .(填一般式)【解析】点C (0,3),反比例函数y =经过点B ,则点B (4,3),则OC =3,OA =4,∴AC =5,设OG =PG =x ,则GA =4﹣x ,PA =AC ﹣CP =AC ﹣OC =5﹣3=2, 由勾股定理得:(4﹣x )2=4+x 2,解得:x =,故点G (,0),将点C 、G 、A 坐标代入二次函数表达式得:,解得:,故答案为:y =x 2﹣x +3. 11.如图,已知点(1,3)在函数y =kx (x >0)的图象上,正方形ABCD 的边BC 在x 轴上,点E 是对角线BD 的中点,函数y =kx(x >0)的图象又经过A ,E 两点,则点E 的横坐标为____.【解析】 把(1,3)代入到y =kx,得k =3, 所以函数解析式为y =3x. 设A (a ,b ),根据图象和题意可知,点E ⎝ ⎛⎭⎪⎫a +b 2,b 2.因为y =3x 的图象经过A ,E ,所以分别把点A 和E 代入到函数解析式中得 ab =3,①b 2⎝ ⎛⎭⎪⎫a +b 2=3,② 由②得ab 2+b 24=3,把①代入得32+b 24=3, 即b 2=6,解得b =±6,因为A 在第一象限,所以b >0,所以b = 6.把b =6代入①求得a =62, 所以点E 的横坐标为a +b 2= 6.故答案为 6. 12.如图,Rt △AOB 中,∠OAB =90°,∠OBA =30°,顶点A 在反比例函数y =图象上,若Rt △AOB 的面积恰好被y 轴平分,则进过点B 的反比例函数的解析式为 .【分析】分别过A 、B 作AE ⊥x 轴于E ,BD ⊥y 轴交AE 于F .设A (a ,b ),则ab =﹣4.根据两角对应相等的两三角形相似,得出△OAE ∽△ABF ,由相似三角形的对应边成比例,则BD 、OD 都可用含a 、b 的代数式表示,从而求出B 的坐标,进而得出结果.【解析】分别过A 、B 作AE ⊥x 轴于E ,BD ⊥y 轴交AE 于F .设A (a ,b ).∵顶点A 在反比例函数y =图象上,∴ab=﹣4.∵∠OAB=90°,∠OAE=90°﹣∠BAF=∠ABF,∠OEA=∠BFA=90°,∴△OAE∽△ABF,∴OA:AB=OE:AF=AE:BF,在Rt△AOB中,∠AOAB=90°,∠OBA=30°,∴OA:AB=1:,∴﹣a:AF=b:BF=1:,∴AF=﹣,BF=b,∵Rt△AOB的面积恰好被y轴平分,∴AC=BC,∴BD=DF=BF=﹣a,OD=AE+AF=b﹣a,∴b=﹣a,∴A(﹣b,b),B(b,b﹣)∴﹣b•b=﹣4,∴b2=,∴k=b(b﹣)=b2﹣ab=10,故答案为:10.13.如图, △OAP ,△ABQ 是等腰直角三角形,点P ,Q 在反比例函数y =4x (x >0)上,直角顶点A ,B 均在x 轴上,则点Q 的坐标为 .【解析】 ∵△OAP 是等腰直角三角形,∴PA =OA .∴设P 点的坐标是(a ,a ),把(a ,a )代入解析式y =4x,解得a =2(a =-2舍去), ∴P 的坐标是(2,2),∴OA =2,∵△ABQ 是等腰直角三角形,∴BQ =AB ,∴可以设Q 的纵坐标是b ,∴横坐标是b +2,把Q 的坐标代入解析式y =4x, 得b =4b +2,∴b =5-1(b =-5-1舍去),∴点Q 的坐标为(5+1,5-1).14.(2019•毕节市)如图,在平面直角坐标中,一次函数y =﹣4x +4的图象与x 轴、y 轴分别交于A 、B 两点.正方形ABCD 的顶点C 、D 在第一象限,顶点D 在反比例函数y =(k ≠0)的图象上.若正方形ABCD 向左平移n 个单位后,顶点C 恰好落在反比例函数的图象上,则n 的值是 .【解析】过点D 作DE ⊥x 轴,过点C 作CF ⊥y 轴,∵AB ⊥AD ,∴∠BAO =∠DAE ,∵AB =AD ,∠BOA =∠DEA ,∴△ABO ≌△DAE (AAS ),∴AE =BO ,DE =OA ,易求A (1,0),B (0,4),∴D (5,1),∵顶点D 在反比例函数y =上,∴k =5,∴y =,易证△CBF ≌△BAO (AAS ),∴CF =4,BF =1,∴C (4,5),∵C 向左移动n 个单位后为(4﹣n ,5),∴5(4﹣n )=5,∴n =3,故答案为3;三、解答题15.如图,一次函数y =kx +2的图象与反比例函数y =m x的图象在第一象限的交点为P .PA 垂直x 轴于点A .PB 垂直y 轴于点B .函数y =kx +2的图象分别交x 轴,y 轴于点C ,D .已知DB =2OD ,△PBD 的面积S △PBD =4.(1)求点D 的坐标;(2)求k ,m 的值;(3)写出当x >0时,使一次函数y =kx +2的值大于反比例函数y =m x的值的x 的取值范围.【解析】(1)在y =kx +2中,令x =0,得y =2,所以点D (0,2).(2)因为OD =2,DB =2OD =4,由S △PBD =4,可得BP =2,而OB =OD +DB =6,所以点P (2,6).将P (2,6)分别代入y =kx +2与y =mx,可得 k =2,m =12.(3) 由图象可知,当x >0时,使一次函数y =kx +2的值大于反比例函数y =mx的值的x 的取值范围是x >2.16.(2019遂宁中考 第23题 10分)如图,一次函数y =x ﹣3的图象与反比例函数y ═(k ≠0)的图象交于点A 与点B (a ,﹣4).(1)求反比例函数的表达式;(2)若动点P 是第一象限内双曲线上的点(不与点A 重合),连接OP ,且过点P 作y 轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求出点P的坐标.【解析】(1)将B(a,﹣4)代入一次函数y=x﹣3中得:a=﹣1∴B(﹣1,﹣4)将B(﹣1,﹣4)代入反比例函数y═(k≠0)中得:k=4∴反比例函数的表达式为y=;(2)如图:设点P的坐标为(m,)(m>0),则C(m,m﹣3)∴PC=|﹣(m﹣3)|,点O到直线PC的距离为m∴△POC的面积=m×|﹣(m﹣3)|=3解得:m=5或﹣2或1或2∵点P不与点A重合,且A(4,1)∴m≠4又∵m>0∴m=5或1或2∴点P的坐标为(5,)或(1,4)或(2,2).17.(2019•河池)在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=与AD交于点P.当△AEP为等腰三角形时,求m的值.【解析】(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=过点E,∴k1=12.∴反比例函数的解析式为y=.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴=,∴=,∴=,∵∠MCN=∠BCD,∴△MCN∽△BCD,∴∠CNM=∠CDB,∴MN∥BD,∴△CMN∽△CBD.∵B(6,0),D(0,8),∴直线BD的解析式为y=﹣x+8,∵C,C′关于MN对称,∴CC′⊥MN,∴CC′⊥BD,∵C(6,8),∴直线CC′的解析式为y=x+,∴C′(0,).(3)如图3中,①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,∴5m=4(m+3),∴m=12.②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,∴8m=4(m+3),∴m=3.③显然PA≠PE,若相等,则PE∥x轴,显然不可能.综上所述,满足条件的m的值为3或12.18.“六一”儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度)如图,它与两面互相垂直的围墙OP,OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任意一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等.比如:A,B,C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI 的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1,S2,S3,并测得S2=6(单位:平方米),OG=GH=HI.(1)求S1和S3的值;(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数解析式;(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?【解析】(1)∵矩形ADOG 、矩形BEOH 、矩形CFOI 的面积相等,∴弯道为反比例函数图象的一部分.设反比例函数的解析式为y =k x (k ≠0),OG =GH =HI =a ,则AG =k a ,BH =k 2a ,CI =k 3a .所以S 2=k 2a •a -k 3a•a =6,解得k =36.所以S 1=k a •a -k 2a •a =12k =12×36=18,S 3=k 3a •a =13k =13×36=12;(2)由(1)得,弯道的函数解析式为y =36x .∵T(x ,y)是弯道MN 上的任一点,∴y =36x ;(3)∵MP =2,NQ =3,∴GM =362=18,OQ =363=12.∵在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),∴当x =2时,y =18,可以种8棵;当x =4时,y =9,可以种4棵;当x =6时,y =6,可以种2棵;当x =8时,y =4.5,可以种2棵;当x =10时,y =3.6,可以种1棵.故一共可以种8+4+2+2+1=17(棵)花木.19、如图,已知反比例函数k y x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+. (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【解析】(1)∵已知反比例函数k y x =经过点(1,4)A k -+,∴41k k-+=,即4k k -+= ∴2k =∴A(1,2) ∵一次函数y x b =+的图象经过点A(1,2),∴21b =+∴1b =∴反比例函数的表达式为2y x=, 一次函数的表达式为1y x =+。
对比解法 反思教学本文用三种方法证明一道反比例函数中考题.这三种方法的思维起点不同,我们可以从解题思路的形成过程中,对比各种方法的优劣,以提高解题能力. 一、问题(2019年淄博中考题)反比例函数a y x =(0a >,a 为常数)和2y x=在第一象限内的图象如图1所示,点M 在a y x =的图象上,MC x ⊥轴于点C ,交2y x =的图象于点A ;MD y ⊥轴于点D ,交2y x=的图象于点B ,当点M 在ay x=的图象上运动时,以下结论:①ODB OCA S S =V V②四边形OAMB 的面积不变;、③当点A 是MC 的中点时,则点B 是MD 的中点. 其中正确结论的个数是( )(A)0 (B)1 (C)2 (D)3二、解法分析1 ①②解答易,略.③如图1,要证明点B 是MD 的中点,因为A 是MC 的中点,若//AB CD ,有 MAB MCD V :V ,则MA MBMC MD=点B 是MD 的中点成立.由于点A 、B 在同一反比例函数2y x=图象上,可联想到图2所示的AOC BOD S S =V V ,这两个三角形面积相等如何联系到//AB CD ?于是想到图3中,当ABC ABD S S =V V 时,有//AB CD .至此,图1中,将ACO V 积转化成AB 、CD 两线中间的三角形,就成为求解的关健.根据两条平行线之间同底的三角形面积相等,由//AC OD ,ACO ACD S S =V V ,这样就把ACO V 等积转化成ACD V . 同理,由//BD OC ,BDO BDC S S =V V ,把BDO V 等积转化成BDC V 则ACD V 与BDC V 就是我们要寻找的三角形. 又ACO BDO S S =V V ,∴ACD BDC S S =V V再由图3基本图形的结论可以得到//AB CD .证明1 连结AB 、CD 、AD 、BC ∵点A 、B 在同一反比例函数上,∴AOC BOD S S =V V ∵//AC OD ,//BD OC∴ACO ACD S S =V V ,BDO BDC S S =V V ∴ACD BDC S S =V V ∴//AB CD∴MAB MCD V :V∴MA MBMC MD=∵A 是MC 的中点 ∴B 是MD 的中点分析,③由题意可知,若MA MBAC BD=成立,当点A 是MC 的中点时,点B 是MD 的中点成立. 我们考虑能否用代数方法求出线段MA 、AC 、MB 、BD 的长,再算出MA AC 和MB BD的值,然后看MAAC 和MB BD的值是否相等,这个思路更朴素一些. 如图4,不妨设(,)M m n ,点A 、B 在反比例函数2y x=上,则2(,)A m m ,2(,)B n n,还可以求出(,0)C m ,(0,)D n ,容易求出线段MA 的长为2n m-线段AC 的长为2m ,线段MB 的长为2m n -,线段BD 的长为2n又2122n MA mn m AC m -==-, 2122m MB mn n BD n -==- 所以MA MB AC BD=,问题得证.证明2 设(,)M m nMC x ⊥Q 轴,MD y ⊥轴(,0)C m ∴,(0,)D n∵点A 、B 在反比例函数2y x=上 ∴2(,)A m m ,2(,)B n n∴2MA n m =-,2AC m =,2MB m n =-,2BD n =∴2122n MA mn m AC m -==-, 2122m MB mn n BD n -==-. ∴MA MB AC BD=. ∵A 是MC 的中点 ∴B 是MD 的中点.分析3 ③如图5,由题意可知,点A 是MC 的中点,若MA MBAC BD=成立,则点B 是MD 的中点成立.于是,问题就转化成证明MA MBAC BD=点A 和B 在同一个反比例函数的图象上,容易想到的是作AF OD ⊥,BE OC ⊥;则矩形OCAF 和矩形ODBE 面积相等,即OCAFODBE S S =,又由OCAFODBE S S =,容易得出FGBDECAG S S =而FGBD ECAG SS = (或OCAF ODBE SS =)要关联MA MBAC BD =才行,显然它们之间没有直接联系,继续观察图形,可以看到MA BG =、MB AG =.于是把MA MB AC BD =换成BG AGAC BD=,问题又转化FGBD ECAG S S = (或OCAF ODBE S S =),需要BG AGAC BD=.由图4可以看到 FGBD BG BD S =g ,ECAG AG AC S =g 这样,由FGBD ECAG SS =,可以轻松得出BG AG AC BD =,进而证明了MA MBAC BD=证明3 作AF OD ⊥,BE OC ⊥,AF 和BE 交点为G .∵点A 、B 在同一反比例函数上,∴OCAF ODBE S S = ∴FGBD ECAG S S =∵FGBD BG BD S =g ,ECAG AG AC S =gBG BD AG AC ∴=g g ∴BG AG AC BD= MA BG =Q ,MB AG = ∴MA MB AC BD= ∵A 是MC 的中点 ∴B 是MD 的中点3对比解法,反思教学以上证法1主要应用了图2和图3两个基本图形的结论,解题时要求能想到着两个结论,还要在图1中添加辅助线构造出图3所示的基本图形,才能证明出图1中的//AB CD .证法2的起点低,用代数方法解决,设出点M 的坐标,用代数方法分别求出线段MA 、AC 、MB 、BD 的长,再计算线段之比,得出结论.证法3从学生熟悉的结论OCAF ODBE SS =入手,一步一步向MA MBAC BD=靠拢,当发现不能直接得出结论时,将相等的线段进行替换,欲证的MA MB AC BD =转化成BG AG AC BD =,而BG AGAC BD=经过变形变为BG BD AG AC =g g ,从而与学生熟悉的OCAF ODBE S S = “无缝对接”,问题得证.解法1的思维起点是图2和图3所示两个基本图形的结论,有了这2个两个基本图形结论的经验、就容易想到解法1.笔者用解法1教学时没有达到预期的效果,于是想到能不能用代数方法求解,探究后发现解法2的起点低,设出M 的坐标后,只要计算无误,就能正确解答.解法2易于理解,但不能确定什么条件下用代数方法求解,什么条件下不能用代数方法求解.这三种解法相比,解法2最简单,学生容易接受,类似的问题也可以用同样的方法解决.解法3符合学生的思路.学生对图5中OCAF ODBE S S =较为熟悉,从学生熟悉的OCAF ODBE S S =入手,一环扣一环的展开思考,顺利引导学生独立证明了问题.与解法2相比,解法3稍繁琐.但在证明的过程中,学生运用了反比例函数问题中的面积法,强化了数学解题中的转化思想,发展了学生的思维,提高了学生的解题能力.综上所述,在解题教学中,要从学生的实际情况出发,找到学生思维的最近发展区,根据学生现有的知识积累和解题经验寻找解题思路.这样的解题思路才是学生易于理解的思路;这样的解题教学可以发展学生的数学思维,培养学生的解题习惯,提高学生的解题能力.2019-2020学年数学中考模拟试卷一、选择题1.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,有下列结论:①abc >0;②a+b+c =2;③a 12>;④b >1,其中正确的结论个数是( )A.1个B.2 个C.3 个D.4 个2.已知二次函数()221y ax a x =++-(a 为常数,且0a ≠),( ) A .若0a >,则1x <-,y 随x 的增大而增大; B .若0a >,则1x <-,y 随x 的增大而减小; C .若0a <,则1x <-,y 随x 的增大而增大; D .若0a <,则1x <-,y 随x 的增大而减小;3.某中学为了创建“最美校园图书屋”新购买了一批图书,其中科普类图书平均每本的价格是文学类图书平均每本书价格的1.2倍,已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是( ) A.20元B.18元C.15元D.10元4.下列运算正确的是( ) A .22321a a -=B .22122a a a ⋅= C .623a a a ÷= D .()()3223a ba b b -÷=-5.如果30x y -=,那么代数式()2222x yx y x xy y +⋅--+的值为( )A .27-B .27C .72-D .726.一几何体的三视图如图所示,这个几何体是( )A .四棱锥B .圆锥C .三棱柱D .四棱柱7.下列图案中,是中心对称图形的为( )A .B .C .D .8.如图,将边长为8cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH,则线段AF 的长是()A.3cmB.4cmC.5cmD.6cm9.如图,已知AB=A 1B ,A 1C=A 1A 2,A 2D=A 2A 3,A 3E=A 3A 4,若∠B=20°,则∠A=_____,4A ∠=______.( )A .80°,40°B .80°,30°C .80°,20°D .80°,10°10.如图,△ABC 是等腰直角三角形,AC =BC =a ,以斜边AB 上的点O 为圆心的圆分别与AC 、BC 相切于点E 、F ,与AB 分别相交于点G 、H ,且EH 的延长线与CB 的延长线交于点D ,则CD 的长为( )A .12aB .12aCD .14a ⎫⎪⎭11.不等式2x+3>3x+2的解集在数轴上表示正确的是( )A .B .C .D .12.如图,一条抛物线与x 轴相交于A (x 1,0)、B (x 2,0)两点(点B 在点A 的右侧),其顶点P 在线段MN 上移动,M 、N 的坐标分别为(﹣1,2)、(1,2),x 1的最小值为﹣4,则x 2的最大值为( )A.6B.4C.2D.﹣2二、填空题13.如图,已知▱ABCD中,AB=16,AD=10,sinA=35,点M为AB边上一动点,过点M作MN⊥AB,交AD边于点N,将∠A沿直线MN翻折,点A落在线段AB上的点E处,当△CDE为直角三角形时,AM的长为_____.14.如果一个多边形的各个外角都是40°,那么这个多边形的内角和是_____度.15.如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若17DGGA,则ADAB=__.16.如图,等腰三角形 ABC 的底边 BC 长为 4,面积是 12,腰 AB 的垂直平分线 EF 分别交AB,AC 于点 E、F,若点 D 为底边 BC 的中点,点 M 为线段 EF 上一动点,则△BDM 的周长的最小值为 _________17.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.18.将矩形纸片ABCD如图那样折叠,使顶点B与顶点D重合,折痕为EF.若∠DFC=70°,则∠DEF=_____°.三、解答题19.如图,AB为⊙O的直径,点C,D在⊙O上,且点C是BD的中点.连接AC,过点C作⊙O的切线EF 交射线AD于点 E.(1)求证:AE⊥EF;(2)连接BC.若AE=165,AB=5,求BC的长.20.某店铺经营某种品牌童装,购进时的单价是40元,根据市场调查,当销售单价是60元时,每天销售量是200件,销售单价每降低1元,就可多售出20件.(1)求出销售量y件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润W(元)与销售单价x元)之间的函数关系式;(3)若装厂规定该品牌童装的销售单价不低于56元且不高于60元,则此服装店销售该品牌童装获得的最大利润是多少?21.(问题)用n个2×1矩形,镶嵌一个2×n矩形,有多少种不同的镶嵌方案?(2×n矩形表示矩形的邻边是2和n)(探究)不妨假设有a n种不同的镶嵌方案.为探究a n的变化规律,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进,最后猜想得出结论.探究一:用1个2×1矩形,镶嵌一个2×1矩形,有多少种不同的镶嵌方案?如图(1),显然只有1种镶嵌方案.所以,a1=1.探究二:用2个2×1矩形,镶嵌一个2×2矩形,有多少种不同的镶嵌方案?如图(2),显然只有2种镶嵌方案.所以,a2=2.探究三:用3个2×1矩形,镶嵌一个2×3矩形,有多少种不同的镶嵌方案?一类:在探究一每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有1种镶嵌方案;二类:在探究二每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有2种镶嵌方案; 如图(3).所以,a 3=1+2=3.探究四:用4个2×1矩形,镶嵌一个2×4矩形,有多少种不同的镶嵌方案? 一类:在探究二每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有 种镶嵌方案; 二类:在探究三每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有 种镶嵌方案; 所以,a 4= .探究五:用5个2×1矩形,镶嵌一个2×5矩形,有多少种不同的镶嵌方案? (仿照上述方法,写出探究过程,不用画图) ……(结论)用n 个2×1矩形,镶嵌一个2×n 矩形,有多少种不同的镶嵌方案? (直接写出a n 与a n ﹣1,a n ﹣2的关系式,不写解答过程).(应用)用10个2×1矩形,镶嵌一个2×10矩形,有 种不同的镶嵌方案. 22.已知反比例函数ky x=的图象经过点P (2,3),函数y =ax+b 经过反比例函数图象上一点Q (1,m ),交x 轴于A 交y 轴于B (A ,B 不重合).(1)求出点Q 的坐标.(2)若OA =OB ,直接写出b 的值.23.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)求两辆车全部继续直行的概率. (2)下列事件中,概率最大的是( )A .一辆车向左转,一辆车向右转B .两辆车都向左转C .两辆车行驶方向相同D .两辆车行驶方向不同24.如图,两根竹竿AB 和AC 斜靠在墙BD 上,量得37ABD ∠=︒,45ACD ∠=︒,cm BC 50=,求竹竿AB 和AC 的长(结果精确到0.1cm ).(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈,1.41≈).25.某校为改善办学条件,计划购进A B 、两种规格的书架,经市场调查发现有线下和线上两种方式,具有情况如下表:、两种书架20个,共花费5520元,求A B、两种书架各购买了多少个;(Ⅰ)如果在线下购买A B、两种书架20个,共花费w元,设其中A种书架购买m个,求W关于m的函(Ⅱ)如果在线上购买A B数关系式;(Ⅲ)在(Ⅱ)的条件下,若购买B种书架的数量不少于A种书架的2倍,请求出花费最少的购买方案,并计算按照该购买方案线上比线下节约多少钱.【参考答案】***一、选择题二、填空题13.4或814.12601516.817.8018.55三、解答题19.(1)证明见解析;(2)3.【解析】【分析】(1)连接OC,根据等腰三角形的性质、平行线的判定得到OC∥AE,得到OC⊥EF,结论可得证;(2)证明△AEC∽△ACB,根据相似三角形的性质列出比例式,计算AC后即可用勾股定理得BC的长.【详解】(1)连接 OC.∵OA=OC,∴∠1=∠2.∵点C是BD的中点.∴∠1=∠3.∴∠3=∠2.∴AE∥OC.∵EF是⊙O的切线,∴OC⊥EF.∴AE⊥EF;(2)∵AB为⊙O 的直径,∴∠ACB=90°.∵AE⊥EF,∴∠AEC=90°.又∵∠1=∠3,∴△AEC∽△ACB.∴AC AE AB AC=,∴AC2=AE•AB=165×5=16.∴AC=4.∵AB=5,∴BC==3.【点睛】本题考查的是切线的性质、圆周角定理以及相似三角形的判定和性质,掌握切线的性质定理、直径所对的圆周角是直角是解题的关键.20.(1)y=﹣20x+1400(40≤x≤60);(2)W=﹣20x2+2200x﹣56000;(3)商场销售该品牌童装获得的最大利润是4480元.【解析】【分析】(1)销售量y件为200件加增加的件数(60-x)×20;(2)利润w等于单件利润×销售量y件,即W=(x-40)(-20x+1400),整理即可;(3)先利用二次函数的性质得到w=-20x2+2200x-56000=-20(x-55)2+4500,而56≤x≤60,根据二次函数的性质得到当56≤x≤60时,W随x的增大而减小,把x=56代入计算即可得到商场销售该品牌童装获得的最大利润.【详解】(1)根据题意得,y=200+(60﹣x)×20=﹣20x+1400,∴销售量y件与销售单价x元之间的函数关系式为: y=﹣20x+1400,(2)设该品牌童装获得的利润为W(元)根据题意得,W=(x﹣40)y=(x﹣40)(﹣20x+1400)=﹣20x2+2200x﹣56000,∴销售该品牌童装获得的利润W元与销售单价x元之间的函数关系式为:W=﹣20x2+2200x﹣56000;(3)根据题意得56≤x≤60,W=﹣20x2+2200x﹣56000=﹣20(x﹣55)2+4500∵a=﹣20<0,∴抛物线开口向下,当56≤x≤60时,W随x的増大而减小,∴当x=56时,W有最大值,W max=﹣20(56﹣55)2+4500=4480(元),∴商场销售该品牌童装获得的最大利润是4480元.【点睛】本题考查了二次函数的应用:根据实际问题列出二次函数关系式,然后利用二次函数的性质,特别是二次函数的最值问题解决实际中的最大或最小值问题.21.(1)2,3,5;(2)a n=a n﹣1+a n﹣2;(3)89.【解析】【分析】探究四:画图进行说明:a4=2+3=5;探究五:同理在探究三每个镶嵌图的右侧再横着镶嵌2个2×1矩形和探究四每个镶嵌图的右侧再竖着镶嵌个1个2×1矩形,相加可得结论;结论:根据探究四和五可得规律:a n=a n-1+a n-2;应用:利用结论依次化简,将右下小标志变为5和4,并将探究四和五的值代入可得结论.【详解】解:探究四:如图4所示:一类:在探究二每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有2种镶嵌方案;二类:在探究三每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有3种镶嵌方案;所以,a4=2+3=5.故答案为:2,3,5;探究五:一类:在探究三每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有3种镶嵌方案;二类:在探究四每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有5种镶嵌方案;所以,a5=3+5=8.……结论:a n=a n﹣1+a n﹣2;应用:a10=a9+a8=a7+a8+a8=2a8+a7=2(a7+a6)+a7=3a7+2a6=3(a6+a5)+2a6=5a6+3a5=5(a5+a4)+3a5=8a5+5a4=8×8+5×5=89.故答案为:89.【点睛】本题是规律型问题和方案作图题,主要考查了计数方法,培养学生根据已知问题和图形的关系,进行分析推断,得出规律的能力,并运用类比的方法解决问题.22.(1)Q点坐标为(1,6);(2)b=5或7.【解析】【分析】(1)根据待定系数法可求反比例函数的解析式,由点Q(1,m)在反比例函数kyx=的图象上,代入可求出点Q的坐标;(2)由题意OA=OB,可得直线y=ax+b的比例系数为1或﹣1,再分两种情况:①当a=1时,②当a=﹣1时,进行讨论可求b的值.【详解】如图:(1)将P(2,3)代入kyx=中得32k=,解得:k=6,∴反比例函数的解析式为6yx =,将点Q(1,m)代入6yx =,∴661m==,∴Q点坐标为(1,6);(2)由题意OA=OB,∴直线y=ax+b的比例系数为1或﹣1,①当a=1时,y=x+b,将Q(1,6)代入得,6=1+b,∴b=5,∴解析式为y=x+5;②当a=﹣1时,y=﹣x+b,将Q(1,6)代入得,6=﹣1+b,∴b=7,∴解析式为y=﹣x+7.【点睛】此题考查了反比例函数与一次函数的交点问题,此题要能够根据点在图象上求得待定系数的值,以及分类思想的运用.23.(1)1()9P A =,(2)D 【解析】【分析】列举出所有可能出现的结果,找出两辆车全部继续直行的结果数,根据概率公式即可得答案;(2)根据(1)列举出的所有可能出现的结果,分别得出各选项的概率,即可得答案.【详解】(1)∵所有可能出现的结果有:(直行,直行),(直行,左转),(直行,右转),(左转,直行),(左转,左转),(左转,右转),(右转,直行),(右转,左转),(右转,右转),共有9种,它们出现的可能性相同,所有的结果中,满足“两辆车全部继续直行”(记为事件A )的结果有1种,∴P(A)=19. (2)由(1)可知所有可能出现的结果共有9种, A.一辆车向左转,一辆车向右转的概率为:29 B.两辆车都向左转的概率为:19C.两辆车行驶方向相同的概率为:39=13D.两辆车行驶方向不同的概率为:69=23 故选D.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.24.竹竿AB 的长约为250.0cm ,竹竿AC 的长约为211.5cm .【解析】【分析】在Rt ΔACD 和Rt ΔABD 中,利用三角函数用AD 分别表示出CD 、AC 、BD 和AB 的长,根据BC+CD=BD 列出方程,可求出AD 的长,进而可得答案.【详解】∵在Rt ΔACD 中,AD tan ACD CD ∠=,AD sin ACD AC∠=,ACD 45∠=︒,∴AD CD AD tan45==︒,AD AC sin45==︒. 在Rt ΔABD 中,AD tan ABD BD ∠=,AD sin ABD AB∠=,ABD 37∠=︒, ∴AD BD tan37=︒,AD AB sin37=︒, ∵BC CD BD +=,BC 50=,∴AD50ADtan37+=︒.∴50tan37AD150.001tan37︒=≈-︒.∴AC211.5=≈,ADAB250.0sin37=≈︒.答:竹竿AB的长约为250.0cm,竹竿AC的长约为211.5cm.【点睛】本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.25.(Ⅰ)购买A种书架8个,B种书架12个;(Ⅱ)W=-50m+5600,(Ⅲ)线上比线下节约340元.【解析】【分析】(Ⅰ)设购买A种书架x个,则购买B种书架(20-x)个,根据买两种书架共花费5520元,列方程求解即可;(Ⅱ)W=买A种书架的花费+买B种书架的花费+运费,列式即可;(Ⅲ)根据购买B种书架的数量不少于A种书架的2倍,求出m的取值范围,再根据第(Ⅱ)小题的函数关系式,求出v的最小值即线上的花费,在求出线下需要的花费即可.【详解】解:(Ⅰ)设购买A种书架x个,则购买B种书架(20-x)个,根据题意,得:240x+300(20-x)=5520,解得:x=8,∴20-8=12,答:购买A种书架8个,B种书架12个;(Ⅱ)根据题意,得:W=210m+250(20-m)+20m+30(20-m)=-50m+5600,(Ⅲ)根据题意,得:20-m≥2m,解得:m≤203,∵-50<0,∴v随m的增大而减小,∴当m=6时,W最小为-300+5600=5300,线下购买时的花费为:240×6+300×14=5640,5640-5300=340(元),∴线上比线下节约340元.【点睛】本题主要考查一次函数的应用和一元一次不等式的应用,解决第(3)小题的关键是能根据函数的增减性,求出W的最小值.2019-2020学年数学中考模拟试卷一、选择题1.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A. B.C. D.2.如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点P在边AB上,∠CPB的平分线交边BC 于点D,DE⊥CP于点E,DF⊥AB于点F.当△PED与△BFD的面积相等时,BP的值为()A. B. C. D.3.如图,AB是半圆O的直径,C是半圆O上一点,于点Q,过点B作半圆O的切线,交OQ的延长线于点P,PA交半圆O于R,则下列等式中正确的是()A. B. C. D.4.在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其它差别,从这个袋子中随机摸出一个球,摸到红球的概率为()A.1 B.14C.12D.345.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为()A B .2 C .D .(1+ 6.下列事件中,属于必然事件的是( )A .“世界杯新秀”姆巴佩发点球 100%进球B .任意购买一张车票,座位刚好挨着窗口C .三角形内角和为 180°D .叙利亚不会发生战争7.半径为r 的圆的内接正六边形边长为( )A .1r 2BC .rD .2r8.如图是由几个相同的小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是( )A .B .C .D .9.如图是某厂2018年各季度产值统计图(单位:万元),则下列说法正确的是( )A .四个季度中,每个季度生产总值有增有减B .四个季度中,前三个季度生产总值增长较快C .四个季度中,各季度的生产总值变化一样D .第四季度生产总值增长最快10.△ABC 中,AB =7,BC =24,AC =25.在△ABC 内有一点P 到各边的距离相等,则这个距离为( )A .1B .2C .3D .411.从长度分别为2,4,6,8的四条线段中任选三条作边,能构成三角形的概率为( ) A.12 B.13 C.14 D.1512.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A .1B .2C .3D .4 二、填空题13.如图,在直角坐标系中,O 为坐标原点,点A (1,2),过点A 分别作x 轴、y 轴的平行线交反比例函数y=k x(x>0)的图象于点B ,C ,延长OA 交BC 于点D .若△ABD 的面积为2,则k 的值为______.14.如图,△ACB 中,∠ACB=90°,在AB 的同侧分别作正△ACD 、正△ABE 和正△BCF. 若四边形CDEF 的周长是24,面积是17,则AB 的长是_______.15.如图,线段BD 、CE 相交于点A ,DE ∥BC .如果AB =4,AD =2,DE =1.5,那么BC 的长为_____.16.平面直角坐标系中,点P(﹣2,4)关于x 轴对称的点的坐标为_____.17.如图,在ABC ∆中,点D 、E 分别为边AB 、AC 的中点,ABC ∠的平分线交线段DE 于点F ,若12AB =,18BC =,则线段EF 的长为_______.18.在等腰△ABC 中底BC =2,腰AC =b ,且关于x 的方程x 2﹣4x+b =0有两个相等的实数根,则△ABC 的周长是_____.三、解答题19.某幼儿园购买了A ,B 两种型号的玩具,A 型玩具的单价比B 型玩具的单价少9元,已知该幼儿园用了3120元购买A 型玩具的件数与用4200元购买B 型玩具的件数相等.(1)该幼儿园购买的A ,B 型玩具的单价各是多少元?(2)若A ,B 两种型号的玩具共购买200件,且A 型玩具数量不多于B 型玩具数量的3倍,则购买这些玩具的总费用最少需要多少元?20.计算:0)﹣1 21.为丰富学生的课余生活,学校准备购买部分体育器材,以满足学生们的需求.学校对“我最喜爱的体育运动”进行了抽样调查(每个学生只选一次),根据调查结果绘成如图所示的两幅不完整统计图,请你根据统计图提供的信息解答下列问题.(1)求m 、n 的值;(2)若该校有2000名学生,请你根据样本数据,估算该校喜欢踢足球的学生人数是多少?22.某校为了解家长和学生“参与防溺水教育”的情况,在本校学生中随机抽取部分学生做调查,把调查的数据分为以下4类情形:A :仅学生自己参与;B :家长与学生一起参与;C :仅家长自己参与;D :家长和学生都未参与;并把调查结果绘制成了以下两种统计图(不完整).根据以上统计图,解答下列问题:(1)本次接受调查的学生共有_____人.(2)已知B 类人数是D 类人数的6倍.①补全条形统计图;②求扇形统计图中B 类的圆心角度数;③根据调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.如图,抛物线P :21(2)3y a x =+-与抛物线Q :221()12y x t =-+在同一平面直角坐标系中(其中a ,t 均为常数,且t >0),已知点A (1,3)为抛物线P 上一点,过点A 作直线l ∥x 轴,与抛物线P 交于另一点B .(1)求a 的值及点B 的坐标;(2)当抛物线Q 经过点A 时①求抛物线Q 的解析式;②设直线l 与抛物线Q 的另一交点为C ,求AC AB 的值.24.如图,四边形ABCD是菱形,BE是AD边上的高,请仅用无刻度的直尺作图(保留作图痕迹)(1)在图①中,BD=AB,作△BCD的边BC上的中线DF;(2)在图②中,BD≠AB作△ABD的边AB上的高DF.25.阳春三月,龙泉驿区的桃花又开了,小明乘坐地铁到龙泉看桃花,计划在龙平路地铁口下车,如图是龙平路地铁口的平面图,其有A、B、C、D四个出入口,小明任选一个出口下车出站,赏花结束后,任选一个入口入站乘车.(1)小明从出站到入站共有多少种可能的结果?请用树形图或列表说明;(2)求出小明从龙平路同一侧出入站的概率.【参考答案】***一、选择题二、填空题13.1415.316.(﹣2,﹣4)17.318.10三、解答题19.(1)该幼儿园购买的A ,B 型玩具的单价各是26元,35元;(2)购买这些玩具的总费用最少需要5650元.【解析】【分析】(1)根据题意可以得到相应的分式方程,从而可以求得该幼儿园购买的A ,B 型玩具的单价各是多少元;(2)根据题意可以得到费用与购买A 型和B 型玩具之间的关系,从而可以解答本题.【详解】解:(1)设购买A 型玩具的单价是x 元,则购买B 型玩具的单价是(x+9)元,312042009x x =+, 解得,x =26,经检验,x =26是原分式方程的解,∴x+9=35,答:该幼儿园购买的A ,B 型玩具的单价各是26元,35元;(2)设购买A 型玩具a 件,则购买B 型玩具(200﹣a )件,所需费用为w 元,w =26a+35(200﹣a )=﹣9a+7000,∵a≤3(200﹣a ),∴a≤150,∴当a =150时,w 取得最小值,此时w =﹣9×150+7000=5650,答:购买这些玩具的总费用最少需要5650元.【点睛】本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和分式方程的知识解答.20【解析】【分析】将原式中每一项分别化为11+再进行化简.【详解】解:原式=11+=【点睛】本题考查实数的运算;熟练掌握运算性质,绝对值的意义,负整数指数幂,零指数幂是解题的关键.21.(1)m =40,n =60;(2)该校喜欢踢足球的学生人数是400人.【解析】【分析】(1)根据喜爱篮球的人数÷其所占的百分比得到总人数,再由总人数乘以喜爱排球的人数所占百分比得到n ,用总人数-喜爱篮球人数-喜爱排球的人数-喜爱其他人数,即可确定出m 的值;(2)求出喜欢踢足球的学生人数所占的百分比,乘以2000即可得到结果.【详解】(1)70÷35%=200(人)n =200×30%=60,m =200﹣70﹣60﹣40=40;(2)2000×40200=400 (人) 答:该校喜欢踢足球的学生人数是400人.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.22.(1)300;(2)①详见解析;②108°;③100【解析】【分析】(1)由A 类别人数及其所占百分比;(2)①先求出B 、D 的人数和,结合B 类人数是D 类人数的6倍可得答案;②用360°乘以B 人数占被调查人数的比例即可得;③总人数乘以样本中D 类别人数的比例.【详解】(1)(1)本次接受调查的学生共有120÷40%=300(人),故答案为:300;(2) ①D 类人数 (300-120-75)÷(6+1)=15人.B 类人数 6×15=90人.根据以上数据补全图形 ,②B 类的圆心角为90300×360°=108°. ③2000×15300=100(人). 答:估计该校2000名学生中“家长和学生都未参与”的有100人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图是解题的关键.23.(1)a=23,B(﹣5,3);(2)①y2=12(x﹣3)2+1;②23.【解析】【分析】(1)先利用待定系数法求出抛物线P的解析式,即可得出结论;(2)①利用待定系数法求出抛物线Q的解析式,即可得出结论;②先求出AC,AB,即可得出结论.【详解】(1)∵抛物线P:y1=a(x+2)2﹣3过点A(1,3),∴9a﹣3=3,∴a23=,∴抛物线P:y123=(x+2)2﹣3.∵l∥x轴,∴点B的纵坐标为3,∴323=(x+2)2﹣3,∴x=1(点A的横坐标)或x=﹣5,∴B(﹣5,3);(2)①如图,∵抛物线Q:y212=(x﹣t)2+1过点A(1,3),∴12(1﹣t)2+1=3,∴t=﹣1(舍)或t=3,∴抛物线Q:y212=(x﹣3)2+1;②∵l∥x轴,∴点C的纵坐标为3,∴312=(x﹣3)2+1,∴x=1(点A的横坐标)或x=5,∴C(5,1),∴AC=5﹣1=4.∵A(1,3),B(﹣5,3),∴AB=1﹣(﹣5)=6,∴4263 ACAB==.【点睛】本题是二次函数综合题,主要考查了待定系数法,二次函数图象上点的坐标特征,交点坐标的求法,待定系数法是解答本题的关键.24.(1)见解析;(2)见解析.【解析】【分析】(1)连接AC交BD于点O,作直线OE交BC于F,连接DF,线段DF即为所求.(2)作直线AC交BE的延长线于K,作直线DK交BA于点F,线段DF即为所求.【详解】(1)如图1中,线段DF即为所求.。
一、选择题6.(2019·温州)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表.根据表中数据,可得y 关于x 的函数表达式为( )近视眼镜的度数y (度)2002504005001000镜片焦距x (米)0.500.400.250.200.10A .B .C .D .100y x=100x y =400y x=400x y =【答案】A【解析】从表格中的近视眼镜的度数y (度)与镜片焦距x (米)的对应数据可以知道,它们满足xy=100,因此,y 关于x 的函数表达式为.故选A.100y x=9.(2019·株洲)如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数上不同的三点,(0)ky k x=>连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则( ) A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 32第9题【答案】B【解析】由题意知S 1=,S △BOE =S △COF =,因为S 2=S △BOE -S △OME ,S 3=S △COF -S △OME ,所以S 2=S 3 ,所以选B 。
2k 2k9.(2019·娄底)将的图象向右平移1个单位长度,再向上平移1个单位长度所得图象如图(3).则所1y x =得图象的解析式为( )A.B .C .D . 111y x =++111y x =-+111y x =+-111y x =--【答案】C .【解析】二次函数平移的规律“左加右减,上加下减”对所有函数的图象平移均适合.∵将的图象向右平移1个单位长度后所得函数关系式为,1y x =11y x =-∴将的图象向右平移1个单位长度,再向上平移1个单位长度所得图象的解析式为.1y x =111y x =+-故选C .7.(2019·娄底)如图(1),⊙O 的半径为2,双曲线的解析式分别为和,则阴影部分的面积为1y x =1y x =-()A .B .C .D .4π3π2ππ【答案】C【解析】根据反比例函数,及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到1y x =1y x =-一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积.∴.21222S ππ=⨯=阴影故选C .11.(2019·衡阳)如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=(m 为常数且m ≠0)的图象,mx都经过A (-1,2),B (2,-1),结合图象,则不等式kx +b >的解集是( ).mxA. x <-1B. -1<x <0C. x <-1或0<x <2D.-1<x <0或x >2【答案】C .【解析】由图象得,不等式kx +b >的解集是x <-1或0<x <2,故选C .mx1.(2019·滨州)如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴的正半轴上,反比例函数y =(x >0)的图象经过对角线OB 的中点D 和顶点C .若菱形OABC 的面积为12,则k 的值为( )kxA .6B .5C .4D .3【答案】C【解析】如图,连接AC ,∵四边形OABC 是菱形,∴AC 经过点D ,且D 是AC 的中点.设点A 的坐标为(a ,0),点C 坐标为(b ,c ),则点D 坐标为(,).∵点C 和点D 都在反比例函数y=的图2a b +2c kx象上,∴bc=×,∴a=3b;∵菱形的面积为12,∴ac=12,∴3bc=12,bc=4,即k=4.故选C .2a b +2c法2:设点A 的坐标为(a ,0),点C 的坐标为(c ,),则,点D 的坐标为(),∴,解得,k =4,故选C .2. (2019·无锡)如图,已知A 为反比例函数(<0)的图像上一点,过点A 作AB ⊥轴,垂足为B .ky x=x y 若△OAB 的面积为2,则k 的值为( )A.2B. -2C. 4D.-4【答案】D【解析】如图,∵AB ⊥y 轴, S △OAB =2,而S △OAB |k |,∴|k |=2,∵k <0,∴k =﹣4.故选D .12=123. (2019·济宁)如图,点A 的坐标是(-2,0),点B 的坐标是(0,6),C 为OB 的中点,将△ABC 绕点B 逆时针旋转90°后得到△A 'BC '.若反比例函数y =的图象恰好经过A 'B 的中点D ,则k 的值是( )kxA .9B .12C .15D .18【答案】C【解析】取AB 的中点(-1,3),旋转后D (3,5)∴k =3×5=15,故选C.4. (2019·枣庄) 如图,在平面直角坐标系中等腰直角三角形ABC 的顶点A,B 分别在x 轴,y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数(x>0)的图象上,若AB=1,则k 的值为ky x=A.1 D.2【答案】A【解析】在等腰直角三角形ABC 中,AB =1,∴AC ∵CA ⊥x 轴,∴y C ,Rt △ABC 中,∠BAC =45°,CA ⊥x 轴,∴∠BAO =45°,∴∠ABO =45°,∴△ABO 是等腰直角三角形,∴OA ,∴x C ,k =x C `y C =1,故选A5. (2019·淄博)如图,…是分别以…为直角顶点,一条直角边在x 轴11122233,,,OA B A A B A A B ∆∆∆123,,,A A A 正半轴上的等腰直角三角形,其斜边的中点…均在反比例函数111222333(,),(,),(,),C x y C x y C x y (x >0)的图象上,则的值为( )4y x=12100y y y +++A .B .6C .D .【答案】20【解析】如图,过点C 1作C 1M ⊥x 轴,∵△OC 1A 1是等腰直角三角形,∴C 1M =OM =MA 1,设C 1的坐标是(a ,a )(a >0),,把(a ,a )代入解析式(a >0)中,得a =2,4y x=∴y 1=2,∴A 1的坐标是(4,0),又∵△C 2A 1A 2是等腰直角三角形,∴设C 2的纵坐标是b (b >0),则C 2的横坐标是4+b ,把(4+b ,b )代入函数解析式得b =,解得b =﹣2,44b+∴y 2=﹣2,∴A 2的坐标是(,0),设C3的纵坐标是c(c>0),则C3横坐标为+c,把(+c,c)代入函数解析式得c解得c=,∴y3=﹣.∵y1=﹣,y2=﹣,y3=,…∴y100=∴y1+y2+y3+...+y100=2+﹣2+2﹣+ (20)46.(2019·凉山)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交xx轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.2【答案】C【解析】设A 点的坐标为(m ,),则C 点的坐标为(-m ,-),∴4m 4m,故选C.1414422ABC OBC OAB S S S m m m m∆∆∆=+=⨯+-⨯-=7. (2019·天津) 若点A(-3,y 1),B(-2,y 2),C(1,y 3)都在反比例函数的图像上,则y 1,y 2,y 3的大小xy 12-=关系是A. y 2<y 1<y 3B. y 3 <y 1 <y 2C. y 1 <y 2<y 3D. y 3 <y 2<y 1【答案】B【解析】因为反比例函数的图像在二四象限, 如图,将A,B,C 三点在图像上表示,答案为Bx y 12-=8. (2019·台州)已知某函数的图象C 与函数的图象关于直线y =2对称.下列命题:①图象C 与函数的3y x =3y x=图象交于点(,2);②点(,-2)在图象C 上;③图象C 上的点的纵坐标都小于4;④A(x 1,y 1),B(x 2,y 2)是图象C 上任3212意两点,若x 1>x 2,则y 1>y 2.其中真命题是()A.①②B.①③④C.②③④D.①②③④【答案】A【解析】令y =2,得x =,这个点在直线y =2上,∴也在图象C 上,故①正确;令x =,得y =6,点(,6)关于直线321212y =2的对称点为(,-2),∴点(,-2)在图象C 上,②正确;经过对称变换,图象C 也是类似双曲线的形状,没有最1212大值和最小值,故③错误;在同一支上,满足x 1>x 2,则y 1>y 2,但是没有限制时,不能保证上述结论正确,故④错误.综上所述,选A.【知识点】反比例函数图象的性质,对称变换,交点坐标,增减性9.(2019·重庆B 卷)如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,点A (10,0),sin ∠COA =.若45反比例函数y =(k ﹥0,x ﹥0)经过点C ,则k 的值等于( )kx【答案】C【解析】过C 作CD ⊥OA 交x 轴于D ∵OABC 为菱形,A (10,0)∴OC=OA =10. ∵sin ∠COA =∴ = 即=45CD OC 4510CD 45∴CD =8, ∴OC =6, ∴C (6,8) ∵反比例函数y =(k ﹥0,x ﹥0)经过点C , k =6×8=48. 故选C.kx10. (2019·重庆A 卷)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数y =(k >0,x >0)的图象经过矩形对角线的交点E .若点A (2,0),D (0,4),kx则k 的值为( )A .16B .20C .32D .40【答案】B .【解析】如图,过点B 作BF ⊥x 轴于点F ,则∠AFB =∠DOA =90°.∵四边形ABCD 是矩形,∴ED =EB ,∠DAB =90°.∴∠OAD +∠BAF =∠BAF +∠ABF =90°.∴∠OAD =∠FBA .∴△AOD ∽△BFA .∴.OA ODBF AF=∵BD ∥x 轴,A (2,0),D (0,4),∴OA =2,OD =4=BF .∴.244AF=∴AF =8.∴OF =10,E (5,4).∵双曲线y =过点E ,kx∴k =5×4=20.故选B.二、填空题18.(2019·威海)如图,在平面直角坐标系中,点A ,B 在反比例函数的图像上运动,且始终保持线段()0ky k x=≠M 为线段AB 的中点,连接OM .则线段OM 的长度的最小值是(用含k 的代AB =数式表示).【解析】过点A 作x 轴⊥AC ,过点B 作y 轴⊥BD ,垂足为C ,D ,AC 与BD 相交于点F ,连接OF .当点O 、F 、M 在同一直线上时OM 最短.即OM 垂直平分AB .设点A 坐标为(a ,a +4),则点B 坐标为(a+4,a ),点F 坐标为(a ,a ).由题意可知△AFB 为等腰直角三角形,∵AB =∴AF =BF =4,∵点A 在反比例函数y =的图像上,∴a (a +4)=k ,解得a =,2在RT △OCF 中,OFa ==2)-∴OM=OF +FM =.14.(2019·山西)如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 的坐标为(-4,0),点D 的坐标为(-1,4),反比例函数y =(x>0)的图象恰好经过点C,则k 的值为________.kx第14题图【答案】16【解析】分别过点D,C 作x 轴的垂线,垂足为E,F,则AD =5,∴AB =CB =5,∴B(1,0),由△DAE ≌△CBF,可得BF =AE =3,CF =DE =4,∴C(4,4),∴k =xy =16.第14题答图15.(2019·黄冈) 如图,一直线经过原点0,且与反比例函数y =(k >0)相交于点A ,点B ,过点A 作AC ⊥y 轴,kx垂足为C.连接B C.若△ABC 的面积为8,则k =.【答案】8【解析】因为反比例函数与正比例函数的图象相交于A 、B 两点,∴A 、B 两点关于原点对称,∴OA =OB ,∴△BOC 的面积=△AOC 的面积=8÷2=4,又∵A 是反比例函数y =图象上的点,且AC ⊥y 轴于点C ,kx∴△AOC 的面积=|k |,∴|k |=2,∵k >0,∴k =8.121217.(2019·益阳)反比例函数的图象上有一点P(2,n),将点P 向右平移1个单位,再向下平移1个单xky =位得到点Q.若点Q 也在该函数的图象上,则k = .【答案】6【解析】∵P(2,n)向右平移1个单位,再向下平移1个单位得到点Q (3,n-1),且点P 、Q 均在反比例函数的图象上,∴,∴,解得k=6.x k y =⎪⎪⎩⎪⎪⎨⎧=-=312kn k n 312k k =-1.(2019·潍坊)如图,Rt △AOB 中,∠AOB =90°,顶点A ,B 分别在反比例函数与1(0)y xx=>的图象上.则tan ∠BAO 的值为 .5(0)y x x-=<【解析】分别过点A 、B 作x 轴的垂线AC 和BD ,垂足为C 、D .则△BDO ∽△OCA ,∴2S =()S BDO OCA BD OAA A ∵S △BDO =,S △ACO =,5212∴,2()=5BD OA∴tan ∠BAO=.BDOA2. (2019·巴中)如图,反比例函数(x>0)经过A,B 两点,过点A 作AC ⊥y 轴于点C,过点B 作BD ⊥y 轴于点D,过ky x=点B 作BE ⊥x 轴于点E,连接AD,已知AC =1,BE =1,S 矩形BDOE =4,则S △ACD =________.【答案】32【解析】连接AO,由反比例函数k 的几何意义可知,S △AOC =S 矩形BDOE =2,因为AC =1,所以CO =4,因为12DO =BE =1,所以CD =3,所以S △ACD =.323. (2019·达州) 如图,A 、B 两点在反比例函数的图像上,C 、D 两点在反比例函数的图像x k y 1=xky 2=上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC=2,BD=4,EF=3,则=___________.12k k -.〈【答案】4【解析】设A (m ,) B (m ,) C (n ,) D (n ,)m k 1m k 2n k 1n k2由题意得:m-n=3 ,,, 212=-m k k 421=-nk k 联立三个式子,解得:.412=-k k 18.(2019·长沙)如图,函数(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是ky x=第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM⊥AM 于点M ,则∠MBA=30°;③若M 点的横坐标为1,△OAM 为等边三角形,则k =;④若MF=MB ,则MD=2MA .其225中正确的结论的序号是 .【答案】①③④4.(2019·眉山)如图,反比例函数的图像经过矩形OABC 对角线的交点M ,分别交()0ky x x=>AB 、BC 于点D 、E ,若四边形ODBE 的面积为12,则k 的值为 .【答案】4【解析】由题意得:E 、M 、D 位于反比例函数图象上,则S △OCE =|k|,S △OAD =|k|,1212过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S 矩形ONMG =|k|,又∵M 为矩形ABCO 对角线的交点,则S 矩形ABCO =4S 矩形ONMG =4|k|,由于函数图象在第一象限,∴k >0,则,∴k=4.故选:B.12422k kk ++=5. (2019·湖州)如图,已知在平面直角坐标系xOy 中,直线y =x -1分别交x 轴、y 轴于点A 和点B ,分12别交反比例函数y 1=(k >0,x >0),y 2=(x <0)的图像于点C 和点D ,过点C 作CE ⊥x 轴于点k x 2k xE ,连结OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是.【答案】2.【解析】如答图,过点D 作DF ⊥y 轴于点F ,则由CE ⊥x 轴于点E 可知:S △OCE =k ,S △ODF =2k .∵△COE 的面积与△DOB 的面积相等,∴S △OBD =S △FBD .易知A (2,0),B (0,-1),从而OB =BF =1,OF =2.令D (m ,-2),则由D 点在直线y =x -1上,得-2=m -1,解得m =-2,故D (-2,-2),从而2k =(-2)1212×(-2),解得k =2.6.(2019·宁波) 如图,过原点的直线与反比例函数(k>0)的图象交于A,B 两点,点A 在第一象限,点C 在x 轴ky x正半轴上,连接AC 交反比例函数图象于点D.AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E,连接DE,若AC =3DC,△ADE 的面积为8,则k 的值为________.【答案】6【解析】连接OE,在Rt △ABE 中,点O 是AB 的中点,∴OE ==OA,∴∠OAE =∠OEA,∵AE 为∠BAC 的12AB 平分线,∴∠OAE =∠DAE,∴∠OEA =∠DAE,∴AD ∥OE,∴S △ADE =S △ADO ,过点A 作AM ⊥x 轴于点M,过点D 作DN ⊥x 轴于点N,易得S 梯AMND =S △ADO ,∵△CAM ∽△CDN,CD:CA =1:3,∴S △CAM =9,延长CA 交y 轴于点P,易得△CAM ∽△CPO,可知DC =AP,∴CM:MO =CA:AP =3:1,∴S △CAM :S △AMO =3:1,∴S△AMO =3,∵反比例函数图象在一,三象限,∴k =6.7. (2019·衢州) 如图,在平面直角坐标系中,O 为坐标原点,口ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,点B 恰好为OE 的中点,DE 与BC 交于点F .若y =(k ≠0)图象经过点C .且S △BEF =1,则k 的值为 .kxFF 【答案】24【解析】连接OC ,作FM ⊥AB 于M ,延长MF 交CD 于N ,设BE =a ,FM =b ,由题意知OB=BE=a ,OA =2a ,DC =3a ,因为四这形ABCD 为平行四边形,所以DC ∥AB ,所以△BEF ∽△CDF ,所以BE :CD =EF :DF =1:3,所以NF =3b ,OD =FM +FN =4b ,因为S △BEF =1,即ab =1,S △12CDO =CD ·OD =3a ×4b =6ab =12,所以k =xy =2S △CDO =24.1212三、解答题19.(2019·嘉兴)如图,在直角坐标系中,已知点B (4,0),等边三角形OAB 的顶点A 在反比例函数y =的图象上.(1)求反比例函数的表达式.(2)把△OAB 向右平移a 个单位长度,对应得到△O 'A 'B '当这个函数图象经过△O 'A 'B '一边的中点时,求a 的值.【解题过程】(1)如图1,过点A 作AC ⊥OB 于点C ,∵△OAB 是等边三角形,∴∠AOB=60°,OC=OB ,∵B (4,0),∴OB=OA=4∴OC=2,AC=.把点(2,,得12ky x=,∴.k =y =(2)(I )如图2,点D 是AB 的中点,过点D 作DE ⊥轴于点E ,由题意得=4,=60°,在x ''A B '''A B C ∠Rt △中,=2,,=1,∴=3.'DEB 'B D 'B E 'O E把代入,得.∴OE=4,∴=1.y =y =4x ='a OO =(II )如图3,点F 是的中点,过点F 作FH ⊥轴于点H .由题意得=4,∠=60°,''A O x ''A O '''A O B在RT △中,,=1.把,得=4,∴OH=4,∴=3.'FO H 'O H y =x 'a OO =综上所述,得的值为1或3.a20.(2019浙江省杭州市,20,10分)(本题满分10分)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速股为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数表达式.(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地.求小汽车行驶速度v 的范围.②方方能否在当天11点30分前到达B 地?说明理由.【解题过程】(1)∵ vt=480,且全程速度限定为不超过120千米/小时,∴ v 关于t 的函数表达式为:v=(0≤t≤4);480t(2)① 8点至12点48分时间长为小时,8点至14点时间长为6小时,245将t=6代入v=得v=80;将t=代入v=得v=100.480t 245480t∴ 小汽车行驶速度v 的范围为:80≤v≤100.② 方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为小时,将t=代入v=得v=>120千米/小时,超速了.7272480t 9607故方方不能在当天11点30分前到达B 地.25.(2019·苏州,25,8)如图,A 为反比例函数y =(其中k >0)图像上的一点,在上轴正半轴上有一点kxB ,OB =4连接OA ,A B .且OA =AB (1)求K 的值;(2)过点B 作BC ⊥ OB ,交反比例函数y =(其中k >0)的图像于点C ,连接OC 交AB 于点D ,求的k x AD DB值.第25题图【解题过程】解:(1)过点A 作AE ⊥OB 于E .∵ OA =AB ,OB =4,∴ OE =BE =OB =2, 在Rt △OAE 中,AE =12,∴点A 坐标为(2,6), ∵点A 是反比倒函数图像上的点,∴ 6=,解6==k y x =2k 得k =12.第25题答图(2)记AE 与OC 的交点为F .∵OB =4且BC ⊥OB ,点C 的横坐标为4,又∵点C 为反比例函数y =图12x 像上的点,∴点C 的坐标为(4,3),∴BC =3.设直线OC 的表达式y =mx ,将C (4,3)代入可得m =,∴直线34OC 的表达式y =x ,∵AE ⊥OB ,OE =2,∴点F 的横坐标为2.将x =2代入y =x 可得y =,即343432EF =;∴AF =A E -EF =6 -=.∵AE ,BC 都与x 轴垂直,∴AE ∥BC ,∴△ADF ∽△BD C .∴.32329232AD AF EB BC ==21.(2019山东威海,21,8分)(1)阅读理解如图,点A,B在反比例函数1yx=的图象上,连接AB,取线段AB的中点C,分别过点A,C,B作x轴的垂线,垂足为E,F,G,CF交反比例函数1yx=的图象于点D,点E,F,G的横坐标分别为n-1,n,n+1(n>1).小红通过观察反比例1yx=的图象,并运用几何知识得到结论:AE+BG=2CF,CF>DF.由此得出一个关于112,,11n n n-+之间数量关系的命题:若n>1,则(2)证明命题小东认为:可以通过“若a b-≥0,则a≥b”的思路证明上述命题.小晴认为:可以通过“若a>0,b>0,且a b÷≥1,则a≥b”的思路证明上述命题.请你选择一种方法证明(1)中的命题.【解题过程】(1)∵A,D,B都在反比例1yx=的图象上,且点E,F,G的横坐标分别为n-1,n,n+1(n>1),∴AE=1,1n-BG=1,1n+DF=1n.又∵AE+BG=2CF,∴CF=111 (), 211n n+-+又∵CF>DF,n>1,∴111(211n n +-+>1n ,即1111n n +-+>2n.故答案为1111n n +-+>2n.(2)选择选择小东的思路证明结论1111n n +-+>2n ,∵n >1,∴2221122(1)2(11(1)(1)(1)(1)n n n n n n n n n n n n n n ++---+-==-+-+-+>0,∴1111n n +-+>2n.19.(2019江苏盐城卷,19,8) 如图,一次函数y =x +1的图像交y 轴于点A ,与反比例函数(x >0)图x k y =像交于点B (m ,2).(1)求反比例函数的表达式.(2)求△AOB 的面积.【思路分析】(1)根据已知条件,可以求出点A 的坐标,在根据一次函数与反比例函数交于点B ,就可以求出点B 点的横坐标m ,则点B 的坐标就有了,所以就可以求出反比例函数的表达式。
中考数学总复习反比例函数教案一、教学目标1.了解反比例函数的定义;2.掌握如何根据题目中的已知条件建立反比例函数;3.理解反比例函数图像的特点和性质;4.掌握反比例函数的运算和性质;5.能够解决与反比例函数相关的实际问题。
二、教学重点和难点1.理解反比例函数的定义;2.运用已知条件建立反比例函数;3.理解反比例函数图像的特点和性质;4.进行反比例函数的运算;5.解决与反比例函数相关的实际问题。
三、教学过程Step 1:导入新知1.引入与反比例函数相关的实际问题,如两车以不同的速度行驶,行驶时间和路程之间的关系等。
Step 2:反比例函数的定义1.引导学生回顾函数的概念,并介绍反比例函数的定义。
2.反比例函数的定义:当一个变量的值与另一个变量的值成反比例关系时,可以用反比例函数来表示,形如y=k/x(其中k不等于0)。
Step 3:反比例函数的图像1.让学生思考如何绘制反比例函数的图像。
2.引导学生发现反比例函数的图像是一个以原点为对称中心的平面曲线,且相似于双曲线的形状。
Step 4:根据题目中的条件建立反比例函数1.引导学生通过具体的实例,如题目中的两车行驶的问题,来建立反比例函数。
2.引导学生根据题目中给定的条件,如两车的速度和行驶时间,建立相应的反比例函数,并求解未知量。
Step 5:反比例函数的运算和性质1.反比例函数的运算:介绍反比例函数的加、减、乘、除运算,并进行相应的例题训练。
2.反比例函数的性质:引导学生总结反比例函数的基本性质,如对称性、渐近线等。
Step 6:解决与反比例函数相关的实际问题1.给学生提供一些实际问题,如两车的速度和行驶时间问题、材料的供需关系问题等,引导学生运用反比例函数解决问题。
2.让学生结合实际情境,分析并建立合理的数学模型,进而解决问题。
Step 7:拓展与应用1.引导学生思考反比例函数在实际生活中的应用,如电阻与电流的关系、药物剂量与体重的关系等。
2.让学生尝试寻找更多与反比例函数相关的实际问题,并用所学知识解决。
中考数学复习----反比例函数之定义、图像与性质知识点总结与练习题(含答案解析)知识点总结1. 反比例函数的定义:形如()0≠=k xky 的函数叫做反比例函数。
有时也用k xy =或1−=kx y 表示。
2. 反比例函数的图像:反比例函数的图像是双曲线。
3. 反比例函数的性质与图像:反比例函数()0≠=k xky k 的符号0>k0<k所在象限一、三象限二、四象限大致图像增减性在一个支上(每一个象限内),y 随x 的增大而减小。
在一个支上(每一个象限内),y 随x 的增大而增大。
对称性图像关于原点对称练习题1.(2022•黔西南州)在平面直角坐标系中,反比例函数y =xk(k ≠0)的图像如图所示,则一次函数y =kx +2的图像经过的象限是( ) A .一、二、三 B .一、二、四C .一、三、四D .二、三、四【分析】先根据反比例函数的图像位于二,四象限,可得k <0,由一次函数y =kx +2中,k <0,2>0,可知它的图像经过的象限. 【解答】解:由图可知:k <0,∴一次函数y =kx +2的图像经过的象限是一、二、四. 故选:B .2.(2022•上海)已知反比例函数y =xk(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图像上的为( ) A .(2,3)B .(﹣2,3)C .(3,0)D .(﹣3,0)【分析】根据反比例函数的性质判断即可.【解答】解:因为反比例函数y =(k ≠0),且在各自象限内,y 随x 的增大而增大, 所以k <0,A .2×3=6>0,故本选项不符合题意;B .﹣2×3=﹣6<0,故本选项符合题意;C .3×0=0,故本选项不符合题意;D .﹣3×0=0,故本选项不符合题意; 故选:B .3.(2022•广东)点(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =x4图像上,则y 1,y 2,y 3,y 4中最小的是( ) A .y 1B .y 2C .y 3D .y 4【分析】根据k >0可知增减性:在每一象限内,y 随x 的增大而减小,根据横坐标的大小关系可作判断. 【解答】解:∵k =4>0,∴在第一象限内,y 随x 的增大而减小,∵(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =图像上,且1<2<3<4, ∴y 4最小. 故选:D .4.(2022•云南)反比例函数y =x6的图像分别位于( ) A .第一、第三象限 B .第一、第四象限 C .第二、第三象限D .第二、第四象限【分析】根据反比例函数的性质,可以得到该函数图像位于哪几个象限,本题得以解决.【解答】解:反比例函数y =,k =6>0, ∴该反比例函数图像位于第一、三象限, 故选:A .5.(2022•镇江)反比例函数y =xk(k ≠0)的图像经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,写出符合条件的k 的值 (答案不唯一,写出一个即可). 【分析】先根据已知条件判断出函数图像所在的象限,再根据系数k 与函数图像的关系解答即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,∴此反比例函数的图像在二、四象限, ∴k <0,∴k 可为小于0的任意实数,例如,k =﹣1等. 故答案为:﹣1.6.(2022•福建)已知反比例函数y =xk的图像分别位于第二、第四象限,则实数k 的值可以是 .(只需写出一个符合条件的实数)【分析】根据图像位于第二、四象限,易知k <0,写一个负数即可. 【解答】解:∵该反比例图像位于第二、四象限, ∴k <0,∴k 取值不唯一,可取﹣3, 故答案为:﹣3(答案不唯一).7.(2022•成都)在平面直角坐标系xOy 中,若反比例函数y =xk 2−的图像位于第二、四象限,则k 的取值范围是 .【分析】根据反比例函数的性质列不等式即可解得答案. 【解答】解:∵反比例函数y =的图像位于第二、四象限,∴k ﹣2<0, 解得k <2, 故答案为:k <2.8.(2022•襄阳)二次函数y =ax 2+bx +c 的图像如图所示,则一次函数y =bx +c 和反比例函数y =xa在同一平面直角坐标系中的图像可能是( ) A . B .C .D .【分析】根据二次函数图像开口向下得到a <0,再根据对称轴确定出b ,根据与y 轴的交点确定出c <0,然后确定出一次函数图像与反比例函数图像的情况,即可得解. 【解答】解:∵二次函数图像开口方向向下, ∴a <0,∵对称轴为直线x =﹣>0,∴b >0,∵与y 轴的负半轴相交, ∴c <0,∴y =bx +c 的图像经过第一、三、四象限, 反比例函数y =图像在第二四象限, 只有D 选项图像符合. 故选:D .9.(2022•菏泽)根据如图所示的二次函数y =ax 2+bx +c 的图像,判断反比例函数y =xa与一次函数y =bx +c 的图像大致是( )A .B .C .D .【分析】先根据二次函数的图像,确定a 、b 、c 的符号,再根据a 、b 、c 的符号判断反比例函数y =与一次函数y =bx +c 的图像经过的象限即可. 【解答】解:由二次函数图像可知a >0,c <0, 由对称轴x =﹣>0,可知b <0,所以反比例函数y =的图像在一、三象限,一次函数y =bx +c 图像经过二、三、四象限. 故选:A .10.(2022•安顺)二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则一次函数y =ax +b 和反比例函数y =xc(c ≠0)在同一直角坐标系中的图像可能是( ) A . B .C .D .【分析】直接利用二次函数图像经过的象限得出a ,b ,c 的取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y =ax 2+bx +c 的图像开口向上, ∴a >0,∵该抛物线对称轴位于y 轴的右侧, ∴a 、b 异号,即b <0. ∵抛物线交y 轴的负半轴,∴c <0,∴一次函数y =ax +b 的图像经过第一、三、四象限,反比例函数y =(c ≠0)在二、四象限. 故选:A .11.(2022•西藏)在同一平面直角坐标系中,函数y =ax +b 与y =axb(其中a ,b 是常数,ab ≠0)的大致图像是( )A .B .C .D .【分析】根据a 、b 的取值,分别判断出两个函数图像所过的象限,要注意分类讨论. 【解答】解:若a >0,b >0,则y =ax +b 经过一、二、三象限,反比例函数y =(ab ≠0)位于一、三象限,若a >0,b <0,则y =ax +b 经过一、三、四象限,反比例函数数y =(ab ≠0)位于二、四象限, 若a <0,b >0,则y =ax +b 经过一、二、四象限,反比例函数y =(ab ≠0)位于二、四象限, 若a <0,b <0,则y =ax +b 经过二、三、四象限,反比例函数y =(ab ≠0)位于一、三象限, 故选:A .12.(2022•张家界)在同一平面直角坐标系中,函数y =kx +1(k ≠0)和y =xk(k ≠0)的图像大致是( )A.B.C.D.【分析】分k>0或k<0,根据一次函数与反比例函数的性质即可得出答案.【解答】解:当k>0时,一次函数y=kx+1经过第一、二、三象限,反比例函数y=位于第一、三象限;当k<0时,一次函数y=kx+1经过第一、二、四象限,反比例函数y=位于第二、四象限;故选:D.13.(2022•绥化)已知二次函数y=ax2+bx+c的部分函数图像如图所示,则一次函数y=ax+b2﹣4ac与反比例函数y=xc ba++24在同一平面直角坐标系中的图像大致是()A.B.C.D.【分析】由二次函数y=ax2+bx+c的部分函数图像判断a,b2﹣4ac及4a+2b+c的符号,即可得到答案.【解答】解:∵二次函数y=ax2+bx+c的部分函数图像开口向上,∴a>0,∵二次函数y =ax 2+bx +c 的部分函数图像顶点在x 轴下方,开口向上, ∴二次函数y =ax 2+bx +c 的图像与x 轴有两个交点,b 2﹣4ac >0, ∴一次函数y =ax +b 2﹣4ac 的图像位于第一,二,三象限,由二次函数y =ax 2+bx +c 的部分函数图像可知,点(2,4a +2b +c )在x 轴上方, ∴4a +2b +c >0, ∴y =的图像位于第一,三象限,据此可知,符合题意的是B , 故选:B .14.(2022•贺州)已知一次函数y =kx +b 的图像如图所示,则y =﹣kx +b 与y =xb的图像为( )A .B .C .D .【分析】本题形数结合,根据一次函数y =kx +b 的图像位置,可判断k 、b 的符号;再由一次函数y =﹣kx +b ,反比例函数y =中的系数符号,判断图像的位置.经历:图像位置﹣系数符号﹣图像位置.【解答】解:根据一次函数y =kx +b 的图像位置,可判断k >0、b >0. 所以﹣k <0.再根据一次函数和反比例函数的图像和性质, 故选:A .15.(2022•广西)已知反比例函数y =xb(b ≠0)的图像如图所示,则一次函数y =cx ﹣a (c ≠0)和二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图像可能是( )A .B .C .D .【分析】本题形数结合,根据反比例函数y =(b ≠0)的图像位置,可判断b >0;再由二次函数y =ax 2+bx +c (a ≠0)的图像性质,排除A ,B ,再根据一次函数y =cx ﹣a (c ≠0)的图像和性质,排除C .【解答】解:∵反比例函数y =(b ≠0)的图像位于一、三象限, ∴b >0;∵A 、B 的抛物线都是开口向下,∴a <0,根据同左异右,对称轴应该在y 轴的右侧, 故A 、B 都是错误的.∵C 、D 的抛物线都是开口向上,∴a >0,根据同左异右,对称轴应该在y 轴的左侧, ∵抛物线与y 轴交于负半轴, ∴c <0由a >0,c <0,排除C . 故选:D .16.(2022•滨州)在同一平面直角坐标系中,函数y =kx +1与y =﹣xk(k 为常数且k ≠0)的图像大致是( )A .B .C .D .【分析】根据一次函数和反比例函数的性质即可判断.【解答】解:当k >0时,则﹣k <0,一次函数y =kx +1图像经过第一、二、三象限,反比例函数图像在第二、四象限,所以A 选项正确,C 选项错误;当k <0时,一次函数y =kx +1图像经过第一、二,四象限,所以B 、D 选项错误. 故选:A .17.(2022•德阳)一次函数y =ax +1与反比例函数y =﹣xa在同一坐标系中的大致图像是( )A .B .C .D .【分析】根据一次函数与反比例函数图像的特点,可以从a >0,和a <0,两方面分类讨论得出答案.【解答】解:分两种情况:(1)当a >0,时,一次函数y =ax +1的图像过第一、二、三象限,反比例函数y =﹣图像在第二、四象限,无选项符合;(2)当a <0,时,一次函数y =ax +1的图像过第一、二、四象限,反比例函数y =﹣图像在第一、三象限,故B 选项正确. 故选:B .18.(2022•阜新)已知反比例函数y =x k (k ≠0)的图像经过点(﹣2,4),那么该反比例函数图像也一定经过点( )A .(4,2)B .(1,8)C .(﹣1,8)D .(﹣1,﹣8)【分析】先把点(﹣2,4)代入反比例函数的解析式求出k 的值,再对各选项进行逐一判断即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过点(﹣2,4),∴k =﹣2×4=﹣8,A 、∵4×2=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误;B 、∵1×8=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误;C 、﹣1×8=﹣8,∴此点在反比例函数的图像上,故本选项正确;D 、(﹣1)×(﹣8)=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误. 故选:C .19.(2022•襄阳)若点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =x2的图像上,则y 1,y 2的大小关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定 【分析】根据反比例函数图像上点的坐标特征即可求解.【解答】解:∵点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =的图像上,k =2>0,∴在每个象限内y 随x 的增大而减小,∵﹣2<﹣1,∴y 1>y 2,故选:C .20.(2022•海南)若反比例函数y =xk (k ≠0)的图像经过点(2,﹣3),则它的图像也一定经过的点是( )A .(﹣2,﹣3)B .(﹣3,﹣2)C .(1,﹣6)D .(6,1) 【分析】将(2,﹣3)代入y =(k ≠0)即可求出k 的值,再根据k =xy 解答即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过点(2,﹣3),∴k =2×(﹣3)=﹣6,A 、﹣2×(﹣3)=6≠﹣6,故A 不正确,不符合题意;B 、(﹣3)×(﹣2)=6≠﹣6,故B 不正确,不符合题意;C 、1×(﹣6)=﹣6,故C 正确,符合题意,D 、6×1=6≠﹣6,故D 不正确,不符合题意.故选:C .21.(2022•武汉)已知点A (x 1,y 1),B (x 2,y 2)在反比例函数y =x6的图像上,且x 1<0<x 2,则下列结论一定正确的是( )A .y 1+y 2<0B .y 1+y 2>0C .y 1<y 2D .y 1>y 2 【分析】先根据反比例函数y =判断此函数图像所在的象限,再根据x 1<0<x 2判断出A (x 1,y 1)、B (x 2,y 2)所在的象限即可得到答案.【解答】解:∵反比例函数y =中的6>0,∴该双曲线位于第一、三象限,且在每一象限内y 随x 的增大而减小,∵点A (x 1,y 1),B (x 2,y 2)在反比例函数y =的图像上,且x 1<0<x 2,∴点A 位于第三象限,点B 位于第一象限,∴y 1<y 2.故选:C .22.(2022•天津)若点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =x8的图像上,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 2<x 1<x 3 【分析】根据函数解析式算出三个点的横坐标,再比较大小.【解答】解:点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =的图像上, ∴x 1==4,x 2==﹣8,x 3==2. ∴x 2<x 3<x 1,故选:B .23.(2022•淮安)在平面直角坐标系中,将点A (2,3)向下平移5个单位长度得到点B ,若点B 恰好在反比例函数y =xk 的图像上,则k 的值是 .【分析】点A (2,3)向下平移5个单位长度得到点B (2,﹣2),代入y =利用待定系数法即可求得k 的值.【解答】解:将点A (2,3)向下平移5个单位长度得到点B ,则B (2,﹣2), ∵点B 恰好在反比例函数y =的图像上,∴k =2×(﹣2)=﹣4,故答案为:﹣4.24.(2022•北京)在平面直角坐标系xOy 中,若点A (2,y 1),B (5,y 2)在反比例函数y =xk (k >0)的图像上,则y 1 y 2(填“>”“=”或“<”). 【分析】先根据函数解析式中的比例系数k 确定函数图像所在的象限,再根据各象限内点的坐标特征及函数的增减性解答.【解答】解:∵k >0,∴反比例函数y =(k >0)的图像在一、三象限,∵5>2>0,∴点A (2,y 1),B (5,y 2)在第一象限,y 随x 的增大而减小,∴y 1>y 2,故答案为:>.。
中考数学复习《反比例函数》教案教案:反比例函数教学目标:1.了解反比例函数的定义;2.掌握求解反比例函数的图像、性质和解题方法;3.能够在实际问题中应用反比例函数。
教学重点:1.反比例函数的定义和特点;2.求解反比例函数的图像和性质;3.实际问题中的反比例函数应用。
教学难点:1.反比例函数的图像和性质;2.运用反比例函数解决实际问题。
教学过程:一、导入与复习(10分钟)1.复习正比例函数的概念和性质,并给出例子进行讲解。
2.提问:什么是反比例函数?反比例函数有哪些特点?3.回答问题并讨论。
二、知识讲解(15分钟)1.介绍反比例函数的定义:若两个变量x和y满足x*y=k(k≠0),其中k为常数,则称y与x成反比例关系,并称y是x的反比例函数。
2.解释反比例函数的特点和图像特征。
3.讲解反比例函数的性质,如定义域、值域等。
三、图像与性质(20分钟)1.示例一:求解y=k/x图像和性质。
a.计算k=1时,给出图像,并讨论特点。
b.讨论k>1和k<1的情况,给出图像并比较。
c.得出结论:y=k/x的图像是一条过原点的双曲线。
2.示例二:求解y=k/x^2图像和性质。
a.计算k=1时,给出图像,并讨论特点。
b.讨论k>1和k<1的情况,给出图像并比较。
c.得出结论:y=k/x^2的图像是一条过原点的开口向上的双曲线。
d.引导学生思考:如何通过改变k的值来改变这条双曲线的形状?四、实际应用(25分钟)1.讲解实际问题的解题步骤。
2. 示例一:车辆行驶的速度和所用时间成反比例关系。
当速度为60km/h时,所用时间为5小时。
求当速度为120km/h时,所用的时间。
3.示例二:工厂生产一种产品,当原材料的数量为4000吨时,需要工作4个月完成。
求当原材料的数量为6000吨时,需要工作多长时间才能完成。
4.让学生自己选择一个实际问题,并运用反比例函数进行求解。
五、归纳总结(10分钟)1.整理反比例函数的定义、特点、图像和性质。
2019-2020年中考数学总复习教案 课时17 反比例函数
【课前热身】
1.(07哈尔滨)已知反比例函数的图象经过点,则这个反比例函数的解析式是 . 2.(07梅州)近视眼镜的度数(度)与镜片焦距(米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数与镜片焦距之间的函数关系式为 . 3.(07孝感)在反比例函数图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范
围是 ( )
A .k >3
B .k >0
C .k <3
D . k <0
4. (07青岛)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa )
是气体体积V ( m 3
) 的反比例函数,其图象如图1所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( ) A .不小于m
3
B .小于m 3
C .不小于m 3
D .小于m 3
5.(08巴中)如图2,若点在反比例函数 的图象上,轴于点,的面积为3, 则 . 【考点链接】
1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质
3.的几何含义:
反比例函
数
y
= (k ≠0)
中比例系数k 的几何
意义,即过双曲线y = (k ≠0)上任意一点P 作x 轴、y 轴 垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 . 【典例精析】
例1 某汽车的功率P 为一定值,汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)
之间的函数关系如右图所示:
(1)这辆汽车的功率是多少?请写出这一函数的表达式; (2)当它所受牵引力为1200牛时,汽车的速度为多少千米/时? (3)如果限定汽车的速度不超过30米/秒,则F 在什么范围内?
例2 (07四川)如图,一次函数的图象与反比例函数的图象交于
两点.
(1
(2)求的面积.
【中考演练】
1.(07福建)已知点在反比例函数的 图象上,则 .
1
-1
y
O
x
P
2.(07安徽)在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米.
3. (08河南)已知反比例函数的图象经过点(m ,2)和(-2,3),则m 的值为 .
4.(08宜宾)若正方形AOBC 的边OA 、OB 在坐标轴上,顶点C 在第一象限且在反比例函数y =的图像上,则点C 的坐标是 .
5. (08广东)如图,某个反比例函数的图象经过点P, 则它的解析式为( )
A.y = (x>0)
B.y =- (x>0)
C.y =(x<0)
D.y =-(x<0)
6.(08嘉兴)某反比例函数的图象经过点,则此函数图象也经过点( )
A .
B .
C .
D .
7.(07江西)对于反比例函数,下列说法不正确...
的是( ) A .点在它的图象上
B .它的图象在第一、三象限
C .当时,随的增大而增大
D .当时,随的增大而减小 8.(08乌鲁木齐)反比例函数的图象位于( )
A .第一、三象限
B .第二、四象限
C .第二、三象限
D .第一、二象限 9.某空调厂装配车间原计划用2个月时间(每月以30天计算),每天组装150台空调. (1)从组装空调开始,每天组装的台数m (单位: 台/天)与生产的时间t (单位:天)
之间有怎样的函数关系?
(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组
装多少空调?
10.(07四川)如图,已知A(-4,2)、B(n ,-4)是一次函数
的图象与反比例函数的图象的两个交点. (1) 求此反比例函数和一次函数的解析式;
(2) 根据图象写出使一次函数的值小于反比例函数的值
y
x
的x 的取值范围.
2019-2020年中考数学总复习教案 课时18 二次函数及其图像
【课前热身】
1. (08南昌)将抛物线向上平移一个单位后,得到的抛物线解析式是 . 2. (07四川) 如图1所示的抛物线是二次函数 的图象,那么的值是 .
3.(08贵阳)二次函数的最小值是( )
A.-2
B.2
C.-1
D.1 4.(08沈阳)二次函数的图象的顶点坐标是( )
A.(1,3)
B.(-1,3)
C.(1,-3)
D.(-1,-3) 5. 二次函数的图象如图所示,则下列结论正确的是( )
A.
B. C.
D. 【考点链接】
1. 二次函数的图像和性质
>0
2. 二次函数用配方法可化成的形式,其中 = , = .
3. 二次函数的图像和图像的关系.
4. 二次函数中的符号的确定. 【典例精析】
例1 (06遂宁)已知二次函数,
(1) 用配方法把该函数化为
(其中a 、h 、k 都是常数且a ≠0)形式,并画 出这个函数的图像,根据图象指出函数的对称 轴和顶点坐标.
(2) 求函数的图象与x 轴的交点坐标.
例2 (08大连)如图,直线和抛物线都经过点A(1,0),B(3,2).
⑴ 求m 的值和抛物线的解析式; ⑵ 求不等式的解集.
(直接写出答案)
D
C
B
A
【中考演练】
1. 抛物线的顶点坐标是 .
2. 请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐
标为(0,3)的抛物线的解析式 .
3.(07江西)已知二次函数的部分图象如右图所示,则关于的一
元二次方程的解为.
4. 函数与在同一坐标系中的大致图象是()
5. (06资阳)已知函数y=x2-2x-2的图象如图1所示,根据其中提供的信息,可求得使
y≥1成立的x的取值范围是()
A.-1≤x≤3 B.-3≤x≤1 C.x≥-3 D.x≤-1或x≥3
6. (06浙江) 二次函数()的图象如图所示,则下列结论:
①>0;②>0;③b2-4>0,其中正确的个数是( )
A. 0个
B. 1个
C. 2个
D. 3个
(第5题)(第6题)
7. 已知二次函数的图象经过点(-1,8)
.
(1)求此二次函数的解析式;
(2)根据(1)填写下表.在直角坐标系中描点,并画出函数的图象;
(3)根据图象回答:当函数值y<0时,x的取值范围是什么?。