概率中的自由度概念
- 格式:doc
- 大小:24.50 KB
- 文档页数:1
概率论与数理统计各章重点知识整理 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121Y ΛY Y…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P ΛΛ2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1)(3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛),}{},{jji j j i p p y Y P y Y x X P •=====,}{},{•=====i j i i j i p p x X P y Y x X P函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P Y 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2)时, nS X μ-~ t (n-1) .③两个正态总体 相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P Y的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμΛΛΛ解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθΛΛΛ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A ΛΛΛθθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθΛΛ为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21Λ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α. (3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。
第一章随机事件及其概率§ 1.1 随机事件及其运算随机现象:概率论的基本概念之一。
是人们通常说的偶然现象。
其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果•例如,投掷一枚五分硬币,可能国徽”向上,也可能伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一•指在科学研究或工程技术中,对随机现象在相同条件下的观察。
对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。
样本空间:概率论术语。
我们将随机试验E的一切可能结果组成的集合称为E的样本空间,记为1。
样本空间的元素,即E的每一个结果,称为样本点。
随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E的样本空间I ■■的子集为E的随机事件,简称事件•在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间门包含所有的样本点,它是门自身的子集,在每次试验中它总是发生的,称为必然事件.空集?不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生称为不可能事件.互斥事件(互不相容事件):若事件A与事件B不可能同时发生,亦即A B =①,则称事件A与事件B是互斥(或互不相容)事件。
互逆事件:事件A与事件B满足条件A B =①,A B =1 ,则称A与B是互逆事件,也称A与B是对立事件,记作B (或A = B )。
互不相容完备事件组:若事件组A,A2,…A满足条件A i A j二①,(i,i=t n ),nA-、_:,则称事件组A, A2,…A n为互不相容完备事件组(或称A, A2,…A n为样本空i=1间门的一个划分)。
§ 1.2 随机事件的概率概率:随机事件出现的可能性的量度。
t分布、f分布和卡方分布是统计学中常见的概率分布,它们各自具有特定的性质和应用。
中心极限定理是统计学中的重要定理,它与这些分布有着密切的关系。
本文将从理论和应用两个方面来分析并区分t 分布、f分布和卡方分布,以及它们与中心极限定理的关系。
一、理论分析(一)t分布1. 概念:t分布是统计学中常用的一种概率分布,用于从小样本中得出总体参数的估计。
t分布的形状类似于标准正态分布,但是尾部更厚,且随着自由度的增加而逐渐接近正态分布。
2. 特点:t分布的参数由自由度决定,自由度越大,t分布越接近于正态分布。
在小样本情况下,使用t分布进行统计推断比使用正态分布更为准确。
3. 应用:t分布常用于小样本的假设检验和置信区间估计,例如学生 t 检验用于比较两组样本均值的差异。
(二)f分布1. 概念:f分布是一种连续概率分布,常用于分析两组方差的比较。
f分布的形状呈右偏态,且具有两个自由度参数。
2. 特点:f分布的参数由两个自由度参数确定,其中一个自由度用于分别计算分子和分母的自由度。
f分布的数学表达式较为复杂,常使用统计软件进行计算。
3. 应用:f分布常用于方差分析和回归分析中,用于判断多个总体方差是否相等。
(三)卡方分布1. 概念:卡方分布是概率论和统计学中常用的一种连续概率分布,其定义来源于标准正态分布。
2. 特点:卡方分布的参数由自由度确定,自由度越大,卡方分布越接近于正态分布。
卡方分布常用于样本方差的推断和拟合优度检验。
3. 应用:卡方分布广泛应用于拟合优度检验、独立性检验、方差分析等统计推断中,是统计学中不可或缺的重要工具。
(四)中心极限定理1. 概念:中心极限定理是统计学中的重要定理,指出在一定条件下,大量独立随机变量的均值的分布近似服从正态分布。
2. 特点:中心极限定理适用于样本容量较大且独立同分布的情况。
它为统计推断提供了理论基础,使得在实际应用中可以更加准确地进行推断和估计。
3. 应用:中心极限定理在实际应用中被广泛地运用,例如样本均值的抽样分布、置信区间估计、假设检验等方面。
t分布表1. 什么是t分布表t分布表是一种统计学中常用的工具,用于计算t分布的累积概率。
t分布是一种概率分布,通常用于小样本(样本量较小)情况下对样本均值的推断。
t分布表中列出了在给定自由度和置信水平下的t值和对应的累积概率。
2. t分布表的用途t分布表主要用于解决以下两个问题:a. 给定t值,计算对应的累积概率在统计学中,我们经常需要计算一个t值对应的累积概率,即给定某个t值,求该t值以下的面积。
这可以用t分布表来完成。
用户只需要在t分布表中找到对应的自由度和置信水平,即可得到该t值以下的累积概率。
b. 给定累积概率,计算对应的t值在一些统计推断问题中,我们需要给定累积概率,求该累积概率对应的t值。
例如,在假设检验中,我们常常需要计算一个t临界值,该值将样本均值与总体均值进行比较。
t分布表可以帮助我们找到给定累积概率下的t值。
3. 如何使用t分布表在使用t分布表时,我们需要知道两个关键的输入参数:自由度和置信水平。
a. 自由度自由度(degrees of freedom)是t分布中的一个重要参数。
对于给定的问题,自由度等于样本中独立观察值的数量减1。
例如,若样本容量为10个,则自由度为9。
b. 置信水平置信水平是统计推断中常用的一个指标,用于表示结果的可靠性。
常见的置信水平有0.95(95%置信水平)和0.99(99%置信水平)等。
较高的置信水平意味着对结果的可靠性更高。
使用t分布表的步骤如下:1.确定问题中的自由度和置信水平;2.在t分布表中找到相应的自由度;3.在该行中找到置信水平对应的列;4.交叉点的数值即为t值。
4. t分布表的局限性在使用t分布表时,需要注意其一些局限性:•只能用于正态分布情况下的小样本(样本量较小)推断;•对于较大的自由度,t分布和正态分布的差异较小,所以在样本量大的情况下,通常可以使用正态分布近似代替t分布;•t分布表只给出了常见自由度和置信水平下的数值,若需要计算其他自由度或置信水平下的值,需要使用统计软件或计算工具进行计算。
⾃由度(degreeoffreedom )In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently.在很多科学领域,⾃由度指的是,⼀个系统中可以独⽴变化的参数的个数。
1. 函数所谓的⼀元函数 ,⼆元函数 ,这⾥的 1 和 2,指的是⾃变量的个数,⾃变量的英⽂术语为 independent variable ,也即⼆者是在定义域内独⽴变化的,⾃然⼀元函数的 和⼆元函数的 都是因变量,是分别关于 和 的因变量, 从⾃由度的⾓度来说,⾃变量是⾃由的,因变量显然是不⾃由的,⾃变量(独⽴变量)的个数即为⾃由度;2. 离散型概率分布在⽐如⼀个离散型概率分布,,显然满⾜ ,如果没有更多的约束,显然这⾥的⾃由度为 ,⽽不是 ,也即其中只有 个变量可以独⽴变化,其中的 个值确定之后,第 个数的值也得以确定;3. 向量空间从⼏何的观点看,⾃由度可以解释为其所处向量空间维度的⼤⼩。
⽐如我们有如下独⽴的正态分布的观测样本:因为彼此是独⽴的,因此可以被表⽰为多维向量形式:令 为样本的均值,所以有:对于等式右边的第⼀项来说,只有 可以⾃由变化,因此⾃由度为 1;对于等式右边的第⼆项来说,需要满⾜ ,因此,其中的 项成分可以⾃由变化,⾃由度为 ;y =f(x)z =f(x,y)y z x x,y {,⋯,,⋯,}a 1a i a n =1∑i a i n −1n n −1n −1n ,,⋯,X 1X 2X n⎛⎝⎜⎜⎜⎜X 1X 2⋮X n⎞⎠⎟⎟⎟⎟X¯=+⎛⎝⎜⎜⎜⎜X 1X 2⋮X n⎞⎠⎟⎟⎟⎟X ¯⎛⎝⎜⎜⎜⎜11⋮1⎞⎠⎟⎟⎟⎟⎛⎝⎜⎜⎜⎜−X 1X ¯−X 2X ¯⋮−X n X ¯⎞⎠⎟⎟⎟⎟X ¯(−)=0∑i X i X ¯n −1n −1。
概率t检验中的自由度概率t检验中的自由度概率t检验是统计学中常用的一种假设检验方法,用于对两个样本均值之间的差异进行比较。
在进行概率t检验时,我们需要考虑一个重要的参数,那就是自由度。
本文将深入探讨概率t检验中的自由度,并解释其在统计推断中的重要性。
1. 什么是自由度?自由度是指在做出统计推断时可以改变的观察值的个数。
在概率t检验中,自由度是样本量减去参数个数,或者简单说就是样本中独立观测值的个数。
自由度的概念对于概率t检验的结果具有重要的影响。
2. 为什么自由度重要?自由度的大小决定了概率t分布的形状。
概率t分布是以0为中心的、形状类似于钟形曲线的分布,它的形状由自由度决定。
当自由度增加时,概率t分布逐渐接近于正态分布。
自由度的大小直接影响了概率t 检验的可靠性。
3. 如何计算自由度?计算自由度的方法取决于使用的概率t检验方法。
在常见的两样本均值比较的概率t检验中,自由度可以通过以下公式计算:自由度 = (n1 - 1) + (n2 - 1)其中,n1和n2分别表示两个样本的观测值个数。
这个公式表达了两个独立样本中可自由变动的观测值个数之和。
4. 自由度在概率t检验中的应用在进行概率t检验时,常常需要查阅自由度表来确定临界值。
临界值是在显著性水平下,用来判断是否拒绝原假设的边界值。
当自由度增加时,概率t分布变得更加平缓,临界值也相应变得更小,这表示了对原假设更为宽容。
自由度的增加会增加接受原假设的可能性。
5. 观点与理解在我看来,自由度在概率t检验中的作用是至关重要的。
它不仅决定了概率t分布的形状,也直接影响了概率t检验的结果。
通过适当计算自由度,并结合显著性水平,我们可以准确地评估两个样本均值之间的差异,并作出统计推断。
对于进行概率t检验的研究者和实践者来说,深入理解自由度的概念和计算方法至关重要。
总结回顾:在本文中,我们探讨了概率t检验中的自由度。
自由度是在进行统计推断时可以改变的观察值的个数。
在概率论中,自由度是指一个随机变量可以取的不同取值的个数。
在统计学中,自由度是指在一个样本中可以自由变化的参数的个数。
具体来说,对于一个随机变量X,如果它有k个不同的取值,那么它的自由度为k-1。
这是因为在计算X的概率分布时,需要对k-1个参数进行求解,而最后一个参数可以通过求解其他参数得到。
在统计学中,自由度通常用于计算样本均值的标准误差。
对于一个样本大小为n的样本,如果它的均值为x,标准差为s,则样本均值的标准误差为:
s/√n
其中,n是样本大小,s是样本标准差。
这里的自由度为n-1,因为需要对n-1个参数进行求解,以求得样本均值的标准误差。
需要注意的是,自由度并不是一个随机变量的固有属性,而是在计算概率分布或统计量时所涉及的参数的个数。
因此,在不同的问题中,同一个随机变量的自由度可能是不同的。
自由度
自由度(degree of freedom, df估计总体的参数时,样本中独立或能自由变化的数据的个数称为该统计量的自由度。
例如,在估计总体的平均数时,样本中的n个数全部加起来,其中任何一个数都和其他数据相独立,从其中抽出任何一个数都不影响其他数据(这也是随机抽样所要求的)。
因此一组数据中每一个数据都是独立的,所以自由度就是估计总体参数时独立数据的数目,而平均数是根据n个独立数据来估计的,因此自由度为n。
但是为什么用样本估计总体的方差时,方差的自由度就是(n-1)?
s2=å(X-m)2/n
从此公式我们可以看出总体的方差是由各数据与总体平均数的差值求出来的,因此必须将m固定后才可以求总体的方差。
因此,由于m被固定,它就不能独立自由变化,也就是方差受到总体平均数的限制,少了一个自由变化的机会,因此要从n里减掉一个。
假设一个样本有两个数值,X1=10,X2=20,我们现在要用这个样本估计总体的方差,则样本的平均数是:
Xm=å X/n=(10+20)/2=15
现在假设我们已知Xm=15,X1=10,根据公式Xm=å X/n,则有:
X2=2Xm-X1=2×15-10=20
由此我们可以知道在有两个数据样本中,当平均数的值和其中一个数据的值已知时,另一个数据的值就不能自由变化了,因此这个样本的自由度就减少一个,变成了(n-1)。
依此类推:在一组数据中,当其平均数和前面的数据都已知时,最后一个数据就被固定而不能独立变化了,因此这个样本能够独立自由变化的数目就是(n-1)个。