高层结构小分析
- 格式:pdf
- 大小:1.57 MB
- 文档页数:9
高层建筑结构设计特点简述0 前言随着我国经济的快速发展,高层建筑如雨后春笋,一栋栋拔地而起。
建筑的高层化和多样化发展,使得建筑结构设计方面的变化越来越多。
面对建筑类型、功能、数量的不断增加,高层建筑结构体系的多样化,高层建筑结构设计迎来了新新的机遇与挑战。
作者通过实践、总结,对高层建筑结构设计及结构体系,作出以下分析:1 高层建筑结构设计的特点1.1 决定因素是水平荷载对某一定高度楼房来说,其竖向荷载基本上是定值,但是其水平荷载随着结构动力特性的不同将有较大幅度变化,并不是定值。
由于楼房自重和建筑楼面的使用荷载在竖构件中所引起的弯矩和轴力的数值,与建筑高度成正比;而水平荷载对结构产生的倾覆力矩以及由此在竖构件中引起的轴力,却与楼房高度的平方成正比[1]。
1.2 重要设计指标是结构延性在地震作用下,高层建筑相比于低层建筑的结构变形会更大一些。
因此,为了使高层建筑结构具有较强的变形能力,避免高层建筑倒塌,一定要在其结构设计时采取相应的措施,确保高层建筑的结构具有足夠的延性。
1.3 控制指标为侧移在高层建筑结构设计中,结构侧移是关键的控制指标,这与低层建筑有很大的不同。
由于在水平荷载作用下,高层建筑结构的侧移变形与建筑高度的四次方成正比。
建筑高度越高,其结构的侧移变形将大大增加。
因此,必须在水平荷载作用下,将高层建筑结构的侧移控制在允许的限度范围内。
1.4 不能忽视轴向变形高层建筑的竖向荷载很大,其将会在柱中引起比较大的轴向变形,从而减小连续梁中间支座处的负弯矩值,增大跨中正弯矩和端支座负弯矩值。
此外,竖向荷载还会对预测构件的下料长度、构件剪力和侧移等产生影响。
2 高层建筑的结构体系现阶段高层建筑常采用的结构体系主要有剪力墙结构体系、框架一剪力墙体系以及简体体系三种,其优缺点见表1[2]。
表1 结构体系优缺点比较结构体系优缺点剪力墙结构体系侧向刚度比较优良,平面布置也很规整,对侧向风力和地震的抵抗能力较强,釆用此种结构可以建造高度远大于框架结构的建筑。
高层建筑结构特点分析随着城市化进程的加快,高层建筑在城市中的地位日益重要。
高层建筑的结构特点对于建筑的安全性、稳定性和经济性都有着重要的影响。
本文将对高层建筑的结构特点进行分析。
一、垂直承载结构高层建筑的垂直承载结构是其最基本的结构特点。
由于高层建筑的高度较大,需要能够承受垂直荷载的结构设计。
常见的垂直承载结构包括框架结构、剪力墙结构和框架-剪力墙结构等。
框架结构是最常见的高层建筑结构形式,通过柱和梁的组合来承受垂直荷载。
剪力墙结构则是通过设置剪力墙来承受垂直荷载,剪力墙可以是混凝土墙或者钢板墙。
框架-剪力墙结构则是将框架结构和剪力墙结构相结合,以提高结构的稳定性和承载能力。
二、水平承载结构除了垂直承载结构外,高层建筑还需要具备良好的水平承载结构。
由于高层建筑容易受到风荷载和地震荷载的影响,水平承载结构的设计至关重要。
常见的水平承载结构包括框架结构、剪力墙结构和筒体结构等。
框架结构通过设置水平框架来承受水平荷载,剪力墙结构则通过设置剪力墙来承受水平荷载。
筒体结构是一种特殊的结构形式,通过设置圆柱形或者多边形的筒体来承受水平荷载,筒体结构具有较好的抗风性能。
三、抗震设计高层建筑的抗震设计是其结构特点之一。
由于高层建筑容易受到地震荷载的影响,抗震设计的重要性不可忽视。
抗震设计包括抗震设防烈度的确定、结构的抗震性能要求的确定以及结构的抗震设计方法的选择等。
常见的抗震设计方法包括增加结构的刚度、增加结构的阻尼、设置剪力墙和减震装置等。
抗震设计的目标是使高层建筑在地震发生时能够保持稳定,减少破坏和损失。
四、节能设计高层建筑的节能设计是其结构特点之一。
由于高层建筑的能耗较大,节能设计对于提高建筑的经济性和可持续性至关重要。
节能设计包括建筑外墙的保温隔热、采光和通风系统的设计以及能源利用的优化等。
常见的节能设计措施包括使用高效的保温材料、设置双层玻璃窗、采用自然通风和太阳能利用等。
节能设计的目标是减少高层建筑的能耗,提高建筑的能源利用效率。
高层建筑结构特点分析近年来,随着城市化进程的加速和人口增长的不断扩张,高层建筑作为现代城市的地标和标志性建筑物,日益受到人们的关注和青睐。
高层建筑是指高度在150米以上的建筑物,其独特的结构特点不仅体现了现代建筑工程技术的高超水平,也对建筑结构设计提出了更高的挑战。
本文将就高层建筑结构的特点进行深入分析,探讨其在建筑工程领域的重要性和创新性。
1. 纵向承载系统高层建筑的纵向承载系统是保证建筑物稳定性和安全性的关键之一。
一般来说,高层建筑采用的主要纵向承载系统包括框架结构、墙支撑结构、框架-墙组合结构等。
框架结构主要由柱、梁和核心筒组成,能够有效抵抗水平荷载,保证建筑物的整体稳定性;墙支撑结构则通过设置墙体来承担荷载,提高了建筑物的整体刚度和稳定性;框架-墙组合结构则将框架结构和墙支撑结构相结合,兼具两者的优点,是目前应用较为广泛的高层建筑结构形式之一。
2. 横向承载系统除了纵向承载系统外,高层建筑还需要考虑横向承载系统的设计。
横向承载系统是指建筑物在受到侧向风荷载或地震荷载时,通过设置承载墙、剪力墙、钢框架等结构形式来抵抗横向力的作用,防止建筑物产生倾斜或倒塌。
合理设计和布置横向承载系统对于提高高层建筑的整体稳定性和抗震性至关重要。
3. 地基基础高层建筑的地基基础设计直接关系到建筑物的安全稳定。
由于高层建筑的重量和高度较大,地基基础需要具备足够的承载能力和抗震性,以确保建筑物不会发生沉降或倾斜等异常现象。
常见的高层建筑地基基础形式包括承台基础、桩基础、复合地基等,设计时需根据实际地质条件和建筑物特点综合考虑,确保地基基础能够满足建筑物的要求。
4. 空间结构形式高层建筑的空间结构形式多样,不同形式的空间结构会影响建筑物的外观、使用功能和内部空间布局。
常见的高层建筑空间结构形式包括塔式结构、板柱结构、空心管结构等,每种结构形式都有其独特的特点和适用范围。
设计师在选择空间结构形式时需要根据建筑物的功能需求、美观要求和经济性等因素进行综合考虑,确保最终的建筑物能够达到预期的效果。
阐述高层建筑结构的特点及常见问题一、高层建筑结构的特点在高层建筑结构中,结构承受水平荷载和竖向荷载的共同作用,随着建筑物高宽比的增大、高度的增加,尽管竖向荷载对结构设计仍产生重要的影响,但水平荷载对结构产生的内力越来越大,成为结构设计时的主要控制因素,成为确定结构体系的关键性因素。
在水平荷载中,地震作用是动力作用,而风力作用则包含静力作用和动力作用,其静力部分称为稳定风,动力部分称为脉动风。
脉动风的作用会引起高层建筑的振动(简称风振),这在高层建筑结构抗风设计中必须加以考虑的。
在地震区,高层建筑基本上是受地震作用控制,所以计算地震对结构的作用是高层建筑设计的重要内容。
高层建筑结构的设计中,通常采用钢和钢筋混凝土两种材料。
二、高层建筑结构相关问题分析1、高层建筑结构设计中的消防结构设计高层建筑结构因其结构本身特点,决定了建筑结构在进行设计时具有一定的繁复性,而为了保证满足高层建筑结构复杂多样功能需求,需要在进行功能结构设计时,选用不同的建筑功能材料,其中所选用的材料多为可燃性材料,这一定程度上增加了火灾情况发生的可能性,且高层建筑之间空气流动性较强,风力大,一旦高层建筑发生火灾,极有可能在一定程度上造成火灾的扩张。
另外,高层建筑的层数越多,在进行建筑结构设计时,应将火灾线路设计成垂直形态,在这样的情况下,高层建筑人员在进行火灾疏散时可能会耗费更长时间。
在消防结构的设计中,对高层建筑进行排烟结构设计也是关于建筑结构相当重要的方面,在进行设计时,应注意将排烟结构进行合理设计,保证烟气正常排出,降低火灾发生时灾情的蔓延。
2、高层建筑结构设计中的抗风结构设计在高层建筑的设计中,其建筑的抗风性是相当重要的。
笔者认为实现抗风结构优化四个步骤:第一,进行基础设计,保证建筑结构的抗风结构,需要建筑结构具有一定的稳定性,在设计选材时,可选用级配高的砂石,保证建筑结构的填充材料密度,同时可有效防止水平方向上产生对结构倾覆性威胁;同时在结构底部进行设置时,使用抗拔锚杆,提高其应用功能,保证地基的稳固,对风力起到一定抵抗性;第二,设计耗能减振系统,在进行高层建筑结构设计时,可采用耗能减振系统,减少风荷载力对建筑物的作用力,系统的构成主要有楼板、梁柱、剪刀墙、耗能支撑等构成,减振系统的设置选材可使用具有较强粘弹性的阻尼材料,可有效提高减振系统的耗能减振作用;第三,高层建筑结构设计时,应对水平力、风荷载力以及可能发生的荷载力叠加问题进行有效解决。
高层建筑结构设计难点分析高层建筑作为城市的地标和象征,其结构设计一直是建筑领域的一个重要课题。
随着城市化进程的不断加快,高层建筑的数量和高度也在不断增加,因此高层建筑结构设计的难点也逐渐凸显出来。
本文将对高层建筑结构设计的难点进行分析,并探讨如何克服这些难点。
一、受力分析复杂高层建筑由于其高度较大,受力分析通常会比较复杂。
在高层建筑的结构设计中,受力分析是基础和关键,只有深入研究高层建筑所承受的荷载和受力状况,才能有效地解决高层建筑结构设计中的难题。
在受力分析方面,高层建筑在不同楼层和不同构件上所受的荷载和力的分布都会有所不同,需要对整个建筑结构进行全方位的受力分析,确保每一个构件都能满足受力要求。
高层建筑的结构设计还需要考虑各种不同作用下的受力情况,包括静载荷、动载荷、风荷载等,这些都增加了受力分析的复杂性。
针对受力分析复杂的难点,结构设计师需要运用先进的受力分析方法和工具,如有限元分析、结构动力学分析等,对高层建筑的受力状况进行准确的模拟和计算,为结构设计提供科学的依据。
二、抗震设计要求高高层建筑所处的地理位置和环境不同,其抗震设计要求也会有所不同。
一般来说,地震是高层建筑面临的最大威胁之一,因此抗震设计是高层建筑结构设计中的一个重要难点。
高层建筑的抗震设计要求通常比较严格,需要考虑地震波的作用、建筑结构的受力状态、结构的位移要求等多个方面。
抗震设计需要考虑建筑结构在地震作用下的变形和破坏情况,要求建筑结构在地震发生时能够安全稳定地承受地震力的作用,减小地震对建筑结构的影响。
对于高层建筑抗震设计的难点,结构设计师需要根据建筑所处地区的地震烈度和其他地质条件,结合抗震设计规范,进行合理的抗震设计方案设计和结构计算。
还需要采用高性能材料和先进技术,提高建筑结构的抗震能力,确保建筑在地震发生时能够安全稳定地运行。
三、构造系统选择和优化高层建筑的构造系统选择和优化也是结构设计的难点之一。
构造系统的选择直接影响到建筑的结构性能和经济性,因此需要根据建筑的形式、功能和受力特点,合理选择和优化构造系统。
高层建筑的结构设计与安全性分析高层建筑的结构设计与安全性一直是建筑师、工程师以及政府监管部门关注的重点。
随着城市人口的增长和城市化进程的加快,高层建筑成为了解决人口住房需求的重要选择。
然而,由于高层建筑存在的特殊性,其结构设计必须充分考虑到安全性。
本文将就高层建筑的结构设计与安全性进行分析和探讨。
一、高层建筑的结构设计1. 结构设计原则与考虑因素高层建筑的结构设计需要遵循一系列原则和考虑因素,以确保其结构的稳定性和安全性。
首先,高层建筑的结构设计应满足承载能力要求,即能够承受自身重量以及外部荷载的作用。
其次,高层建筑的结构设计应具备一定的柔度和适应性,能够在面对自然灾害(如地震、风暴等)时有所抵抗和吸能。
此外,结构设计还需考虑建筑的使用寿命、抗震性能、防火性能等因素。
2. 结构设计方法与技术在高层建筑的结构设计中,常用的方法和技术包括草图设计、三维模型设计、结构分析和模拟等。
草图设计是在建筑师和工程师协同工作的基础上进行初步设计,以探索建筑形态和结构的潜力;三维模型设计能够更加直观地展示建筑的形态和结构;结构分析和模拟则能够对建筑结构在静态和动态条件下的行为进行评估和优化。
二、高层建筑的安全性分析1. 火灾安全性分析高层建筑的火灾安全性分析是其中一项重要内容。
在高层建筑中,火灾的蔓延速度和烟气的扩散是主要的安全隐患。
因此,在高层建筑的设计和建造过程中应采取有效的防火措施,如设置防火墙、防火门、疏散通道等,以确保人员的安全疏散和消防人员的有效救援。
2. 抗震安全性分析地震是威胁高层建筑安全的另一个主要因素。
高层建筑的结构设计需要考虑抗震能力,以确保在地震发生时建筑结构的稳定性和安全性。
在抗震安全性分析中,建筑师和工程师会考虑到地震作用的影响、建筑材料的选择、结构的几何形态等因素,并采取相应的设计和构造措施提高建筑的抗震能力。
3. 风险评估与安全管理高层建筑的安全性还需要进行风险评估和安全管理。
风险评估是指针对高层建筑可能面临的灾害风险进行分析和评估,以制定相应的应急预案和安全措施。
论述高层结构的主要结构形式及特点大家一起来聊聊高层结构的主要结构形式及特点呀!一、框架结构。
框架结构就像是搭积木一样,由梁和柱组成一个一个的小框架,然后这些小框架再拼接起来形成整个建筑的骨架。
它的特点可不少呢。
一方面,它的空间比较灵活。
你想啊,在一个框架结构的建筑里,你可以根据自己的需求自由地分隔空间,想要大一点的房间就把隔断少放一点,想要多几个小房间就多隔几个,就像你布置自己的小窝一样自由。
比如说一些办公楼,不同的公司可能有不同的办公布局需求,框架结构就能很好地满足他们。
另一方面,框架结构的侧向刚度相对来说比较小。
啥叫侧向刚度呢?简单说就是它抵抗风啊、地震啊这些横向力的能力不是特别强。
就好比一个瘦高个,风一吹可能就有点晃悠。
所以啊,在一些地震多发区或者风特别大的地方,单纯的框架结构可能就不太合适啦。
再一个,它的施工速度比较快。
因为框架结构的构件相对比较规整,在工厂里就可以提前预制好一部分,然后到现场直接组装就行,就像拼乐高一样,这样能节省不少时间呢。
二、剪力墙结构。
剪力墙结构啊,就像是给建筑穿上了一层厚厚的铠甲。
它主要是利用墙体来承受水平和竖向的荷载。
首先说说它的优点哈。
它的侧向刚度很大,抗风、抗震性能特别好。
就像一个大力士,不管风怎么吹,地震怎么晃,它都能稳稳地站在那里。
所以在一些地震活动频繁或者风很大的地区,很多高层住宅都采用剪力墙结构,住起来让人感觉特别安心。
不过呢,它也有一些小缺点。
比如说它的空间布置就没有框架结构那么灵活啦。
因为墙体比较多,你想改变房间布局就比较困难,就像住在公寓里,房间格局基本都定好了,你很难自己随意改动。
还有啊,剪力墙结构的自重比较大,这就对基础的要求比较高啦。
基础就好比是房子的脚,如果脚不稳,房子肯定也站不牢呀。
所以建这种结构的房子,基础部分得花不少心思呢。
三、框架剪力墙结构。
这个结构形式啊,就像是把框架结构和剪力墙结构的优点结合到了一起,有点像“强强联合”的感觉。
高层建筑结构设计论文随着城市化进程的加速,高层建筑在城市中如雨后春笋般涌现。
高层建筑不仅是城市现代化的象征,更是解决城市人口密集、土地资源紧张的有效手段。
然而,高层建筑的结构设计面临着诸多挑战,需要综合考虑多种因素,以确保其安全性、稳定性和经济性。
一、高层建筑结构设计的特点高层建筑与低层建筑在结构设计上存在显著差异。
首先,高层建筑所承受的风荷载和地震作用明显增大。
随着高度的增加,风的影响愈发显著,风振效应可能导致结构的疲劳和破坏。
地震作用也会随着高度的增加而放大,对结构的抗震性能提出了更高的要求。
其次,高层建筑的竖向荷载较大。
由于层数众多,建筑物自重以及活荷载的累积效应不容忽视,这对结构的竖向承载能力和基础设计带来了考验。
再者,高层建筑的结构体系更为复杂。
常见的结构体系包括框架结构、剪力墙结构、框架剪力墙结构、筒体结构等。
不同的结构体系在力学性能、适用高度、经济性等方面各有优劣,需要根据具体情况进行选择和优化。
二、高层建筑结构设计的主要考虑因素(一)安全性安全性是高层建筑结构设计的首要原则。
这包括结构在正常使用条件下的承载能力、稳定性,以及在极端情况下(如强烈地震、大风)的抗倒塌能力。
在设计过程中,需要依据相关的规范和标准,进行详细的力学分析和计算,确保结构能够承受各种可能的荷载组合。
(二)稳定性高层建筑的高宽比通常较大,容易产生失稳现象。
因此,在结构设计中需要通过合理的布置构件、增加抗侧力构件的刚度等措施,提高结构的整体稳定性。
(三)经济性在满足安全性和稳定性的前提下,应尽量降低工程造价。
这需要在结构选型、材料选用、构件尺寸优化等方面进行综合考虑,以达到经济合理的设计目标。
(四)使用功能高层建筑往往具有多种功能,如办公、居住、商业等。
结构设计应满足不同功能区域的使用要求,如大开间的办公区域需要采用较为灵活的结构体系,而住宅区域则更注重房间的规整和隔音效果。
(五)施工可行性设计方案应便于施工,考虑施工过程中的技术难度、施工周期和成本等因素。
高层建筑结构设计特点探析一.高层建筑结构设计特点(一)水平荷载的作用首先说明,因为楼面荷载以及建筑自身的重量在构件上的弯矩、轴力,与建筑物的高的一次方是成正比的,同时,因为水平荷载对竖构建的轴力以及水平荷载自身产生的力矩,与建筑物高的二次方是成正比;其次要说明的是,当建筑物高度达到一定程度,竖方向的荷载就会维持基本不变,对于水平荷载,地震作用和风荷载的值不是恒定不变的,会因为不同的结构而产生很大程度的变化。
(二)重视轴向变形高层建筑物的竖向的荷载会给支撑柱产生一定的压力,会引起轴向变形,而且也会改变连续梁的弯矩,从而制作的负弯矩也就会降低,也会对准备安置构建的长度产生影响;另外也会影响构建侧移和构建剪力,如果这种和竖方向的变形相比,结果显然是偏于不安全的。
(三)侧移和结构延性跟多层建筑相比,高层建筑对于设计结构中的结构侧移非常重视,楼的层数越多,高度越高,相应的水平荷载产生的构建侧移也就越大,所以,我们控制数值在一定的合格的范围。
如果产生地震,高层建筑的变形也就更大,所以,我们要做到保证建筑物在经过了塑性变形之后没有完全丧失变形能力,从而来防止发生倒塌,所以就应该尽量对结构的延性进行提升。
二.高层建筑的结构分析(一)弹性假定高层建筑物经常用到的方法其中就有弹性计算法。
因为建筑物本身收到了风力和垂直荷载的作用,就会使得结构处于一种弹性工作状态,实际情况基本与这种情况类似。
一旦出现大风或者出现大震就会导致高层建筑物位移量增大,有可能导致建筑物本身出现裂缝,处于一种弹塑性工作状态,这种情况计算位移就不能运用弹性计算法,不然误差很大,这种情况,计算就需要运用弹塑性动力法,这样的计算结果才更接近结构的真实状态。
(二)小变形假定一般的计算方法经常采用这种假定,不过在计算的时候要考虑一下几何非线性问题的研究。
很多人认为,当顶点水平为何与楼房本身的高度比例一旦大于1/500,就要重视两者之间产生的影响。
(三)刚性楼板假定在进行高层建筑物的分析计算中,一般不考虑平面外的刚度,一般情况都是对平面内的楼板刚度假设很大。
高层建筑结构设计存在的问题及优化措施分析摘要:高层建筑结构设计阶段,在满足安全性、耐久性的前提下,对结构设计的优化,有利于实现建筑结构设计的经济性。
基于此,本文笔者根据多年工作经验对高层建筑结构设计存在的问题及优化措施进行简要分析。
关键词:高层建筑;结构设计;优化;一、高层建筑结构设计中的常见问题1.抗风问题因为高层建筑的楼层较多并且高度较高,所以,相对其他建筑,高层建筑更容易改变风的流动性与空气的动力效应。
由于建筑的刚架结构以及玻璃幕墙等柔性结构的刚度较小,在风荷载较大的情况下,很容易破坏建筑物的墙体、装饰结构及支撑结构,降低建筑物的稳定性。
因此,进行高层建筑结构设计时,需要对结构进行抗风设计,防止建筑物受自然因素的影响而存在隐患[2]。
2.抗震问题高层建筑抗震结构设计一直以来都是建筑结构设计中的一个难点。
因为地震属于自然因素,而每个地区的抗震设防烈度不同,计算得出的数据也并不是所有地区都适用,并且计算地震结构设计数据时,存在许多不确定性因素,加之一些设计人员的灵活性不足,不能很好地完善抗震结构设计。
3.消防问题针对高层建筑结构消防设计,在我国相关规范中有明确规定。
由于高层建筑楼层比较多,发生火灾时,高层建筑难以疏散住户,对控制火势不利,并且排烟系统设计难度大等,都是高层建筑防火结构设计急需攻克的问题[3]。
二、高程建筑结构设计常见问题的优化措施1.科学设计建筑平面针对高层建筑结构中出现的扭转问题,在建筑结构设计中,相关设计人员应以地基具体形状和建筑物功能需要等为依据,科学合理地设计建筑物外形,尽可能采取长方形、圆形等相对常规的建筑平面,提高建筑结构的稳定性。
2.提高建筑抗风荷载作用的能力为了使高层建筑抗风构件与结构设计的牢固性符合要求,对高层建筑结构进行抗风设计时,必须充分做好以下工作:1)优化基础,只有高层建筑的基础部分稳定性较强,才能保证高层建筑上部分结构的稳固性。
因此,明确混凝土的级配标准成为高层建筑基础设计最基本的工作。
一根梁,是在一个力的场中发生的突然收缩。
一根柱子,是一个漩涡点,它将一池荷载拽向自己。
墙变成柱子的延伸,一种抽象的纵波。
墙和柱的作用就像重力的捷径。
梁像是蹦床线,而楼板则是承受荷载流动中的隐藏模式的水库。
——塞西尔·巴尔蒙德《异规》
普通结构
普通结构一般都是这样的。
就像巴尔蒙德老师所说的,每层的水平荷载就像池塘,横梁就像水渠,将这些水导向柱子。
整个竖向体系可以类比成一条大河,每个楼层处汇入一条支流,越往下游,水流越大,最终汇入大海。
同样,柱子在每个楼层处都增加一个楼层的荷载,越往下,柱子承担的重力荷载越大,最终,柱子将这些荷载导入大地。
普通建筑的示意图,绿色为重力荷载在水平楼面的传递,蓝色为重力荷载沿着柱墙向下流动的路线。
比如,每层每跨的重力荷载是2,楼面梁两个端头传递给柱子的重力荷载为1。
边柱最上面受力为1,往下每层递增1;中柱最上面受力为2,往下每层递增2。
总的重力荷载为54,最终通过柱子汇入大地。
当然,由于种种原因,很多结构并没有选择这种最普通的解决方案。
在日本,很多高层采用了巨型框架体系。
这种体系可以理解成一个五斗橱,然后在每个抽屉格子里塞进一个小建筑。
巨型框架的示意,玫红色为巨型框架的荷载流线。
结构尺寸、荷载跟上面普通结构一样,只不过改成了巨型框架。
深色部分是巨型框架主结构,浅色部分是次结构。
就像一个两层的巨型架子,每层各自放了一个小房子。
位于东京的东日本国铁大厦就是一个典型的巨型框架,光看外表就能看得出来。
横向分了两列格子,竖向分了三排格子。
如果花钱无所谓,要的就是高端大气上档次,那可以试一下改进版的巨型框架。
小房子不是放在架子上,而是倒着吊挂在架子上。
对于小房子,下面的楼层的柱子受力反而最小,上面楼层的柱子受力反而比较大,所有次结构的柱子在重力荷载下都承受拉力。
香港汇丰银行就是个不差钱的例子。
这张夜景照片尤为明显,发红光的部分就是巨型框架的横梁,发白光的大柱子的就是巨型框架的大柱子。
中间的部分就是赛进格子里面吊挂着的小房子。
(左边中国银行的桁架筒体结构也非常明显。
)
文艺结构
想要大跨度出挑,想要一层完全通透,没问题,我们可以把建筑做成斜拉桥。
对于这种结构体系来说,楼层的概念已经模糊了,只是简单的荷载而已。
承受重力荷载主要是靠斜拉索和中间的巨型筒体。
万科总部就是一个这样的实例。
不光悬挑长度大,而且还是悬挑了好几层。
万科的同志们每天就坐在这个斜拉桥上办公。
想要整个建筑浮起来,中间变成大广场,也可以。
无非就是把整个建筑栓在悬索上。
整个建筑物就像是一个悬索桥,基本所有的重力荷载最后都传递到悬索上,然后由悬索传递给两边的巨型竖向筒体。
这种体系的实例就是明尼苏达波利斯联邦储备银行。
整个建筑栓在巨大的悬索上,除了两侧的筒体,一层中间没有任何柱子和墙体,完全是开放的大广场。
外立面特意用两种幕墙肌理勾画出了悬索的轮廓。
同样的例子还有位于伦敦的Exchange House,Bill Baker老师的作品。
只不过跟上面的例子刚
好相反,这个是用受压的拱代替了受拉的悬索。
整个建筑物的重力荷载由四道拱圈承载,底层中间同样没有柱子和墙体。
XX结构
还有一类结构,我实在不知道该怎么说.....
巴尔蒙德老师的作品,这个庞然大物的重力荷载的河流一共转了几个弯呢?图片来源
东日本国铁大厦:File:JR East main office cropped.jpg
汇丰银行:Hong Kong–Thierry Coulon
深圳万科中心:存在建筑/深圳万科中心||在库言库
明尼苏达波利斯美联储地区储备银行:File:Fed-Minneapolis-20080925.jpg Exchange House:File:Broadgate
CCTV新楼:OMA/Progress and Beijing’s CCTV Tower。