理论力学(静力学)
- 格式:doc
- 大小:133.50 KB
- 文档页数:19
1-3 试画出图示各构造中构件AB的受力争1-4 试画出两构造中构件ABCD的受力争1-5 试画出图 a 和 b 所示刚系统整体各个构件的受力争1-5a1-5b1- 8 在四连杆机构的ABCD的铰链 B 和 C上分别作用有力F1和 F2,机构在图示位置均衡。
试求二力F1和 F2之间的关系。
解:杆 AB,BC, CD为二力杆,受力方向分别沿着各杆端点连线的方向。
解法 1( 分析法 )假定各杆受压,分别选用销钉 B 和 C 为研究对象,受力以下图:yyFBCC xB Fo45BCx30o o F60F2CDF AB F1由共点力系均衡方程,对 B 点有:F x0F2F BC cos4500对 C点有:F x0FBC F1 cos3000解以上二个方程可得:F12 6F2 1.63F23解法 2( 几何法 )分别选用销钉 B 和 C 为研究对象,依据汇交力系均衡条件,作用在 B 和C 点上的力构成关闭的力多边形,以下图。
F F2BCF AB o30o45CD60oFF BC F1对 B 点由几何关系可知:F2F BC cos450对 C 点由几何关系可知:F BC F1 cos300解以上两式可得:F1 1.63F22-3 在图示构造中,二曲杆重不计,曲杆AB 上作用有主动力偶 M。
试求 A 和 C 点处的拘束力。
解: BC为二力杆 ( 受力以下图 ) ,故曲杆 AB 在 B 点处遇到拘束力的方向沿BC 两点连线的方向。
曲杆AB遇到主动力偶M的作用, A 点和 B 点处的拘束力一定构成一个力偶才能使曲杆AB保持均衡。
AB受力以下图,由力偶系作用下刚体的均衡方程有(设力偶逆时针为正):M0 F A10a sin(450 )M 0F A0.354Ma此中:tan 1。
对 BC杆有:F C FB F A0.354M 3aA,C两点拘束力的方向以下图。
2-4解:机构中 AB杆为二力杆,点A,B 出的拘束力方向即可确立。
理论力学理论力学(theoretical mechanics)是研究物体机械运动的基本规律的学科。
是力学的一个分支。
它是一般力学各分支学科的基础。
理论力学通常分为三个部分: 静力学、运动学与动力学。
静力学研究作用于物体上的力系的简化理论及力系平衡条件;运动学只从几何角度研究物体机械运动特性而不涉及物体的受力;动力学则研究物体机械运动与受力的关系。
动力学是理论力学的核心内容。
理论力学的研究方法是从一些由经验或实验归纳出的反映客观规律的基本公理或定律出发, 经过数学演绎得出物体机械运动在一般情况下的规律及具体问题中的特征。
理论力学中的物体主要指质点、刚体及刚体系, 当物体的变形不能忽略时, 则成为变形体力学(如材料力学、弹性力学等)的讨论对象。
静力学与动力学是工程力学的主要部分。
理论力学建立科学抽象的力学模型(如质点、刚体等)。
静力学和动力学都联系运动的物理原因——力, 合称为动理学。
有些文献把kinetics和dynamics看成同义词而混用, 两者都可译为动力学, 或把其中之一译为运动力学。
此外, 把运动学和动力学合并起来, 将理论力学分成静力学和动力学两部分。
理论力学依据一些基本概念和反映理想物体运动基本规律的公理、定律作为研究的出发点。
例如, 静力学可由五条静力学公理演绎而成;动力学是以牛顿运动定律、万有引力定律为研究基础的。
理论力学的另一特点是广泛采用数学工具, 进行数学演绎, 从而导出各种以数学形式表达的普遍定理和结论。
总述理论力学是大部分工程技术科学的基础, 也称经典力学。
其理论基础是牛顿运动定律。
20世纪初建立起来的量子力学和相对论, 表明牛顿力学所表述的是相对论力学在物体速度远小于光速时的极限情况, 也是量子力学在量子数为无限大时的极限情况。
对于速度远小于光速的宏观物体的运动, 包括超音速喷气飞机及宇宙飞行器的运动, 都可以用经典力学进行分析。
理论力学从变分法出发, 最早由拉格朗日《分析力学》作为开端, 引出拉格朗日力学体系、哈密顿力学体系、哈密顿-雅克比理论等, 是理论物理学的基础学科。
静力学部分总结姓名:孟庆宇班级:15工9 学号:20150190218静力学是研究物体的受力分析与力系简化及平衡。
平面力系:1、平面汇交力系;2、平面力偶系;3、平面任意力系。
空间力系:1、空间汇交力系;2、空间力偶系;3、空间任意力系。
一、基本概念1、静力学;2、刚体;3、变形体;4、力;5、力系;6、等效力系;7平衡;8、平衡力系;9、平衡条件;10、平衡方程; 11、力系简化;12、合力;13分力;14、二力构件;15、自由体;16非自由体;17、约束;18、约束力;19主动力;20、被动力;21、施力体;22、受力体。
物体在受到力的作用后,产生的效应可以分为两种:(1)外效应也称为运动效应——使物体的运动状态发生改变;(2)内效应也称为变形效应——使物体的形状发生变化。
静力学研究物体的外效应。
材料力学主要研究力对物体的内效应。
23、平面力系;24、平面汇交力系;25、平面力对点的矩;26、平面力偶矩;27、平面任意力系;28、主矢;29、主矩;30、平面力系平衡条件;31、平面力系平衡方程;32、平面物体系统;33、平面物体系统的平衡;34、静定问题;35、超静定问题;36、平面桁架。
37、空间力系;38、空间汇交力系;39、空间力对点、对轴的矩;40、空间力偶矩;41、空间任意力系;42、主矢;43、主矩;43、空间力系平衡条件;44、空间力系平衡方程。
二、基本理论1、五大公理、两个推论及其应用。
2、工程中常见的八大约束类型及约束反力。
(1)光滑约束;(2)柔索约束;(3)圆柱销光滑铰链约束;(4)固定铰支座约束;(5)滚动支座约束;(6)球铰链约束;(7)止推轴承约束;(8)固定端约束。
3、力的投影定理及性质(平面、空间);4、力矩、力偶矩的定义及性质(平面、空间);5、合力投影定理及合力矩定理(平面、空间);6、力的平移定理;7、任意力系的四种简化结果 (平面、空间);(1) 0='RF 0≠O M ;(2) 0≠'R F 0=O M ;(3) 0≠'R F 0≠O M ; (4) 0='RF 0=O M 。
静力学知识要点绪论:1.理论力学研究对象:刚体;物体的运动效应(外效应)。
静力学:物体在力的作用下保持平衡条件;2. 三部分内容的研究对象:运动学:只从几何角度研究物体的运动,不研究其运动产生的原因;动力学:研究受力物体力与运动之间的关系;静力学第一章静力学公理和物体受力分析1.四大公理和二大推论的具体内容。
(熟记+理解)2.二力杆的正确判断,受力方向的确定。
3.三力平衡汇交定理的应用。
4.各种常用的约束和约束反力(I)光滑接触面约束作用点在接触点,方向沿公法线,指向受力物体,受压。
(II)柔索约束作用点在接触点,方向沿绳索背离物体,受拉。
(III)光滑圆柱铰链约束a)中间铰:方向不定用两个正交分力来表示;FxFb)固定铰:方向不定用两个正交分力来表示;Fc)滚动铰支座:限制法线方向运动,通过铰链中心垂直于支撑面,指向不定;N F(IV) 轴承约束a) 向心轴承:方向不定,用两个正交分力来表示;FFb) 止推轴承:三个正交分力;y Fz Fx F(V) 固定端约束:5. 正确画出物体或整体的受力分析图:例题1-1,1-2,1-4(注意内力\外力,作用力\反作用力;正确识别二力杆);6. P21页 思考题 1-2、3、4 作业题:1-1(c 、e 、f 、j )、1-2(c 、f )第二章 平面力系几何条件:力多边形自行封闭;1. 平面汇交力系平衡条件 解析条件: Fx ∑=0Fy ∑=02. 应用平衡条件解题(例题2-3)3. 平面力偶系 力矩的定义,方向判别(为负)平行也无合力。
平面力偶的的两个要素:力偶矩的大小;力偶的转向。
力偶的等效定理:力偶可在平面内任意移动,只要力偶矩的大小、方向不变。
i M ∑=0. 具体应用(例题2-5、2-6)4. 平面任意力系的简化 力的平移定理 P39 简化结果讨论 P41-425. 平面 充要条件:R F =0, Mo=0任意 平衡方程:一矩式:Fx ∑=0 Fy ∑=0()O M F ∑=0 (0点任意取) 力系 二矩式:()A M F ∑=0()B M F ∑=0 Fx ∑=0 (x 不垂直AB 连线) 平衡 : ()A M F ∑=0 ()B M F ∑=0()C M F ∑=0(ABC 不共线) P45 例2-8、2-96. 均布载荷 —— 集中力 大小: 围成图形的面积方向:与q 一致作用点:围成图形的几何中心ql l 31 ql 21q =F 7. 物系的平衡 静定/超静定判别未知量多物系平衡求解思路:以整体为对象———— 选个体为对象求个别未知量具体应用:P51. 例2-11、2-12、2-168. 桁架的内力计算 节点法 例2-18截面法 例 2-199.各种平面力系独立平衡方程数目: 平面任意力系(3个);平面汇交力系(2个);平面力偶系(1个);平面平行力系(2个)各种约束 分析力系类型10.静力学步骤:研究对象 画受力分析 列方程 求解 类型反力确定 确定独立方程数目思考题:P61 2-2、2-3、2-5作业题:2-1、2-3、2-7、2-8c 、2-12、2-14b 、2-20、2-21、2-51、2-57第三章 空间力系1. 空间汇交力系 力在坐标轴上的投影 平衡条件:∑Fx=0、∑Fy=0、∑Fz=0P81 例3-2、3-32. 空间力对点之矩和力对轴之矩力对点之矩:()M O ⨯= 为矢量力多轴之矩:x y yF x —F M Z =⎪⎪⎭⎫ ⎝⎛ P84 公式3-12 例3-4 ()[]()M F M Z Z =0 Z 必须经过O 点3. 空间力偶 AB ⨯=r 三要素:力偶矩大小;力偶矢量方向(与作用面垂直);作用面上转向。
理论力学(静力学)总结静力学——主要研究受力物体平衡时作用力所应满足的条件;同时也研究物体受力的分析方法,以及力系简化的方法等。
运动学——只从几何的角度来研究物体的运动(如轨迹、速度和加速度等),而不研究引起物体运动的物理原因。
动力学——研究受力物体的运动与作用力之间的关系。
所谓刚体是指这样的物体,在力的作用下,其内部任意两点之间的距离始终保持不变。
公理1 力的平行四边形规则公理2 二力平衡条件公理3 加减平衡力系原理推理1 力的可传性推理2 三力平衡汇交定理公理4 作用和反作用定律公理5 刚化原理约束反力的方向必与该约束所能够阻碍的位移方向相反1.具有光滑接触表面的约束F N作用在接触点处,方向沿接触表面的公法线,并指向受力物体2.由柔软的绳索、链条或胶带等构成的约束拉力F T 方向沿着绳索背离物体3.光滑铰链约束(1)向心轴承(2) 圆柱铰链和固定铰链支座4.其它约束(1)滚动支座(2)球铰链一个空间力(3)止推轴承物体的受力分析受了几个力,每个力的作用位置和力的作用方向平面汇交力系几何法解析法平面汇交力系平衡的必要和充分条件是:各力在两个坐标轴上投影的代数和分别等于零力对刚体的转动效应可用力对点的矩(简称力矩)来度量力F 对于点O的矩以记号Mo(F )表示Mo(F )=±F h 力使物体绕矩心逆时针转向转动时为正,反之为负。
力对点之矩是一个代数量r表示由点O到A的矢径矢积的模r F 就等于力F对点0的矩的大小,其指向与力矩的转向符合右手法则。
合力矩定理这种由两个大小相等、方向相反且不共线的平行力组成的力系,称为力偶力偶只对物体的转动效应,可用力偶矩来度量力偶矩 M(F,F') 力偶的作用效应决定于力的大小和力偶臂的长短,与矩心的位置无关M=±F d 代数量一般以逆时针转向为正,反之则为负。
同平面内力偶的等效定理推论(1)任一力偶可以在它的作用面内任意移转,而不改变它对刚体的作用。
理论力学知识点总结理论力学是一门研究物体机械运动一般规律的学科,它是许多工程技术领域的基础。
以下是对理论力学一些重要知识点的总结。
一、静力学静力学主要研究物体在力系作用下的平衡问题。
1、力的基本概念力是物体之间的相互作用,具有大小、方向和作用点三个要素。
力的表示方法包括矢量表示和解析表示。
2、约束与约束力约束是限制物体运动的条件,约束力则是约束对物体的作用力。
常见的约束类型有柔索约束、光滑接触面约束、光滑圆柱铰链约束等,每种约束对应的约束力具有特定的方向和特点。
3、受力分析对物体进行受力分析是解决静力学问题的关键步骤。
要明确研究对象,画出其隔离体,逐个分析作用在物体上的力,包括主动力和约束力,并画出受力图。
4、力系的简化力系可以通过平移和合成等方法进行简化,得到一个合力或合力偶。
力的平移定理指出,力可以平移到另一点,但必须附加一个力偶。
5、平面力系的平衡方程平面任意力系的平衡方程有三个:∑Fx = 0,∑Fy = 0,∑Mo(F) =0。
对于平面汇交力系和平面力偶系,平衡方程分别有所简化。
6、空间力系的平衡方程空间力系的平衡方程数量增多,需要考虑三个方向的力平衡和三个方向的力矩平衡。
二、运动学运动学研究物体的运动而不考虑引起运动的力。
1、点的运动学描述点的运动可以使用矢量法、直角坐标法和自然法。
在自然法中,引入了弧坐标、切向加速度和法向加速度的概念。
2、刚体的基本运动刚体的基本运动包括平动和定轴转动。
平动时,刚体上各点的运动轨迹相同、速度和加速度相同;定轴转动时,刚体上各点的角速度和角加速度相同。
3、点的合成运动点的合成运动是指一个动点相对于两个不同参考系的运动。
通过选取合适的动点、动系和定系,运用速度合成定理和加速度合成定理来求解问题。
4、刚体的平面运动刚体平面运动可以分解为随基点的平动和绕基点的转动。
平面运动刚体上各点的速度可以用基点法、速度投影定理和瞬心法求解,加速度则可以用基点法求解。
三、动力学动力学研究物体的运动与作用力之间的关系。
静力学静力学是研究物体在力系作用下平衡的科学。
第一章、静力学公理和物体的受力分析1、 基本概念:力、刚体、约束和约束力的概念。
2、 静力学公理:(1)力的平行四边形法则;(三角形法则、多边形法则)注意:与力偶的区别 (2)二力平衡公理;(二力构件)(3)加减平衡力系公理;(推论:力的可传性、三力平衡汇交定理) (4)作用与反作用定律; (5)刚化原理。
3、常见约束类型与其约束力:(1)光滑接触约束——约束力沿接触处的公法线; (2)柔性约束——对被约束物体与柔性体本身约束力为拉力; (3)铰链约束——约束力一般画为正交两个力,也可画为一个力; (4)活动铰支座——约束力为一个力也画为一个力;(5)球铰链——约束力一般画为正交三个力,也可画为一个力; (6)止推轴承——约束力一般画为正交三个力;(7)固定端约束——两个正交约束力,一个约束力偶。
4、物体受力分析和受力图: (1)画出所要研究的物体的草图; (2)对所要研究的物体进行受力分析;(3)严格按约束的性质画出物体的受力。
意点:(1)画全主动力和约束力; (2)画简图时,不要把各个构件混在一起画受力图;(3)灵活利用二力平衡公理(二力构件)和三力平衡汇交定理; (4)作用力与反作用力。
第二章、平面汇交力系与平面力偶系1、平面汇交力系: (1)几何法(合成:力多边形法则;平衡:力多边形自行封闭)(2)解析法(合成:合力大小与方向用解析式;平衡:平衡方程0xF=∑,0y F =∑)注意点:(1)投影轴尽量与未知力垂直;(投影轴不一定相互垂直)(2)对于二力构件,一般先设为拉力,若求出负值,说明受压。
2、平面力对点之矩——()O M Fh =±F ,逆时针正,反之负 意点:灵活利用合力矩定理 3、平面力偶系: (1)力偶:由两个等值、反向、平行不共线的力组成的力系。
(2)力偶矩:M Fh =±,逆时针正,反之负。
(3)力偶的性质:[1]、力偶中两力在任何轴上的投影为零;[2]、力偶对任何点取矩均等于力偶矩,不随矩心的改变而改变;(与力矩不同) [3]、若两力偶其力偶矩相等,两力偶等效; [4]、力偶没有合力,力偶只能由力偶等效。
第一篇静力学第1 章静力学公理与物体的受力分析1.1 静力学公理公理1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。
F=-F’工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。
公理2加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。
推论力的可传递性原理:作用于刚体上*点的力,可沿其作用线移至刚体任意一点,而不改变该力对刚体的作用。
公理3 力的平行四边形法则:作用于物体上*点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。
推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,假设其中两个力的作用线汇交于一点,则此三个力必在同一平面,且第三个力的作用线通过汇交点。
公理4作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。
公理5钢化原理:变形体在*一力系作用下平衡,假设将它钢化成刚体,其平衡状态保持不变。
对处于平衡状态的变形体,总可以把它视为刚体来研究。
1.2 约束及其约束力1.柔性体约束2.光滑接触面约束3.光滑铰链约束第2章平面汇交力系与平面力偶系1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即F R=F1+F2+…..+Fn=∑F2.矢量投影定理:合矢量在*轴上的投影,等于其分矢量在同一轴上的投影的代数和。
3.力对刚体的作用效应分为移动和转动。
力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕*点或*轴转动的强弱程度的物理量。
〔Mo〔F〕=±Fh〕4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为〔F,F’〕。
静力学知识点第一章静力学公理和物体的受力分析本章总结1.静力学是研究物体在力系作用下的平衡条件的科学。
2.静力学公理公理1 力的平行四边形法则。
公理2 二力平衡条件。
公理3 加减平衡力系原理公理4 作用和反作用定律。
公理5 刚化原理。
3.约束和约束力限制非自由体某些位移的周围物体,称为约束。
约束对非自由体施加的力称为约束力。
约束力的方向与该约束所能阻碍的位移方向相反。
4.物体的受力分析和受力图画物体受力图时,首先要明确研究对象(即取分离体)。
物体受的力分为主动力和约束力。
要注意分清内力与外力,在受力图上一般只画研究对象所受的外力;还要注意作用力和反作用力之间的相互关系。
常见问题问题一画受力图时,严格按约束性质画,不要凭主观想象与臆测。
第二章平面力系本章总结1. 平面汇交力系的合力( 1 )几何法:根据力多边形法则,合力矢为合力作用线通过汇交点。
( 2 )解析法:合力的解析表达式为2. 平面汇交力系的平衡条件( 1 )平衡的必要和充分条件:( 2 )平衡的几何条件:平面汇交力系的力多边形自行封闭。
( 3 )平衡的解析条件(平衡方程):3. 平面内的力对点 O 之矩是代数量,记为一般以逆时针转向为正,反之为负。
或4. 力偶和力偶矩力偶是由等值、反向、不共线的两个平行力组成的特殊力系。
力偶没有合力,也不能用一个力来平衡。
平面力偶对物体的作用效应决定于力偶矩 M 的大小和转向,即式中正负号表示力偶的转向,一般以逆时针转向为正,反之为负。
力偶对平面内任一点的矩等于力偶矩,力偶矩与矩心的位置无关。
5. 同平面内力偶的等效定理:在同平面内的两个力偶,如果力偶相等,则彼此等效。
力偶矩是平面力偶作用的唯一度量。
6. 平面力偶系的合成与平衡合力偶矩等于各分力偶矩的代数和,即平面力偶系的平衡条件为7、平面任意力系平面任意力系是力的作用线可杂乱无章分布但在同一平面内的力系。
当物体(含物体系)有一几何对称平面,且力的分别关于此平面对称时,可简化为平面力系计算。
重庆大学《理论力学》课程教案2005版机械、土木等多学时各专业用2005年8月使用教材:《理论力学》,张祥东主编,重庆大学出版社2002年《理论力学》,哈尔滨工业大学,高等教育出版社2004年《Engineering Mechanics理论力学》,杨昌棋等缩编,重庆大学出版社2005年参考文献[1]同济大学理论力学教研室,理论力学,同济大学出版社,2001年[2]乔宏洲,理论力学,中国建筑工业出版社,1997年[3]华东水利学院工程力学教研室,理论力学,高等教育出版社,1984年[4]理论力学(第六版)哈尔滨工业大学理力教研室编.普通高等教育“十五”国家级规划教材高等教育出版社.2002年8月[5]理论力学(第3版)郝桐生编.教育科学“十五”国家规划课题研究成果高等教育出版社.2003年9月[6]理论力学(第1版)武清玺冯奇主编.教育科学“十五”国家规划课题研究成果高等教育出版社.2003年8月第1篇静力学第1章静力学基本知识与物体的受力分析一、目的要求1.深入地理解力、刚体、平衡和约束等基本概念。
2.深入地理解静力学公理(或力的基本性质)。
3.明确和掌握约束的基本特征及约束反力的画法。
4.熟练而正确地对单个物体与物体系统进行受力分析,画出受力图。
二、基本内容1.重要概念1)平衡:物体机械运动的一种特殊状态。
在静力学中,若物体相对于地面保持静止或作匀速直线平动,则称物体处于平衡。
2)刚体:在力作用下或运动过程中不变形的物体。
刚体是理论力学中的理想化力学模型。
3)约束:对非自由体的运动预加的限制条件。
在刚体静力学中指限制研究对象运动的物体。
约束对非自由体施加的力称为约束反力。
约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相反。
4)力:物体之间的一种相互机械作用。
其作用效果可使物体的运动状态发生改变和使物体产生变形。
前者称为力的运动效应或外效应,后者称为力的变形效应或内效应,理论力学只研究力的外效应。
力对物体作用的效应取决于力的大小、方向、作用点这三个要素,且满足平行四边形法则,故力是定位矢量。
5)力的分类:集中力、分布力(体分布力、面分布力、线分布力)主动力、约束反力6)力系:同时作用于物体上的一群力称为力系。
按其作用线所在的位置,力系可以分为平面力系和空间力系;按其作用线的相互关系,力系分为共线力系、平行力系、汇交力系和任意力系等等。
7)等效力系:分别作用于同一刚体上的两组力系,如果它们对该刚体的作用效果完全相同,则此两组力系互为等效力系。
8)平衡力系:若物体在某力系作用下保持平衡,则称此力系为平衡力系。
9)力的合成与分解:若力系与一个力F R等效,则力F R称为力系的合力,而力系中的各力称为合力F R的分力。
用一个比原力系简单但作用效果相同的力系代替原力系称为力系的合成(简化);反之,一个力F R用其分力代替,称为力的分解。
2.静力学公理及其推论公理1:力的平行四边形法则给出了最简单的力系的简化规律,也是较复杂力系简化的基础。
另外,它也给出了将一个力分解为两个力的依据。
公理2:二力平衡条件指出了作用于刚体上最简单力系的平衡条件。
对刚体而言,这个条件既必要又充分,但对非刚体而言,这个条件并不充分。
公理3:加减平衡力系公理此公理是研究力系等效变换的依据,同样也只适用于刚体而不适用于变形体。
推论1:力的可传性表明作用于刚体上的力是滑动矢量。
推论2:三力平衡汇交定理给出了三个不平行的共面力构成平衡力系的必要条件。
当刚体受不平行的三力作用处于平衡时,常利用这个关系确定未知力的作用线方位。
公理4:作用和反作用定律揭示了物体之间相互作用力的定量关系,它是分析物体间受力关系时必须遵循的原则,也为研究多个物体组成的物体系统问题提供了基础。
公理5:刚化原理阐明了变形体抽象为刚体模型的条件,并指出刚体平衡的必要和充分条件只是变形体平衡的必要条件。
3.工程中常见的约束类型及其反力的画法。
1)光滑接触面:其约束反力沿接触点的公法线,指向被约束物体。
2)光滑圆柱铰链和径向轴承:其约束反力位于垂直于销钉轴线的平面内,经过轴心,通常用过轴心的两个大小未知的正交分力表示。
3)固定铰支座:其约束反力与光滑圆柱铰链相同。
4)活动铰支座:与光滑接触面类似。
其约束反力垂直于光滑支承面。
5)光滑球铰链:其约束反力过球心,通常用空间的三个正交分力表示。
6)止推轴承:其约束反力常用空间的三个正交分力表示。
7)链杆约束:所受约束反力必沿链杆中心线,指向待定。
8)柔体约束:其约束反力为沿柔索方向的一个拉力,该力背离被约束物体。
4.受力分析及画受力图正确地进行物体的受力分析并画其受力图,是分析、解决力学问题的基础。
画受力图时必须注意以下几点:①明确研究对象。
根据求解需要,可以取单个物体为研究对象,也可以取由几个物体组成的系统为研究对象。
不同的研究对象的受力图是不同的。
②正确确定研究对象受力的数目。
由于力是物体间相互的机械作用,因此,对每一个力都应明确它是哪一个施力物体施加给研究对象的,决不能凭空产生。
同时,也不可漏掉某个力。
一般可先画主动力,再画约束反力。
凡是研究对象与外界接触的地方,都一定存在约束反力。
③正确画出约束反力。
一个物体往往同时受到几个约束的作用,这时应分别根据每个约束本身的特性来确定其约束反力的方向,而不能凭主观臆测。
④当分析两物体间相互作用时,应遵循作用、反作用关系。
若作用力的方向一经假定,则反作用力的方向应与之相反。
当画整个系统的受力图时,由于内力成对出现,组成平衡力系。
因此不必画出,只需画出全部外力。
三、重点和难点重点:1.力、刚体、平衡和约束等概念。
2.静力学公理及其推论。
3.柔性约束、光滑支承面约束、光滑铰链约束的特征及其反力的画法。
4.单个物体及物体系统的受力分析。
难点:光滑铰链的约束特征(尤其是销钉连接二个以上的构件即复合铰),物体系统的受力分析,平面汇交力系(多个力)合成与平衡的几何法。
四、教学建议1.教学提示①本章讲述概念较多,要讲清这些概念的定义,并理解其意义。
例如:属于力的:力系、等效力系、合力、分力、平衡力系、主动力、约束反力、作用力、反作用力、内力、外力等。
属于物体的:变形体、弹性体、刚体、自由体、非自由体等。
属于数学的:代数量、矢量(向量)、单位矢量、定位矢量、滑动矢量等。
②静力学公理是最普遍、最基本的客观规律,是静力学基础,要讲透。
并使学生深入理解和熟记这5个公理与2个推论。
③多举例题讲清楚约束反力的确定方法和受力图的正确画法。
④鼓励使用多媒体教学,学生可以在理论力学精品课程网上观看电教片及相关课件。
如《力学在机械工程中的应用》《力学在土木工程中的应用》《约束及物体的受力分析》等。
2.建议学时课内(5学时)课外(7.5学时)3.作业布置习题:1-1 (b)(f) (g) 1-2(a)(c)(e)1-3(a)(e)(f) 1-4(a)(b)(c)(d)(e)(f)1-5(a)(b)(d)第二章汇交力系一、目的要求1.理解汇交力系合成的几何法,力多边形法则和三角形法则。
2.能正确地将力沿坐标轴分解和求力在坐标轴上的投影。
3.掌握汇交力系合成的解析法,对合力投影定理有清晰的理解,并能熟练地计算。
4.深入理解平面汇交力系的平衡条件及平衡方程的应用。
二、基本内容1.基本概念1)力多边形法则2)力在轴上的投影为N=F cosα式中α为力F与n轴间的夹角,投影值为代数量。
3)力在空间直角坐标轴的投影(a)直接投影法:已知力F和直角坐标轴夹角α、β、γ,则力F在三个轴上的投影分别为αX=Fc o sβY=Fc o sγZ=Fcos(b)间接投影法(即二次投影法):已知力F和夹角γ、ϕ,则力F在三个轴上的投影分别为γc o sϕX=Fs i nγs i nϕY=Fs i nγ=Zc o sF力沿坐标轴分解满足力的平行四边形法则.在直角坐标系下有X=F x,Y=F y ,Z=F z4)力的解析表达式为F=X i+Y j+Z k5)合力投影定理:合力在某一轴上的投影等于各分力在同一轴上投影的代数和。
F Rx=ΣXF Ry=ΣYF Rz=ΣZ2.汇交力系的平衡条件和平衡方程汇交力系平衡的充分必要条件是该力系的合力为零。
其解析表达式称为平衡方程。
ΣX=0ΣY=0ΣZ=03.汇交力系平衡方程的应用应用平衡方程式求解平衡问题的方法称为解析法。
它是求解平衡问题的主要方法。
这种解题方法包含以下步骤:①根据求解的问题,恰当的选取研究对象:所谓研究对象,是指为了解决问题而选择的分析主体。
选取研究对象的原则是,要使所取物体上既包含已知条件,又包含待求的未知量。
②对选取的研究对象进行受力分析,正确地画出受力图:在正确画出研究对象受力图的基础上,应注意适当地运用简单力系的平衡条件如二力平衡、三力平衡汇交定理等确定未知反力的方位,以简化求解过程。
③建立平衡方程式,求解未知量。
为顺利地建立平衡方程式求解未知量,应注意如下几点:(a)根据所研究的力系选择平衡方程式的类别(如汇交力系、平行力系、任意力系等)和形式(如基本式、二矩式、三矩式等等)。
(b)建立投影方程时,投影轴的选取原则上是任意的,并非一定取水平或铅垂方向,应根据具体问题从解题方便入手去考虑。
c)建立力矩方程时,矩心的选取也应从解题方便的角度加以考虑。
d)求解未知量。
由于所列平衡方程一般是一组线性方程组,这说明一个静力学题经过上述力学分析后将归结于一个线性方程组的求解问题。
从理论上讲,只要所建立的平衡方程组具有完整的定解条件(独立方程个数和未知量个数相等),则求解并不困难,若要解的方程组相互联立,则计算(指手算)耗时费力。
为免去这种麻烦,就要求在列平衡方程式时要运用一些技巧,尽可能做到每个方程只含有一个(或较少)的未知量,以便手算求解。
三、重点和难点重点:力在坐标轴上的投影、合力投影定理、汇交力系的平衡条件及求解平衡问题的解析法。
难点:物体系平衡问题中正确选取研究对象。
四、教学建议1.教学提示①讲清用三力平衡汇交定理确定未知约束反力方向应注意的问题。
②讲清力在坐标轴上的投影与力沿坐标轴分解是两个不同概念,对比其联系与区别。
③对物体系统平衡问题中如何选取恰当的研究对象,应通过典型例题着重讲解,并引导学生进行归纳总结2.观看精品课程网上名师教学录象及教学模型。
3. 建议学时课内(3学时)课外(4.5学时)4.作业布置习题2-12、2-14、2-17、2-19、2-20。
第3章 力偶理论一、目的要求1.、熟练掌握力对点之矩与力对轴之矩的计算。
2.深入理解力偶和力偶矩的概念,明确力偶的性质和力偶的等效条件。
3.熟练掌握力偶系的合成与平衡的求解。
4.理解力的平移定理及其意义。
二、基本内容1.基本概念1)平面内的力对点O 之矩是代数量,记为M o (F )ABO Fh M o ∆±=±=2)(F其中F 为力的大小,h 为力臂,∆ABO 为力矢AB 与矩心O 组成三角形的面积。