颅内压监测
- 格式:doc
- 大小:1.92 MB
- 文档页数:6
dt医学术语DT医学术语:颅内压监测颅内压监测是一种用于监测颅内压力变化的技术。
颅内压是指颅腔内的压力,通常以毫米汞柱(mmHg)为单位。
颅内压监测可以帮助医生评估患者的颅内疾病状态,如颅脑损伤、脑肿瘤等,并及时采取相应的治疗措施。
颅内压监测通常通过将压力传感器植入到患者的颅内腔内来实现。
这一传感器可以测量颅内腔内的压力,并将数据传输到监测仪器上进行记录和分析。
在植入传感器之前,患者需要进行局部麻醉,并在手术室内进行操作。
颅内压监测对于一些严重的颅内疾病非常重要。
例如,颅脑损伤患者的颅内压可能会升高,导致脑组织的缺血和缺氧,进而引发脑损伤的进一步恶化。
通过监测颅内压力的变化,医生可以及时调整治疗方案,减轻颅内压力的增加,保护脑组织免受进一步损伤。
颅内压监测还可以用于评估脑肿瘤的状态。
脑肿瘤的存在会导致颅内腔内的压力增加,进而影响脑功能。
通过监测颅内压力的变化,医生可以了解肿瘤的生长和发展情况,并根据监测结果进行个体化的治疗,延缓肿瘤的进展。
在进行颅内压监测时,需要注意一些潜在的风险和并发症。
植入传感器可能会导致感染、出血等并发症的发生。
此外,颅内压监测也有一定的局限性,例如无法准确评估脑血流量和脑代谢状态。
尽管如此,颅内压监测仍然是诊断和治疗颅内疾病的重要手段之一。
它可以提供有关颅内压力变化的实时数据,帮助医生了解患者疾病的进展情况,并采取相应的治疗措施。
随着医学技术的不断发展,颅内压监测技术也在不断改进和完善,为患者提供更加安全和准确的诊疗服务。
颅内压监测是一种重要的医学术语,用于监测颅内压力变化。
它可以帮助医生评估颅内疾病的状态,并及时采取治疗措施。
尽管存在一些风险和局限性,但颅内压监测仍然是诊断和治疗颅内疾病的重要手段之一。
随着技术的不断进步,相信颅内压监测技术将能够为患者提供更加精准和安全的医疗服务。
颅内压力测定方法颅内压力测定是一种用来衡量颅内脑压的方法,可以帮助医生诊断和监测颅内病变。
以下是一些常见的颅内压力测定方法:1. 颅内压监测导管:这是一种常见的颅内压力测定方法。
通过将一根导管插入脑室或者颅内组织中,可以测量脑脊液的压力。
导管的一端连接到压力传感器,另一端则经过皮肤插入颅内。
这种方法可以持续测量颅内压力,并且可以通过导管进行脑脊液排出,以减轻颅内压力。
2. 颅内压监测光纤:这是一种较新的颅内压力测定方法。
通过将光纤插入脑室或者颅内组织中,可以测量光信号在光纤中的传播时间,并将其转化为压力值。
这种方法可以提供连续的颅内压力监测,并且相比传统的导管方法,光纤不会引起组织损伤,且可以适用于长时间监测。
3. 颅内压力监测脑电图:这是一种结合脑电图和颅内压力测定的方法。
通过在患者头皮上放置电极,并记录脑电活动,可以间接地推测颅内压力的高低。
当颅内压力升高时,脑电图中会出现不同的改变,如慢波增加、α波消失等。
这种方法适用于对颅内压力进行初步评估,但不能提供准确的数字测量结果。
4. 脑部影像学检查:脑部影像学检查,如头颅CT扫描和头颅MRI,也可以提供对颅内压力的间接评估。
通过观察脑部影像学特征,如脑组织变形、脑实质扩张等,可以推测颅内压力的高低。
然而,这种方法只能提供颅内压力的大致范围,不能提供准确的数字测量。
总之,颅内压力测定方法可以帮助医生评估和监测颅内压力,指导颅内病变的治疗和管理。
在选择合适的测定方法时,应根据患者的具体情况综合考虑各种因素,如病情严重程度、监测时间需求、测定准确度等。
此外,在进行颅内压力测定时,应严格遵循无菌操作规范,以避免感染等并发症的发生。
颅内压监测一、颅内压监测方法(一)有创颅内压监测技术除麻醉诱导至切开硬脑膜期间可用颅内压监测观察麻醉药物和操作对颅内压的影响外,一般多用于术后监测,以指导降颅压治疗,主要有以下方法:1.腰部脑脊液压测定方法简单,校正及采集CSF容易,但有增加感染的可能,对已有脑疝的患者风险更大,也有损伤脊髓的报道。
2.硬脑膜外ICP测定由于硬脑膜外腔不能通过液体传感,只能通过气体压力传感器或将压力传感器直接放置在硬脑膜外,术中使用受到限制,多用于术后监测。
3.硬脑膜下ICP测定将压力传感器直接放置在硬脑膜下直接测压,数据不如脑室内置管精确可靠。
4.脑室内置管测定ICP将导管置入侧脑室内,传感器的零点与外耳道水平进行测定。
此法必须钻孔穿刺脑实质,长时间留置导管有一定难度,易合并感染、出血。
对已有脑室系统梗阻的患者其价值受影响。
5.脑实质内ICP监测采用光导纤维导管通过钻孔插入脑实质,压力通过导管末端光反应膜的运动被感应,通过数字或类似方式来显示。
在放置前必须进行系统校正,该系统抗干扰强,可正确反映ICP变化,但费用昂贵,操作过程中神经组织如有梗阻可以破坏光导纤维,使ICP波形出现误差。
(二)无创颅内压监测技术1.经颅多普勒通过观察高颅压时的脑血管动力学改变来估计ICP。
由于脑灌注压(CPP)为平均动脉压(MAP)减去ICP。
脑血流(CBF)与CPP成正比,与脑血管阻力(CVR)成反比,即CBF=(MAP-ICP)/CVR。
当脑血管自动调节功能存在时,ICP升高,CPP降低,脑小动脉扩张,CVR减小以保持脑血供恒定,此时舒张压(DBP)比收缩压(SBP)下降明显,故脉压差增大,而反映脉压差的搏动指数(PI)、阻力指数(RI)增高。
当ICP持续增高时,脑血管自动调节功能减退,脑循环减慢,CBF减少,收缩期血流速度(Vs)、舒张期血流速度(Vd)、平均血流速度(Vm)均降低。
TCD监测ICP能反映脑血流动态变化,并可观察脑血流自身调节机制是否完善。
脑外伤患者颅内压监测的价值分析脑外伤是指头部直接受到外力的撞击、挤压或穿透而引起的脑组织损伤。
脑外伤患者常常伴随着颅内压增高的情况,而颅内压监测是评估脑外伤患者病情严重程度和预测预后的重要手段。
本文将分析脑外伤患者颅内压监测的价值。
一、颅内压监测的原理颅内压监测是指通过植入颅内压传感器,实时测量和监控患者颅内压力的变化情况。
常见的颅内压传感器有插入式压力传感器、纤维光纤传感器等。
通过这些传感器,医生可以及时获得患者颅内压的数据,从而判断病情发展和采取相应的救治措施。
二、颅内压监测的意义1. 评估脑损伤严重程度:颅内压高低是衡量脑损伤严重程度的重要指标。
脑外伤患者的颅内压增高可能导致脑水肿、缺血和梗死等并发症,严重影响患者的预后。
通过监测颅内压,医生可以及时发现并及时采取针对性的治疗,以减轻颅内压的危害。
2. 预测患者预后:颅内压监测可以帮助医生预测患者的预后。
研究表明,颅内压过高或过低都会对脑组织造成损伤,因此,监测颅内压的变化可以为临床医生提供根据。
通过及时观察颅内压的变化,医生可以判断出患者的病情趋势,从而提前采取必要的治疗措施。
3. 指导治疗效果评价:颅内压监测可用于评估治疗的效果。
在给予患者降颅内压治疗后,医生可以通过监测颅内压的变化来判断治疗效果。
如颅内压有所下降,说明治疗有效;若颅内压仍然高居不下,可能需要调整治疗措施。
三、颅内压监测的存在问题1. 操作风险:颅内压监测需要外科手术植入传感器,操作风险较大,患者需做好术前准备和术后并发症的防范工作。
而且,植入传感器后可能会出现感染、导管脱落等并发症。
2. 费用高昂:颅内压监测涉及到手术、仪器设备等多个环节,费用较高。
对于一些经济条件较差的患者来说,可能承担不起这样的费用。
四、颅内压监测的发展趋势随着科技的不断进步,颅内压监测技术也在不断发展。
目前已经出现了一些无创性的颅内压监测方法,如头皮接触式传感器、瞬时散射光谱技术等。
这些方法可以减少患者的手术风险和费用负担,将为更多的患者提供准确的颅内压监测手段。
第一节颅内压监测颅内压(intracranial pressure.ICP)是指颅内容物(脑组织、脑脊液、血液)对颅腔壁的压力。
颅内压增高是指颅内压持续超过15mmHg(20cmH2O或2.00kPa)。
多种重症神经系统疾病,如颅脑创伤、脑血管疾病、脑炎、脑膜炎、静脉窦血栓、脑肿瘤等,多伴有不同程度的颅内压增高。
颅内压增高可使患者出现意识障碍,严重者出现脑疝,并可在短时间内危及生命。
颅内压监测对判断病情、指导降颅压治疗方面有着重要的临床意义。
进行颅内压监测同时应该关注脑灌注压(CPP),为避免灌注压过高造成成人呼吸窘迫综合征(ARDS) ,重型颅脑外伤治疗指南建议脑灌注压不宜超过70 mm Hg,并避免低于50mm Hg,对脑血流、脑氧及脑代谢的辅助监测也有利于脑灌注压的管理。
【适应证】颅内压监测指征:(1)颅脑损伤:①GCS评分3 ~8分且头颅CT扫描异常(有血肿、挫裂伤、脑肿胀、脑疝或基底池受压);②评分3 ~8分但CT无明显异常者,如果患者年龄> 40岁,收缩压< 90 mm Hg(l mmHg = 0.133 kpa)且高度怀疑有颅内病情进展性变化时,根据具体情况也可以考虑进行颅内压监测;③Gcs 9-12分,应根据临床表现、影像资料、是否需要镇静以及合并伤情况综合评估,如患者有颅内压增高之可能,必要时也行颅内压监测。
(2)有明显意识障碍的蛛网膜下腔出血、自发性脑出血以及出血破人脑室系统需要脑室外引流者,根据患者具体情况决定实施颅内压监测。
(3)脑肿瘤患者的围手术期可根据患者术前、术中及术后的病情需要及监测需要进行颅内压监测。
(4)隐球菌脑膜炎、结核性脑膜炎、病毒性脑炎如合并顽固性高颅压者,可以进行频内压监测并脑室外引流辅助控制颅内压。
【操作方法及程序】1.有创颅内压监测(1)操作方法:根据传感器放置位置的不同,可将颅内压监测分为脑室内、脑实质内、硬膜下和硬膜外测压(图1)。
按其准确性和可行性依次排序为:脑室内导管>脑实质内光纤传感器>硬膜下传感器>硬膜外传感器。
图1①室内压力监测:是目前测量颅内压的金标准。
它能准确地测定颅内压与波形,便于调零与校准,可行脑脊液引流,便于取脑脊液化验与脑内注射药物,安装技术较简单。
无菌条件下,选右侧脑室前角穿刺,于发际后2cm(或眉弓上9cm),中线旁2. 5cm处颅骨钻孔,穿刺方向垂直于两外耳道连线,深度一般为4~7cm。
置入内径1~1.5mm带探头的颅内压监测导管,将导臂置入侧脑室前角,将导管的颅外端与传感器、换能器及监测仪相连接。
将传感器固定,并保持在室间孔水平(图2)。
如选用光导纤维传感器须预先调零,持续监测不会发生零点漂移。
如选用液压传感器,则监测过程中成定时调整零点。
图2优点:颅内压测定准确。
方法简单易行;可通过导管间断放出脑脊液,以降低颅内压或留取脑脊液化验,适用于有脑室梗阻和需要引流脑脊液的患者。
缺点:易引起颅内感染、颅内出血、脑脊液漏、脑组织损伤等并发症;脑室移位或受压、塌陷变小置管困难。
②脑实质测压:是目前国外使用较多的一种颅内压监测方法(图3)。
操作方便,技术要求不高。
在额区颅骨钻孔,将光纤探头插入脑实质(非优势半球额叶)内2~3cm即可。
图3优点;测压准确,不易发生零点漂移,创伤小、操作简便;容易固定;颅内感染发生率低。
缺点:创伤稍大;拔出后不能重新放回原处;价格较昂贵。
③硬脑膜下(或蛛网膜下隙)压力监测(亦称脑表面液压监测):用于开颅术中,将微型传感器置于蛛网膜表面或蛛网膜下隙,可对术中和术后患者进行颅内压监测(图4)。
因为没有硬脑膜的张力和减幅作用,测量结果比硬膜外法更可靠。
图4优点:颅内压测定准确,误差小。
缺点。
传感器置人过程复杂;置入时间受限,一般不超过l周;易引起颅内感染、脑脊液漏、脑组织损伤、颅内出血等并发症。
④硬脑膜外压力监测:于颅骨钻孔或开颅术中,将光纤传感器或电子传感器置于硬脑膜与颅骨之问,紧贴硬脑膜(图5),硬脑膜外压力比脑室内压力高2~3mmHg(0.27~0. 40kPa)。
图5优点:保持硬脑膜的完整性,减少颅内感染、出血等并发症;监测时间长;不必担心导管堵塞;患者活动不影响测压,监测期间易于管理。
缺点:由于硬脑膜的影响有时不够敏感,影响监测的准确性l光纤传感器价格昂贵。
颅内压分级(表3-1):(2)颅内压监测波形分析:监测颅内压的同时可记录到相应的波形,有A、B、C 3种类型。
根据波形的变化可以了解颅内压增高的程度。
①A波(高原波):为颅内压增高特有的病理波型,即颅内压突然升至50~l00mmHg (6. 67~13. 3kPa),持续5~20min。
后骤然下降至原水平或更低,可间隔数分钟至数小时不等反复出现,也可间隔相同时间反复出现,提示颅腔的代偿功能濒于衰竭。
此种波型除见于脑水肿外,还可见于脑血管麻痹、颅内静脉回流障碍。
反复的A型波发作提示脑干压迫和扭曲严重,脑血液循环障碍,部分脑组织出现“不再灌流”现象,脑功能发生不可逆的损害。
②B波:为振荡波中较多见的一种,呈较恒定的节律性振荡,没有其他波夹杂其间,颅内压可高达20~30mmHg,振幅>5mmHg,每分钟0.5~2次,颅内压上升呈较缓的坡度,而下降则较陡峭,顶端多呈明显尖峰,亦多发生于晚间与睡眠时。
“斜坡”波(ramp wave)为B波的变异,可见于脑积水的病人。
B波的发生常与周期性的呼吸变化而改变的PaCO2有关。
因此B波的发生也是与脑血容量的增减有关。
上升支开始时呼吸较慢,而后逐渐加快,下降支呼吸也是较快的,当呼吸节律快到足以使PaCO2下降时,则脑血管收缩,颅内压迅速下降。
③C波:正常或接近正常压力波型,压力曲线较平坦,存在与呼吸、心跳相一致的小的起伏。
呼吸运动时胸腔内压力影响上胶静脉回流,导致静脉压力变化,脑血容量发生变化,颅内压亦随之波动,波幅为5~l0mmHg。
由于心脏的每一次搏出引起动脉扩张,因而颅内压亦随心跳波动,波幅为2~4mmHg。
2.无创压内压监测颅内压监测方法最初多为有创的,但技术条件要求高、价格较昂贵,且并发症多;近年来无创性颅内压监测有了很大发展并成为新的热点。
(l)经颅多普勒(Transcranial Doppler.TCD):TCD搏动指数(pulsatility index,PI)与ICP 水平密切相关,临床上可用TCD观察脑血流动力学变化,从而间接监测ICP,因此,可以利用TCD进行连续监测ICP,并可评价药物对ICP的治疗作用。
优点:技术操作方便、无创、快速、可重复,能床旁监测;能反应脑血流动态变化;可观察ICP增高时脑血管自动调节功能的变化,提示临床积极治疗的时机。
缺点:TCD测量的是流速而非流率指标,脑血管活性受多种因素(PaCO2、PaO2、pH、血压,脑血管的自身调节)影响时。
ICP和脑血流速度的关系会发生变化,用TCD准确算出ICP有一定困难;TCD表现血流速度增加时,须鉴别是脑血管痉挛还是脑功能损伤后脑过度灌注。
(2)视网膜静脉压:在正常情况下,由于视网膜静脉经视神经基底部回流到海绵窦,视网膜中央静脉压≥ICP。
ICP影响视网度静脉压的部位为视神经基底鞘部。
ICP增高将导致视盘水肿和视网膜静脉搏动消失,视网膜动脉压测定为瞬间测定ICP提供了方便、实用的检测方法,可以容易地重复测定,并且使用范围广,但不适合长期监测。
(3)诱发电位①体感诱发电位(Somatosensory evoked potential.SEP):SEP按其各成分的峰潜伏期长短,分为短潜伏期SEP、中潜伏期SEP和长潜伏期SEP。
中潜伏期SEP和长潜伏期SEP 较易受意识状态的影响,而短潜伏期SEP不易受意识的影响,并且各成分的神经发生源相对明确,因此较广泛地用于临床监测。
②脑干听觉诱发电位( brainstem auditory evoked potential,BAEP):颅内压增高会导致脑干功能受损,BEAP表现为按波V一Ⅳ一Ⅲ一Ⅱ一I顺序,随着颅内压的增高,各波潜伏期逐渐延长,波幅降低,甚至消失。
BAEP这几个波在听觉传导通路中有其特定的发生源。
V 波为(中脑)下丘;Ⅳ波为(脑桥上部)外侧丘系及其核团;Ⅲ波为(脑桥下部)上橄榄核;Ⅱ波为(延髓脑桥交界)与耳蜗核紧密相连的听神经和耳蜗核;I波为与耳蜗紧密相连的听神经。
③视觉诱发电位(Visual evoked potential,VEP):闪光视觉诱发电位(flash visual evoked potential.f-VEP)与ICP相关.ICP增高时,P1、N2和P2潜伏期延长。
在急性脑功能损伤时,VEP变化可能早于临床测得的ICP增高,预示颅内容量增加。
对诱发电位监测ICP的评价:优点:用于危重患者脑功能的监测,同时帮助推测ICP和判断预后。
局限性:EP是反映脑功能的电生理指标,易受其他生理因素(PaCO2、PaO2、pH、低血压等)、代谢因素(肝性脑病)的影响。
EP易受神经传导通路病变的影响,如周围神经病变、颈椎病等影响SEP;耳聋、乳突外伤等影响BAEP;严重视力障碍、眼底出血等眼部疾病影响VEP。
颅内局灶性病变对体感、听觉和(或)视觉传导通路的破坏、压迫影响EP的检查结果。
深昏迷和脑死亡时EP波形消失,难以反映ICP。
【并发症】在有创颅内压监测时可能发生:1.感染监测过程中应始终注意无菌操作.一般监测3~4d为宜,时间长感染的机会也增多。
轻者为伤口感染,重者可发生脑膜炎、脑室炎和脑脓肿等。
(1)硬脑膜外/下ICP监测系统:感染发生率为0~11.6%。
感染的类型包括脑膜炎、骨髓炎、局部伤口感染等。
避免CSF从伤口渗漏。
预防监测系统脱连接和减少不必要的操作(如管道冲洗)可明显降低发生脑膜炎的危险。
(2)脑室置管监测:虽然伤口感染的发生率较低,但脑室炎的发生率较高(<26.8%)。
对伤口及导管穿出部位的护理措施不得力、系统的冲洗和其他操作(如脑室造影)、存在CSF口鼻漏或鼻漏以及脑室内出血等因素均可增加感染的发生率。
相反,将脑室测压管埋置皮下隧道穿出法则可降低感染的发生率。
(3)光纤导管ICP监测系统:合计感染的可能性相对较小。
2.颅内出血虽然其发生率较低(0.2%~1.4%),但却为ICP监测中的严重致命性并发症,其发生率与监测方法直接相关.与脑实质内监测装置相比,脑室内监测装置更易发生出血并发症。
另外,颅内出血亦与凝血机制障碍或监测系统安置中的多次穿刺有关。
预防:在安置ICP监测系统前,应纠正存在的凝血功能异常。
在安装技术方面,应避免反复穿刺,并应防止CSF引流过快或将ICP降至不合理的低水平。
在进行CSF引流的清醒病人,防止其随意变动CSF引流系统的状态极为重要。