交流-直流变换器(整流器)
- 格式:ppt
- 大小:4.79 MB
- 文档页数:60
交流电压和直流电压转换公式
交流电压和直流电压是电学中常用的电压类型,转换公式如下:
1. 交流电压转直流电压公式
交流电压与直流电压最显著的不同就是其极性和大小变化。
交流电压为周期性变化的电压,而直流电压则是恒定的电压。
若要将交流电压转为直流电压,可以通过整流器的方式实现。
其中半波整流器和全波整流器是比较常见的两种。
其转换公式分别为:
半波整流器:Vdc = Vmax/π
全波整流器:Vdc = 2Vmax/π
其中Vmax为交流电压峰值,Vdc为转换后直流电压。
2. 直流电压转交流电压公式
直流电压可以通过变换器将其转换为交流电压。
变换器的种类很多,例如谐振变换器、斩波器等。
转换公式为:
Vout = Vdc * sin(2πft)
其中,Vdc为输入的直流电压,Vout为输出的交流电压,f为变换器的
工作频率,t为时间。
总结
上述公式是交流电压和直流电压转换的基本公式。
在实际应用中,转换器的种类和复杂程度会根据具体需求而变化。
阅读报告 AC/DC换流器换流器(Converter)概念:是由单个或多个换流桥组成的进行交、直流转换的设备。
换流器的功能:实现交流-直流-整流器(Rectifer)的变换。
当触发角 <90°时,换流器运行于整流工况,叫整流器。
在电力电子技术的许多应用领域中,通常需要将工频的正弦交流电能变换为直流电能,即AC/DC转换。
AC/DC换流器,又称为整流器,是通过半导体开关器件(如SCR、GTO、GTR、IGBT和功率MOSFET等)的开通和关断作用,把交流电能变换成直流电能的一种电力电子变换器。
晶闸管换流阀的通断条件:换流阀的阳极电位必须高于阴极电位(即:阀电压必须是正向的)或在控制极加上触发所需的脉冲时导通;阀电流减小到零,且阀电压保持一段时间等于零或为负,使阀元件内多余载流子消失时关断。
按结构分可分为单桥(6脉动)和多桥(12脉动及以上)。
6脉动换流器是三相桥式换流回路而12脉动换流器是由两个交流侧电压相位差30°的6脉动换流器所组成的。
巨大多数直流输电工程均采用12脉动换流器,用于直流输电的电力换流器都采用三相桥式接线。
12脉动换流器:两个6脉动换流单元在直流侧串联而在交流侧并联。
换流变阀侧接线方式,必须一个为星形接线,另一个为三角形接线。
改善谐波性能,交流侧和逆变侧可只分别配备12k± 1次和12k次的滤波器,从而可简化滤波装置,缩小占地面积,降低换流站造价。
AC/DC换流器的应用1. 高压直流输电:相比于交流输电,直流输电有许多优点,适合远距离,大功率输电。
进行直流输电的首要任务是将工频的交流电能转换为直流电能,即AC/DC转换,然后经过直流线路输送到另一端,再经过DC/AC转换,变为工频交流电能。
由于我们要通过换流器对电能的传输进行控制,在直流输电中所用的是可控的AC/DC换流器。
2. 作为直流电源。
在需要直流电源的场合,通过AC/DC换流器将交流电能变换为直流电能作为直流电源。
电力电子学——电力电子变换和控制技术(第二版)第5 章交流-直流变换器(整流器)5.0 概述5.1 整流器的类型和性能指标5.2 不控整流电路5.3 单相桥式晶闸管相控整流电路5.4 三相半波相控整流电路5.5 三相桥式相控整流电路5.6 交流电路电感对整流特性的影响*5.7 相控整流电压的谐波分析*5.8 带平衡电抗器的双三相桥12脉波整流电路5.9 相控有源逆变电路工作原理5.10 相控整流及有源逆变晶闸管触发控制5.11 含有源功率因数校正环节(PFC)的单相高频整流*5.12 三相高频PWM整流小结整流:利用半导体电力开关器件的通、断控制,将交流电能变为直流电能称为整流。
整流器:实现整流的电力半导体开关电路连同其辅助元器件和系统称为整流器。
5.1 整流器的类型和性能指标高频PWM 整流类型对AC-DC变换的基本性能要求控制响应特性整流器的基本性能指标Dnm V V /若PF小,在I 一定时,则P 小cos φνV5.2 不控整流电路在交流电源与直流负载间插入二极管电路,利用二极管的单向导电性实现交流-直流电能变换。
5.2.1 单相半波不控整流工作原理:(理想情况下) 正半周ωt = 0 ∼πD 1承受正向电压而导通v D =v s , i D =i s 负半周ωt = π ∼ 2πD 1受反压截止,阻断电路。
v D =0, i D =0若负载有电感,则i D 通过D 0续流。
v s5.2.2 两相半波不控整流(或双半波不控整流)tωsi 2D i性能优于单相半波不控整流Stωsi 2D i5.2.3 单相桥式不控整流2sin s s v V tω=si si s i、C相由三个相同的脉波组成,脉波tωO π3π−3T T 3D B i i =D电源相电压有效值O Av 537Bv Cv 2sin A s v V tω=3t ω5t ω7t ω1t ωtω23D 1D 5D 1D 3D 6D 2D 4D 6D 2D 2t ω4t ω6t ω8t ω468Bv Cv A v Bv Cv POv ONv OtωD P Nv v =AB v AC v BC v BA v CA v CB v 32sin(30)o AB s v V t ω=+60otωⅠⅡⅢⅣⅤⅥⅡⅠOAi DI 脉波数m=6脉波宽60°()()()t d t V t d v V S AB D ωωπωπ°+⋅==∫∫°°°°30sin 233 3/109 03 09 03 lS l S V V V V 35.134.22363 ====ππ电源线电压有效值v sin(30sV t ω+tωO5.2.6 电容滤波的不控整流电路的脉动,改善了直流电压质量。
Buck电路是一种常用的降压型直流-直流变换器,常用于电源管理系统中。
在Buck电路中,整流是将交流电信号转换为直流电信号的过程,同步整流器则是一种用来提高Buck电路效率的装置。
1. 同步整流器的作用同步整流器是一种可以提高Buck电路效率的重要组件。
在普通的Buck电路中,使用的是非同步整流器,它的效率受到开关管和二极管的限制。
而同步整流器使用开关管替代二极管进行整流,具有更低的导通压降和更小的反向漏电流,因此可以提高电路的整体效率。
2. 同步整流器的工作原理同步整流器使用两个开关管来代替传统的二极管,这两个开关管分别在Buck电路的高侧和低侧。
在高侧开关管导通时,输入电压通过高侧开关与电感L信息,电流开始增加;而在高侧开关管关断,低侧开关管导通时,电流通过电感L和负载进行导通和放电。
3. Buck电路同步整流的工作波形在Buck电路同步整流工作时,有两个重要的波形需要关注,分别是输出电压波形和电流波形。
3.1 输出电压波形在Buck电路同步整流工作时,输出电压的波形应当是稳定的直流信号。
在一个完整的工作周期内,输出电压随着开关管的导通和关断而有规律地变化,但整体上应保持在目标输出电压的范围内,波动应该尽量小。
3.2 电流波形在Buck电路同步整流工作时,电感L和负载的电流波形也是非常重要的。
电感L的电流波形应当是一个周期性的波形,随着开关管的导通和关断而有规律地变化;而负载的电流波形应当尽可能稳定,以保证电路的稳定输出。
4. 同步整流工作波形对电路性能的影响Buck电路同步整流的工作波形对电路性能有着重要的影响。
稳定的输出电压波形和合理的电流波形可以保证电路的稳定性和效率,而不稳定的波形则可能会导致电路的失效或损坏。
5. 结语Buck电路同步整流的工作波形是影响电路性能的重要因素,通过合理设计和控制,可以提高Buck电路的效率和稳定性。
在实际应用中,需要根据具体情况对工作波形进行实时监测和调整,以确保电路的正常运行和长期稳定性。
电气转换器工作原理电气转换器是一种将电能转换为其他形式能量的装置。
它是现代电气系统中不可或缺的组成部分,广泛应用于电力系统、电动机驱动、电子设备等领域。
本文将详细介绍电气转换器的工作原理。
1. 电气转换器的基本原理电气转换器的基本原理是根据能量守恒定律,将输入的电能转换为输出的其他形式能量。
它通过控制电流、电压和频率等参数的变化,实现能量的转换和调节。
2. 电气转换器的主要类型电气转换器根据能量转换的方式可以分为直流转换器和交流转换器两大类。
2.1 直流转换器直流转换器是将输入的直流电能转换为输出的直流电能或其他形式能量的装置。
常见的直流转换器有直流-直流变换器(DC-DC变换器)和直流-交流变换器(DC-AC变换器)。
2.1.1 直流-直流变换器直流-直流变换器是将输入的直流电压通过变换器的控制电路,转换为输出电压具有不同电平的装置。
它主要包括降压变换器、升压变换器和变压器等。
降压变换器将输入的直流电压降低到较低的电平,常见的有降压型开关电源;升压变换器将输入的直流电压提高到较高的电平,常见的有升压型开关电源;变压器将输入的直流电压变换为输出的直流电压,常见的有隔离型开关电源。
2.1.2 直流-交流变换器直流-交流变换器是将输入的直流电压转换为输出的交流电压的装置。
常见的直流-交流变换器有逆变器和交流电压调制器等。
逆变器将输入的直流电压转换为输出的交流电压,常用于太阳能发电系统、风力发电系统等。
交流电压调制器则是将输入的直流电压通过调制技术,转换为输出的交流电压,常用于电力系统中。
2.2 交流转换器交流转换器是将输入的交流电能转换为输出的交流电能或其他形式能量的装置。
常见的交流转换器有交流-直流变换器(AC-DC变换器)和交流-交流变换器(AC-AC变换器)。
2.2.1 交流-直流变换器交流-直流变换器是将输入的交流电压转换为输出的直流电压的装置。
常见的交流-直流变换器有整流器和有源滤波器等。
整流器(英文:rectifier)是把交流电转换成直流电的装置,可用于供电装置及侦测无线电信号等。
整流器可以真空管,引燃管,固态矽半导体二极管,汞弧等制成。
相反,一套把直流电转换成交流电的装置,则称为“逆变器” (inverter)。
目录作的需要,通常在硅整流器中采用掺金的方法,以缩短注入少数载流子的寿命,从而达到减小恢复时间的目的。
为了减小器件因过压击穿造成损坏的可能性和提高整流装置的可靠性,可采用硅雪崩整流器。
在这种器件中,当反向电压超过允许峰值时,在整个PN结上发生均匀的雪崩击穿,器件可工作在高压大电流下,故能承受相当大的反向浪涌功率。
制作这种器件时要求材料缺陷少,电阻率均匀,结面平整,外露结区还应进行适当保护,避免发生表面击穿。
硒整流器的抗过载容量大,承受反向浪涌功率的能力也较强。
编辑本段三极管参数三极管的hFE参数与贮存时间ts相关,一般hFE大的三极管ts也较大,过去人们对ts的认识以及ts的测量仪器均较为欠缺,人们更依赖hFE 参数来选择三极管。
整流器在开关状态下,hFE的选择通常有以下认识:第一、hFE应尽可能高,以便用最少的基极电流得到最大的工作电流,同时给出尽可能低的饱和电压,这样就可以同时在输出和驱动电路中降低损耗。
但是,如果考虑到开关速度和电流容限,则hFE的最大值就受到限制;第二、中国的厂家曾经倾向于选用hFE较小的器件,例如hFE为10到15,甚至8到10的三极管就一度很受欢迎(后来,由于基极回路流行采用电容触发线路,hFE的数值有所上升),hFE的数值小则饱和深度小,从而有利于降低晶体管的发热。
实际上,晶体管的饱和深度受到Ib、hFE两个因素的影响,因而通过磁环及绕组参数、基极电阻Rb的调整,也可以降低饱和深度。
编辑本段现状因为晶闸管整流器不包含运动部件,所以晶闸管整流器系统的维修减少了。
注意到的一个优点是晶闸管整流器的调节速度较二极管整流器快。
在过程特性的阶跃期间,晶闸管整流器常常调节很快,以致能够避免过电流。
电路中的电力电子变换器与控制电力电子变换器是电路中广泛应用的一种电力转换装置,它能够将电能在不同电压、电流和频率下进行变换。
在各种电力电子设备中,电力电子变换器是至关重要的组成部分,能够满足各种电力需求,并实现能源的有效利用。
本文将探讨电路中的电力电子变换器的原理、应用以及相应的控制方法。
一、电力电子变换器的原理与分类电力电子变换器的工作原理是利用开关器件(如晶体管、功率MOSFET、IGBT等)进行电能的转换。
它根据输入和输出电信号的性质的不同进行分类。
常见的电力电子变换器包括交流/直流变换器(AC/DC Converter)、直流/交流变换器(DC/AC Converter)、直流/直流变换器(DC/DC Converter)等。
这些变换器可根据不同的电力应用进行组合和调节,以满足各种电力需求。
1. 交流/直流变换器交流/直流变换器将交流电转换为直流电,常见的应用是电源适配器,它能够将交流电源转换为所需的直流电压和电流以供设备使用。
其主要电路包括整流器和滤波器两部分,整流器将交流电转换为脉动的直流电,而滤波器则平滑输出的直流电。
控制方法主要包括PWM控制和电流控制等。
2. 直流/交流变换器直流/交流变换器将直流电转换为交流电,常见的应用包括逆变器和交流调压器。
逆变器能够将直流电源转换为交流电源,常用于太阳能发电系统和UPS(不间断电源)等领域。
交流调压器则能够调节交流电压的大小,以适应各种负载需求。
其控制方法包括SPWM(正弦波脉宽调制)控制和多电平逆变控制等。
3. 直流/直流变换器直流/直流变换器能够将直流电转换为不同电压和电流的直流电,常见的应用包括DC-DC Buck Converter和Boost Converter等。
Buck Converter能够将输入电压降低到所需的输出电压,而Boost Converter 则能够将输入电压提升到所需的输出电压。
其控制方法包括脉宽调制控制和电流反馈控制等。
一二三电力变流设备的主要类型 电力变流设备包括电力电子变流器和变流器自身运行必要的辅助装置,以及不能进行物理拆分的其他专用的应用部件的设备。
根据电力变流器的变换方式、变换对象、主电路阀器件的关断方式、连接的直流系统、主电路使用的阀器件类型、应用领域等分类方式,电力变流器可以分成不同种类的类型。
按变换的方式分类 半导体变流器采用的变换方式可分为: 1、交流到直流的变换:整流器; 2、直流到交流的变换:逆变器; 3、直流到直流的变换(直流-直流变换):例如直接直流变换器、间接直流变流器; 4、交流到交流的变换(交流交流变换):例如直接交流变流器、间接交流变流器; 5、通断控制方式:例如周期性和(或)非周期性电力电子开关。
按变换的对象分类 对电能的一个或多个特性进行变换、调节或控制,例如 1、频率包括零频率:例如变频器; 2、电压:例如电压控制器; 3、电流:例如电流控制器、温度控制器、电力电子加热设备; 4、相数和相位角:例如相数变换器、相位角调节器; 5、有功功率潮流; 6、无功功率潮流:例如静止式动态静态无功功率补偿发生装置器(TCR)、晶闸管控制串联电容器(TCSC)等; 7、波形:例如有源谐波滤波器、无源谐波滤波器; 8、负载电能的品质。
按主电路阀器件的关断方式分类 半导体变流器主电路阀器件的关断方式可分为: 1、外部换相关断,例如电网换相变流器、负载换相变流器等; 2、自换相关断:例如电容自换相变流器、GTO变流器、IGBT 变流器等。
四五六按连接的直流系统分类 直流系统连接的变流器,可根据直流系统的滤波情况(电流或电流)分为 1、电流型变流器; 2、电压型变流器。
按主电路使用的阀器件类型分类 半导体变流器主电路使用的阀器件可分为: 1、具有正向导通、反向阻断特性的不可控阀器件,例如:整流二极管; 2、具有可控正向导通特性的阀器件,例如:品闸管; 3、具有可控正向导通和可控正向关断特性的阀器件,例如:IGBT、GTO、功率晶体管; 4、两个方向都可控的阀器件,例如:双向晶闸管。