运筹学期终考试题2003A
- 格式:doc
- 大小:62.00 KB
- 文档页数:6
运筹学试卷A及参考答案北京理工大学《运筹学》期终试卷(A卷)姓名成绩注意:① 答案一律写在答题纸上,写在其他地方无效。
② 考试过程中,不得拆开试卷。
③ 考试完毕后,试卷一律交回。
一、多项选择题(每小题2分,共12分)1、线性规划模型有特点()。
A、所有函数都是线性函数;B、目标求最大;C、有等式或不等式约束;D、变量非负。
2、下面命题正确的是()。
A、线性规划的最优解是基本可行解;B、基本可行解一定是基本解;C、线性规划一定有可行解;D、线性规划的最优值至多有一个。
3、一个线性规划问题(P)与它的对偶问题(D)有关系()。
A、(P)有可行解则(D)有最优解;B、(P)、(D)均有可行解则都有最优解;C、(P)可行(D)无解,则(P)无有限最优解;D、(P)(D)互为对偶。
4、运输问题的基本可行解有特点()。
A、有m+n-1个基变量;B、有m+n个位势;C、产销平衡;D、不含闭回路。
5、关于动态规划问题的下列命题中()是错误的。
A、动态规划分阶段顺序不同,则结果不同;B、状态对决策有影响;C、在求解最短路径问题时,标号法与逆序法求解的思路是相同的;D、动态规划的求解过程都可以用列表形式实现。
6、顾客泊松到达与相继到达的间隔时间服从负指数分布()。
A、是相同概念的不同说法;B、是完全不相同的概念;C、它们的均值互为倒数;D、它们的均值是相同的。
二、回答下列各题(每小题8分,共16分)1、考虑线性规划问题Min f(x) = -x1 + 5 x2S.t. 2x1–3x2 ≥3 (P)5x1 + 2x2=4x1 ≥ 0写出(P)的标准形式;2、某企业生产3种产品甲、乙、丙,产品所需的主要原料有A、B两种,原料A每单位分别可生产产品甲、乙、丙底座12、18、16个;产品甲、乙、丙每个需要原料B分别为13kg、8kg、10kg,设备生产用时分别为10.5、12.5、8台时,每个产品的利润分别为1450元、1650元、1300元。
《运筹学》试题及答案(A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3)B.(3, 4, 0, 0)C.(2, 0, 1, 0)D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量6.下例错误的说法是A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
学年度第一学期期末考试《运筹学》(八)卷专业班级姓名学号一、单选题(每题的备选答案中只有一个最佳答案,每题2分,共30分)I、运筹学的主要内容包括:()A.线性规划B.非线性规划C.存贮论D.以上都是2、下面是运筹学的实践案例的是:()A.丁谓修守B.田忌赛马C.二战间,英国雷达站与防空系统的协调配合D.以上都是3、规划论的内容不包括:()A.线性规划B.非线性规划C.动态规划D.网络分析4、关于运筹学的原意,卜冽说法不正确的是:Λ.作业研究B.运作管理C.作战研究D.操作研究5,运筹学模型:A.在任何条件下均有效B.只有符合模型的简化条件时才有效C.可以解答管理部门提出的任何问题D.是定性决策的主要工具6、最早运用运筹学理论的是:Λ.二次世界大战期间,英国军事部门将运筹学运用到军事战略部署B.美国最早将运筹学运用到农业和人口规划问逸上C.二次世界大战后,英国政府将运筹学运用到政府制定计划D.50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上7、下列哪些不是运筹学的研究范用:A.库存控制B.动态规划C.排队论D.系统设计8、对运筹学模型的下列说法,正确的是:A.在任何条件下均有效B.只有符合模型的简化条件时才有效C.可以解答管理部门提出的任何问题D.是定性决策的主要工具9、线性规划具有多重最优解是指()A.目标函数系数与某约束系数对应成比例B.最优表中存在非基变量的检验数为零C.可行解集合无界D.基变量全部大丁•零10.图解法通常用于求解有()个变量的线性规划问题。
A.1B.2C.4D.5Ik以下不属于运筹学求解目标的是:A.最优解B.次优解C.满意解D.劣解12、线性规划问返的最优解()为可行解。
A.一定B.不一定C.一定不D.无法判断13、将线性规划问感转化为标准形式时,下列说法不正确的是:A.如为求Z的最小值,需转化为求-Z的垠大值B.如约束条件为W,则要增加一个松驰变量C.如约束条件为2,则要减去一个剩余变量D.如约束条件为=,则要增加一个人工变易14、关于图解法,下列结论最正确的是:A.线性规划的可行域为凸集。
一、判断题(合计10分,每题1分,对旳打√,错旳打X )1. 无孤立点旳图一定是连通图。
2. 对于线性规划旳原问题和其对偶问题,若其中一种有最优解, 另一种也一定有最优解。
3. 假如一种线性规划问题有可行解,那么它必有最优解。
4.对偶问题旳对偶问题一定是原问题。
5.用单纯形法求解原则形式(求最小值)旳线性规划问题时,与>j σ对应旳变量都可以被选作换入变量。
6.若线性规划旳原问题有无穷多种最优解时,其对偶问题也有无穷 多种最优解。
7. 度为0旳点称为悬挂点。
8. 表上作业法实质上就是求解运送问题旳单纯形法。
9. 一种图G 是树旳充足必要条件是边数至少旳无孤立点旳图。
10. 任何线性规划问题都存在且有唯一旳对偶问题。
某农场有100公顷土地及15000元资金可用于发展生产。
农场劳动力状况为秋冬季3500人日;春夏季4000人日。
如劳动力自身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。
该农场种植三种作物:大豆、玉米、小麦,并喂养奶牛和鸡。
种作物时不需要专门投资,而喂养每头奶牛需投资800元,每只鸡投资3元。
养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。
养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。
农场既有鸡舍容许最多养1500只鸡,牛栏容许最多养200头。
三种作物每年需要旳人工及收入状况如下表所示:试决定该农场旳经营方案,使年净收入为最大。
三、已知下表为求解某目旳函数为极大化线性规划问题旳最终单纯形表,表中54,x x 为松弛变量,问题旳约束为 ⎽ 形式(共8分)(1)写出原线性规划问题;(4分) (2)写出原问题旳对偶问题;(3分)(3)直接由上表写出对偶问题旳最优解。
(1分) 四、用单纯形法解下列线性规划问题(16分)3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0五、求解下面运送问题。
《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。
A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。
答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。
答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。
答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。
答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。
答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。
()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。
()答案:错误3. 目标规划中的偏差变量可以是负数。
()答案:正确4. 在动态规划中,最优策略具有最优子结构。
()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。
运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。
答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。
运筹学期末考试题〔a卷〕注意事项:1、答题前,考生务必将自己的##、班级填写在答题卡上.2、答案用钢笔或圆珠笔写在答题卡上,答在试卷上不给分.3、考试结束,将试卷和答题卡一并交回.一、单项选择题<每小题1分,共10分>1:在下面的数学模型中,属于线性规划模型的为〔〕2.线性规划问题若有最优解,则一定可以在可行域的〔〕上达到.A.内点 B.顶点 C.外点 D.几何点3:在线性规划模型中,没有非负约束的变量称为〔〕A.多余变量 B.松弛变量 C.自由变量D.人工变量4:若线性规划问题的最优解同时在可行解域的两个顶点处达到,那么该线性规划问题最优解为〔〕A.两个B.零个C.无穷多个D.有限多个5:原问题与对偶问题的最优〔〕相同.x为自由变量,那么对偶问A.解B.目标值C.解结构D.解的分量个数6:若原问题中i题中的第i个约束一定为〔〕A.等式约束B."≤〞型约束C."≥〞约束 D.无法确定7:若运输问题已求得最优解,此时所求出的检验数一定是全部〔〕A.小于或等于零B.大于零C.小于零D.大于或等于零 8:对于m个发点、n个收点的运输问题,叙述错误的是< >A.该问题的系数矩阵有m×n列B.该问题的系数矩阵有m+n行C.该问题的系数矩阵的秩必为m+n-1 D.该问题的最优解必唯一9:关于动态规划问题的下列命题中错误的是〔〕A、动态规划分阶段顺序不同,则结果不同B、状态对决策有影响C、动态规划中,定义状态时应保证在各个阶段中所做决策的相对独立性D、动态规划的求解过程都可以用列表形式实现10:若P为网络G的一条流量增广链,则P中所有正向弧都为G的〔〕A.对边B.饱和边C.邻边D.不饱和边二、判断题〔每小题1分,共10分〕1:图解法和单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的.〔〕2:单纯形法的迭代计算过程是从一个可行解转换到目标函数值更大的另一个可行解.〔〕3:一旦一个人工变量在迭代中变为非基变量后,该变量与相应列的数字可以从单纯形表中删除,而不影响计算结果.〔〕b c值同时发生改变,反映到最终单纯形表中,不会出现原问题与对4:若线性规划问题中的,i j偶问题均为非可行基的情况.〔〕5:若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优解.〔〕6:运输问题的表上作业法实质上就是求解运输问题的单纯形法.〔〕7:对于动态规划问题,应用顺推或逆推解法可能会得出不同的最优解.〔〕8:动态规划的基本方程是将一个多阶段的决策问题转化为一系列具有递推关系的单阶段的决策问题.〔 〕 9:图论中的图不仅反映了研究对象之间的关系,而且是真实图形的写照,因而对图中点与点的相对位置、点与点连线的长短曲直等都要严格注意.〔 〕10:网络最短路线问题和最短树问题实质上是一个问题.〔 〕 三、 填空题〔每空1分,共15分〕1:线性规划中,满足非负条件的基本解称为________,对应的基称为________. 2:线性规划的目标函数的系数是其对偶问题的________;而若线性规划为最大化问题,则对偶问题为________.3:在运输问题模型中,1m n +-个变量构成基变量的充要条件是________.4:动态规划方法的步骤可以总结为:逆序求解________,顺序求________、________和________.5:工程路线问题也称为最短路问题,根据问题的不同分为定步数问题和不定步数问题;对不定步数问题,用迭代法求解,有________迭代法和________迭代法两种方法.6:在图论方法中,通常用________表示人们研究的对象,用________表示对象之间的某 联系.7:一个________且________的图称为树. 四、计算题〔每小题15分,45分〕1:考虑线性规划问题: 〔a 〕:写出其对偶问题; 〔b 〕:用单纯形方法求解原问题; 〔c 〕:用对偶单纯形方法求解其对偶问题; 〔d 〕:比较〔b 〕〔c 〕计算结果.2:某公司打算在三个不同的地区设置4个销售点,根据市场预测部门的估计,在不同的地区设置不同数量的销售店,每月可得到的利润如下表所示.试问各个地区应如何设置销售店,3:对下图中的网络,分别用破圈法和生长法求最短树. 五、简答题<每小题10分,共20分>1.试述单纯形法的计算步骤,并说明如何在单纯形表上判断问题是具有唯一最优解、无穷多最优解和无有限最优解.2.简述最小费用最大流问题的提法以与用对偶法求解最小费用最大流的原理和步骤.##政法学院2008—2009学年度第一学期《运筹学》期末考试参考答案与评分标准〔a 卷〕单项选择题<每小题1分,共10分>1.B2.B3.C4.C5.B6.A7.D8.D9.A 10.D 判断题〔每小题1分,共10分〕1.T2.F3.T4.F5.T6.T7.F8.T9.F 10.F 填空题〔每空1分,共15分〕1:基本可行解、可行基;2:右端常数、最小化问题;3:不含闭回路;4:最优目标函数、最优策略、最优路线、最优目标函数值;5:函数、策略;6:点、边;7:无圈、连通. 计算题〔每小题15分,45分〕 1:解 a 〕:其对偶问题为------〔3分〕------〔5分〕d 〕:对偶问题的实质是将单纯形法应用于对偶问题的求解,又对偶问题的对偶即原问题,因此〔b 〕、〔c 〕的计算结果完全相同. --------<2分> 2:解 该问题可以作为三段决策问题,对1,2,3地区分别设置销售店形成1,2,3三个阶段. k x 表示给地区k 设置销售店时拥有分配的数量,k u 表示给地区k 设置销售店的数量. 状态转移方程为:1k k k x x u +=-;阶段效应题中表所示;目标函数:31max ()kk k R gu ==∑;其中()k k g u 表示在k 地区设置k u 个销售店时的收益; ------〔3分〕 首先逆序求解条件最有目标函数值集合和条件最有决策集合:3k =时,333333334400()max{(4,)(,)}u x g x f u x x u f =+≤≤≤≤, 其中44()0f x =于是有:'333(0)(0)0,(0)0f g u ===, '333(1)(1)10,(1)1f g u ===,333(2)(2)14,'(2)2f g u ===, 333(3)(3)16,'(3)3f g u ===,333(4)(4)17,'(4)4f g u === .------〔3分〕2k =时,22222222233000()max {(4)()},,u x x g x u x u f x f ≤≤=+≤≤≤≤,于是有:222'332020(0)max{()()}0,(0)0u f g u f x u ≤≤=+==,2'22022331(1)max{()()}12,(1)1u f g u f x u ≤≤=+==,2'22022332(2)max{()()}22,(2)1u f g u f x u ≤≤=+==,2'22022333(3)max{()()}27,(3)2u f g u f x u ≤≤=+==,2'22022334(4)max{()()}31,(4)23u f g u f x u or ≤≤=+==. ------〔3分〕3k =时,111,404,x u x ≤=≤=于是有:1'11122014(4)max{()()}47,(4) 2.u g u f x u f ≤≤=+== .------〔3分〕因此,最优的分配方案所能得到的最大利润位47,分配方案可由计算结果反向查出得:123***(4)2,(2)1,(1)1u u u ===.即为地区1设置两个销售店,地区2设置1各销售店,地区3设置1个销售店. ------〔3分〕 3:解 破圈法〔1〕:取圈3121,,,v v v v ,去掉边13[,]v v .〔2〕:取圈2432,,,v v v v ,去掉边24[,]v v . 〔3〕:取圈2352,,,v v v v ,去掉边25[,]v v .〔4〕:取圈34553,,,,v v v v v ,去掉边34[,]v v . 在图中已无圈,此时,6p =,而15q p =-=,因此所得的是最短树.结果如下图,其树的总长度为12. .------〔6分〕.------〔3分〕生长法2v 3v 4v 5v 6v1S {2} 6 ∞∞∞2v 3 8 9 ∞ 2S {3} 8 9 ∞ 3v 5 3 ∞ 3S5{3}∞简答题<每小题10分,共20分> 1:单纯形法的计算步骤第一步:找出初始可行解,建立初始单纯形表.第二步:判断最优,检验各非基变量j x 的检验数1j B j j C B P C σ-=-.(1) 若所有的0j σ≤,则基B 为最优基,相应的基可行解即为基本最优解,计算停止. (2) 若所有的检验数0j σ≤,又存在某个非基变量的检验数所有的0k σ=,则线性规划问题有无穷多最优解.(3) 若有某个非基变量的检验数0j σ>,并且所对应的列向量的全部分量都非正,则该线性规划问题的目标函数值无上界,既无界解,停止计算.第三步:换基迭代(1) 当存在0k σ>,选k x 进基来改善目标函数.若检验数大于0的非基变量不止一个,则可以任选其中之一来作为进基变量.(2) 进基变量k x 确定后,按最小比值原则选择出基变量r x .若比值最小的不止一个,选择其中之一出基.(3) 做主元变换.反复进行上述过程就可以找到最优解或判断出没有有限最优解. 2:最大流问题就是在一定条件下,要求流过网络的物流、能量流或信息流等流量最大的问题.如果已知流过弧(,)i j v v 的单位流量要发生ij c 的费用,要求使总费用为最小的最大流流量分配方法.即在上述最大流问题上还应增加关于费用的目标:minij ijx c∑.这种问题称为最小费用最大流问题.模型可以描述为:采用对偶法求解最大流最小费用问题,其原理为:用福德—富克逊算法求出网络的最大流量,然后用Ford 算法找出从起点s v 到终点t v 的最短增广链.在该增广链上,找出最大调整量ε,并调整流量,得到一个可行流.则此可行流的费用最小.如果此时流量等于最大流量,则目前的流就是最小费用最大流,否则应继续调整.对偶法的步骤归纳如下:第0步:用最大流方法找出网络最大流量max f ,并以0流作为初始可行流.第一步:对于当前可行流,绘制其扩展费用网络图.第二步:用Ford 算法求出扩展费用网络图中从s v 到t v 的最短路.第三步:在最短路线对应的原网络中的增广链上,调整流量,得到新的可行流.第四步:绘制可行流图.若可行流的流量等于最大流量max f ,则已找到最小费用最大流,算法结束;否则从第一步开始重复上述过程。
浙江省2003年4月高等教育自学考试运筹学基础试题课程代码:02375一、填空题(每空1分,共16分)1.分析的程序可以是_______的,也可以是_______的。
2.企业价格预测的目的就是为企业的_______提供适当的_____。
3._______是例行的、重复性的决策,而__________则是对无先例可循的新问题的决策。
4.线性规划的右端常数项其对偶问题的____________;线性规划的第i个约束条件为方程则其对偶问题______________________。
5.图的最基本要素是:_______以及_______。
6.存货最基本的作用是保证工业企业的生产能_______和_____地进行。
7.大多数_______的管理决策方案都是在_______的情况下选定的。
8.马尔柯夫经过研究发现:在某些事物的_______过程中,可以根据其紧邻的____________推算出来。
二、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。
每小题1分,共14分)1.下列关于运筹学的优点中,不正确的是( )。
A.凡是可以建立数学模型的问题,一定能用运筹学的方法求得最优解B.运筹学可以量化分析许多问题C.大量复杂的运筹学问题,可以借助计算机来处理D.对复杂的问题可以较快地找到最优的解决方法2.关于特尔斐的优点中,不正确的是( )。
A.使专家可以根据面临的事实和自己的见解自由地提出自己的见解B.不受领导或权威人士的约束或能辩善言的左右C.由于信息多次反馈,专家的意见能趋向于比较一致D.预测过程比较紧凑,适用于短期预测3.不是大批量采购的优点的是( )。
A.库存的货物的更换率比较低B.可以降低订货费用C.由于进货量大,可大批量运输,而获得运价优惠D.缺货的可能性减少4.最小最大后悔决策准则是用来解决( )条件下的决策问题。
A.确定B.风险C.风险或不确定D.不确定5.概率矩阵的定义是( )。
运筹学期末考试题和答案一、单项选择题(每题2分,共20分)1. 线性规划问题中,目标函数的最优解是在可行域的()。
A. 边界上B. 内部C. 顶点D. 任意点答案:C2. 单纯形法中,如果某非基变量的检验数大于0,则()。
A. 该变量不能进入基B. 该变量可以进入基C. 该变量必须进入基D. 该变量可以进入基,也可以不进入基答案:C3. 在对偶线性规划问题中,对偶问题的最优解与原问题的最优解之间的关系是()。
A. 相等B. 不相等C. 互为相反数D. 互为倒数答案:A4. 动态规划中,状态转移方程的作用是()。
A. 确定最优解B. 确定最优策略C. 确定状态转移D. 确定决策过程答案:C5. 在排队论中,M/M/1队列的平均等待时间是()。
A. 1/μB. 1/(μ-λ)C. ρ/(μ-λ)D. ρ/(1-ρ)答案:D6. 决策树中,期望值的计算是基于()。
A. 概率B. 成本C. 时间D. 收益答案:A7. 运输问题中,初始解的检验数表中,如果某行的检验数都为负,则()。
A. 该行需要调换B. 该列需要调换C. 该行和该列都不需要调换D. 该行和该列都需要调换答案:C8. 在库存管理中,经济订货量(EOQ)模型假设()。
A. 需求量是确定的B. 需求量是随机的C. 订货成本是确定的D. 订货成本是随机的答案:A9. 网络计划技术中,关键路径是()。
A. 总时差最长的路径B. 总时差最短的路径C. 持续时间最长的路径D. 持续时间最短的路径答案:C10. 敏感性分析中,如果目标函数系数的变化范围是[-2, 2],则该系数的敏感性是()。
A. 低B. 中等C. 高D. 无法确定答案:C二、简答题(每题10分,共40分)1. 简述单纯形法的基本步骤。
答案:单纯形法的基本步骤包括:(1)构造初始单纯形表;(2)进行选基操作,确定基变量和非基变量;(3)进行选主元操作,确定主元列;(4)进行主元行的变换,使主元列下方的元素变为0;(5)检查是否达到最优解,若达到最优解,则停止;若未达到最优解,则重复步骤(2)-(4)。
运筹学期末试卷(A 卷)系别: 工商管理学院 专业: 工商管理 考试日期:年月日姓名:学号:成 绩: 1.[12分]某公司正在制造两种产品:产品I 和产品II,每天的产量分别为30个和120个,利润分别为500元/个和400元/个.公司负责制造的副总经理希望了解是否可以通过改变这种产品的数量而提高公司的利润.公司各个车间的加工能力和制造单位产品所需的加工工时如下表:(1) 假设生产的全部产品都能销售出去,试建立使公司获利最大的生产计划模型.(2) 用图解法求出最优解。
P25 No72.[12分] 某超市实行24小时营业,各班次所需服务员和管理人员如下:何安排使得超市用人总数最少?(1) 建立线性规划模型(只建模不求具体解); (2) 写出基于Lindo 软件的源程序(代码)。
3.[10分]设xA ,xB 分别代表购买股票A 和股票B 的数量,f 代表投资风险指数,建立线性规划模型如下: 目标函数:Min f=8x A +3x B约束条件:投资总额120万元 投资回报至少6万501001200000A B x x +≤100300000B x ≥5460000A B x x +≥股票B 投资不少于30万元利用教材附带软件进行求解,结果如下:**********************最优解如下*************************目标函数最优值为 : 62000变量 最优解 相差值—-————— ———--—-— —-——---— x1 4000 0 x2 10000 0约束 松弛/剩余变量 对偶价格———--—- —---—---—-——— -—-————- 1 0 .057 2 0 —2.167 3 700000 0 目标函数系数范围 :变量 下限 当前值 上限——--—-- ——--—--— ——-—--—- --——---—x1 3.75 8 无上限 x2 无下限 3 6.4 常数项数范围 :约束 下限 当前值 上限-—-——-- --—-——-- ——-——-—- --—----—1 780000 1200000 15000002 48000 60000 1020003 无下限 300000 1000000试回答下列问题:(1) 在这个最优解中,购买股票A 和股票B 的数量各为多少?这时投资风险是多少?(2) 上述求解结果中松弛/剩余变量的含义是什么?(3) 当目标函数系数在什么范围内变化时,最优购买计划不变?(4) 请对右端常数项范围的上、下限给予具体解释,应如何应用这些数据?(5) 当每单位股票A 的风险指数从8降为6,而每单位股票B 的风险指数从3升为5时,用百分一百法则能否断定其最优解是否发生变化?为什么? 4.[6分]设有矩阵对策},,{21A S S G =,其中,{}112345,,,,S ααααα=,{}212345,,,,S βββββ=2343564132421457346454126A --⎛⎫ ⎪- ⎪ ⎪=-- ⎪-- ⎪ ⎪⎝⎭求矩阵对策的最优纯策略(要求图示).W5.[6分]某建筑工地每月需求水泥1200吨,每吨定价为1500元,不允许缺货.设每吨的年存储费为定价的2%,每次订货费为1800元,每年的工作日为365天,请求出:(1)经济订货批量;(2)每年的订货次数及两次订货之间的间隔。