有 | an
1|
1, 100
给定 1 , 1000
只要
n
1000时,有
|
an
1
|
1, 1000
给定 1 , 10000
只要
n
10000时,
有
|
an
1
|
1, 10000
任意给定 0,
取
N
1
,
只要
n N 时,
恒有| an 1| 成立.
第7页/共135页
定义 如果对于任意给定的正数 ε (不论它多么小),
至 多 只 有 有 限 个( N个) 落 在 其 外。
第9页/共135页
用数列极限的定义证明极限。
例1 证 明 l i m[1 (1)n1 ] 1.
n
n
证
| an
1|
|1
(1)n1 n
1|
1 n
,
任给
0,
欲பைடு நூலகம்| an 1 | ,
只要1 ,
n
或n 1,
取
N
1
,
则当n N 时,
就 有| 1 (1)n1 1 | , 即 得 证
定理2 收敛的数列必定有界。
注1 有界性是数列收敛的必要条件,不是充分条件。
有界数列不一定收敛. 注2 无界数列必定发散。
例如:xn (1)n.
例如:xn 2n.
第12页/共135页
性质3 收敛数列的保号性
定理3 设 ln im an a,且a 0 (a 0),那么存在 正整数N 0,当n N时,都有an 0 (an 0).
第一节 数列的极限
(一) 数列概念 割圆术
我国古代数学家刘徽在《九章算术注》利用圆内接正多边形计算圆 面积的方法--割圆术,就是极限思想在几何上的应用。