数据仓库开发应用过程
- 格式:pptx
- 大小:235.23 KB
- 文档页数:31
数据开发流程
数据开发流程通常包括以下几个阶段:
1. 数据需求收集:通过与业务相关人员的沟通和了解,收集数据需求并明确需求的具体业务目标和数据来源。
2. 数据清洗和预处理:对原始数据进行清洗、去重、格式转换等预处理工作,以便后续的数据分析和建模。
3. 数据仓库建设:根据业务需求和数据分析的目标,设计和构建数据仓库,包括数据表模型设计、ETL流程开发等。
4. 数据分析和建模:针对数据仓库中的数据,进行数据分析、建模和预测,以发现数据中的规律、趋势和异常情况等。
5. 数据展示和报告:将数据分析的结果整理成可视化的图表、报表等形式,帮助业务人员更好地理解数据、分析结果,并作出决策。
6. 运维和维护:对数据仓库进行监控和维护,以保证数据的安全、稳定和质量,同时处理和修复可能出现的数据错误和缺陷。
以上是一个基本的数据开发流程,实际情况中不同的企业和项目可能会因为具体业务需求、技术选型和团队组成等因素而略有不同。
数据仓库概要设计数据仓库(Data Warehouse)是指把企业分散在不同数据库中的数据统一整合到一个数据库中进行存储和管理,并对这些数据进行分析和管理的一种数据库应用系统。
数据仓库的建设是企业信息化建设的重要组成部分,是企业对内部外部信息资源进行整合、挖掘和利用最有效的平台之一。
因此,进行数据仓库的概要设计是非常重要的一步。
1.数据仓库概述数据仓库,是一个能够存储大量历史数据的集合体,使得企业能够快速地进行数据分析、查询和决策。
数据仓库通常包括存储、管理和查询技术。
数据仓库的设计是基于自底向上的过程,通过收集各种应用中的数据来建立。
数据仓库的需求分析是设计的第一个步骤,通过需求分析可以把握到数据的来源、数据的主要特征、数据的处理方法、数据的处理效果等。
2.数据仓库的工作过程a.数据的收集数据收集的目的是获取各个分散在企业内部外部的数据源,并把这些数据源整合成数据集。
数据收集包括了跟踪源数据、数据的标准化、数据的清洗、数据的转换等。
b.数据的整合数据整合意味着将不同的数据源集成到一起,通常是通过ETL工具来实现。
ETL(Extract, Transform, Load)工具的主要功能是提取、转换和加载。
c.数据的存储数据仓库的存储方式一般有两种:关系型数据库和非关系型数据库。
d.数据的查询与分析数据仓库的用户可以通过BI工具(Business Intelligence)来进行数据的查询、分析和报表生成。
3.数据仓库的概要设计步骤a.数据仓库设计的第一步是需求分析,需求分析的目的是明确数据仓库的目标、范围和需求。
需求分析应该包括数据仓库的使用者、数据仓库所需数据的类型、数据的来源、数据的质量要求等。
b.数据仓库的概念设计是在需求分析的基础上,开始进行数据仓库的抽象模型的设计。
概念设计包括了数据仓库的模型设计、元数据的设计等。
c.数据仓库的逻辑设计是在概念设计的基础上,开始进行数据仓库的逻辑结构的设计。
数据开发的流程
数据开发的流程通常包括以下步骤:
1. 需求分析:明确数据开发的目标和需求,例如确定需要的数据、数据的精度、数据的时效性等。
2. 数据源确定:根据需求,确定数据来源。
这可能包括数据库、数据仓库、API、外部数据源等。
3. 数据采集:根据数据源的类型,采用适当的方法进行数据采集。
这可能包括查询数据库、调用API、网络爬虫等。
4. 数据清洗:对采集到的数据进行清洗和预处理,以确保数据的准确性和完整性。
这可能包括处理缺失值、异常值、重复值等。
5. 数据转换:将清洗后的数据转换成适合分析和建模的格式或结构。
这可能包括数据归一化、数据分组、数据聚合等。
6. 数据分析:运用统计学、机器学习等方法对数据进行深入分析,以挖掘其中的规律和模式。
7. 数据可视化:将分析结果以图表、图像等形式呈现出来,以便更好地理解和解释数据。
8. 报告编写:将整个数据开发过程和结果编写成报告,以供决策者和其他相关人员参考和使用。
请注意,这只是一个基本的数据开发流程,根据实际需求和项目规模,可能会有所不同。
数据中心建设项目数据库设计开发方案及实施方案本项目中, 数据库设计与建设包括用于数据中心进行数据存储、交换、应用的数据中心数据库, 和用于数据统计、分析、挖掘的数据仓库的设计与建设。
本数据中心数据库的建设要满足金信工程的相关设计要求, 满足上级工商、质监、知识产权等市场监管部门的工作要求。
数据中心顾名思义, 是专注于数据处理和服务的中心, 旨在建立数据采集、更新、管理、使用机制, 加快系统内部信息交流与反馈, 为公众服务和相关政府部门数据交换建立基础, 为工商、质监、知识产权部门各级管理人员提供决策支持服务。
1.1.数据中心应用功能与业务处理功能的不同之处在于数据中心是以数据为管理对象, 而业务应用系统以业务为管理对象。
数据中心将从业务应用系统采集到的数据进行清洗和统一存放, 根据不同的需求进行加工, 生成不同的数据产品供各系统使用。
数据中心独立于应用系统之外, 又与应用系统有密切的联系。
1.2.数据中心是存储市场监督管理局经过筛选、去重、整理后的核心业务、人员数据等信息, 整合了全市各类主体信息资源和市场主体、人员相关的信息资源, 并进行统一管理和维护;数据中心通过深入挖掘数据价值, 开发实现灵活、高效的数据查询、业务报表、数据共享和数据交换等功能, 为政务公开、业务协同、绩效考核、决策支持、公共服务等提供数据保障。
1.3.数据中心建设原则金信工程数据中心建设遵循如下原则:1.总体规划, 建立科学、完整的信息资源管理体系整体规划, 将以往分散的数据资源进行整合, 建立科学、完整的信息资源体系结构, 确保业务人员、技术开发人员等使用和维护信息资源的用户从整体上把握数据资源的情况, 方便、准确的利用信息资源和有效的维护、管理信息资源。
科学、完整的信息资源管控体系不但包括信息资源自身的完整性, 科学性, 也应包括信息采集、管理、共享、利用方式的规划, 以及数据模型、数据指标等规范化、标准化的考虑。
2.统一规划、集中管理各类信息资源统一规划数据资源, 不只是要对各类信息资源进行物理集中存储管理, 还要在对业务数据分析的基础上, 一体化规划并设计系统数据模型, 统一制定业务数据指标体系, 以管理服务对象为核心, 组织相关联的业务数据, 实现对内业务使用、对外服务应用的统一视图。
数仓建设流程
数仓建设流程主要包括以下步骤:
1. 选择业务过程:挑选具体的业务线,比如论文的业务,则一条业务线对应一张论文的事实表。
2. 声明粒度:定义事务表中一行数据的具体定义,论文事实表中一行数据对应的是一条论文的记录。
3. 确认维度:支付事实表和那些维度有关系,比如是时间、用户等,时间包括日、周、月等,这里就是标题维度、摘要维度还有关键词维度。
4. 确认事实表(指标):每一张事实表的度量值是什么度量值为可以再报表中产生的数据,支付表里的支付记录拉链表、三范式、关系建模和维度建模、星型模型和雪花模型、星座模型的区别、拉链表是什么,这样做的好处。
5. 维度设计:包括时间维度、年龄段维度、地区等。
维度分为公共维度和私有维度。
6. 建模步骤:包括确定业务流程、确定粒度、确定维度、确定事实等。
7. 范式模型:减少冗余,减少join操作。
8. 存储:数据仓库主题的划分,比如按照业务过程来划分,一个业务过程抽象出一个主题域,比如业务系统中的商品、交易、物流等。
以上步骤只是大致的框架,具体实施时可能需要根据实际情况进行调整。
数据库开发过程范文1.需求分析:在数据库开发的第一步中,开发团队与客户一起讨论和理解需求。
这个阶段的目标是确定数据库的主要功能和目的。
开发团队将与客户一起分析业务需求,了解系统的业务流程,明确数据的种类和存储要求。
2.数据建模:在这个阶段,开发团队将根据需求分析的结果设计数据模型。
数据模型是描述数据库结构的图形化表示。
最常用的数据模型是关系模型,它使用表来表示实体和关系。
开发团队可以使用建模工具如ER 图或UML来设计数据模型。
在设计过程中,团队需要确定实体、属性和关系,并确保数据模型具有良好的规范性、正确性和完整性。
3.数据库设计:在数据库设计阶段,开发团队将根据数据模型来设计数据库的结构。
这个阶段的目标是定义表、字段、键和关系。
开发团队将根据业务需求和性能要求来选择适当的数据类型、约束和索引。
4. 数据库实现:在这个阶段,开发团队将基于数据库设计创建数据库。
他们将使用数据库管理系统(如MySQL、Oracle等)来创建表、字段和索引。
开发团队还将编写存储过程、触发器和视图等数据库对象。
在创建数据库的过程中,团队需要关注数据库的性能、安全性和可扩展性。
5.数据库测试:在数据库开发的最后一步中,开发团队将对数据库进行测试。
他们将验证数据库是否满足需求,并测试数据库的功能、性能和安全性。
开发团队将执行各种测试,如单元测试、集成测试和性能测试。
如果测试发现了问题,开发团队将做出相应的修改。
在整个数据库开发过程中,团队需要进行沟通和协作,并按照计划执行每个步骤。
同时,他们还需要关注数据库的可用性、可维护性和数据质量。
总之,数据库开发是一个综合性的过程,它涉及到从需求分析到数据库实现和测试的一系列步骤。
通过合理的规划和设计,可以帮助开发团队创建高质量和高性能的数据库。
数据仓库体系规划及实施流程⼀、前⾔数仓规划是数仓建设的蓝图,涵盖从需求分析开始到最终的数仓评估验收整个环境;数仓规划之所以重要,是因为它是描述了数据流动的概念性框架,为元数据管理奠定了基础,对数据加⼯过程的理解、数仓建设的交流分享、数据的使⽤和问题排查、数仓健康度的评估都提供了极⼤的帮助。
需要强调的是本节是从宏观上描述数仓的框架,具体到数据模型的细节对⽐、存储选型和管理、接⼊数据源管理等数仓建设的周边在本节不涉及。
通过本节的阅读,你将了解到以下知识:从业务矩阵的设计(宏观、微观)、横向的分层、纵向的分线到主题划分等⾓度解构数仓;数仓建设的实施流程。
⼆、规划1、矩阵分宏观和微观来看,宏观的是公司的整体业务布局,微观的是产品的业务过程布局和业务过程的维度分解交叉信息。
2、宏观矩阵宏观矩阵描述的是公司的业务线和对应的数据状况,其⾏和列⼀般分别对应着业务主题和数据主题。
1)业务主题对应着公司的业务线布局,⽐如电商、游戏、视频、应⽤商店、新闻资讯、浏览器等。
2)数据主题根据抽象的程度和视⾓有不同的取法:⼀般取业务线中⽤户对内容的消费或者相关⾏为,⽐如曝光、点击、消费、播放、分享等,对这些⾏为的划分⼜可分为原⽣⾏为主题(通⽤和业务相关)、衍⽣⾏为主题(留存、活跃、流失等),这种划分⽅法更多的取⾃数据的底层和公共层,因为⾼层的数据都是多⾏为的汇总。
对数据主题的另外划分⽅式参加分主题部分,这种划分⽅法更多的取⾃数据的⾼层。
引⾃《数据仓库实践之业务数据矩阵的设计-⽊东居⼠》3、微观矩阵微观矩阵描述的是主题和对应的维度关系,下⾯以常见的内容消费和⽤户主题两个维度来看微观矩阵的规划。
-w698业务过程描述的⼀般是对内容的消费抽象,可以是原⼦的,也可以是抽象的,⽐如卡⽚曝光维度的划分可以从以下两个⼤⽅向⼊⼿:通⽤标识维度(版本、机型、渠道、⽹络、时间等);业务过程维度:消费者等级、消费位置、消费路径、其它等。
4、分层ODS->DW->DM->DA(ADS)层是如何划分的,分层的原因(引⾃《⼀种通⽤的数据仓库分层⽅法-⽊东居⼠》):清晰数据结构:每⼀个数据分层都有它的作⽤域和职责,在使⽤表的时候能更⽅便地定位和理解;减少重复开发:规范数据分层,开发⼀些通⽤的中间层数据,能够减少极⼤的重复计算;统⼀数据⼝径:通过数据分层,提供统⼀的数据出⼝,统⼀对外输出的数据⼝径;复杂问题简单化:将⼀个复杂的任务分解成多个步骤来完成,每⼀层解决特定的问题。
数仓设计及开发流程随着企业数据规模的不断增大,数据集中存储和管理的需求变得越来越重要。
数仓作为企业数据仓库的一种,具有集成数据、支持决策分析等优点,在企业中得到广泛应用。
为了确保数仓的高效运作,必须有一个完整的设计及开发流程。
一、需求调研首先需要对企业的业务需求进行分析和调研,确定数仓所需要集成的数据内容和业务需求。
这一步需要与业务部门进行沟通,在了解企业的业务流程和数据来源后,确定数据仓库建设的目标和方向。
二、数据建模在有了业务需求的基础上,需要对数据建模进行设计。
数据建模是数仓设计的核心,包括维度模型和事实模型的建立。
维度模型主要用于描述业务过程中的业务对象,事实模型则主要用于描述业务过程中的事实数据。
在建立数据模型时,需要考虑数据的完整性、准确性和可扩展性。
三、数据抽取在数据建模完成后,需要进行数据抽取,将不同数据源中的数据抽取到数仓中。
在数据抽取时,需要选择合适的数据抽取工具,以保证数据的准确性和完整性。
同时,需要对数据进行清洗和转换,确保数据的一致性和规范性。
四、数据加载数据加载是将抽取到的数据加载到数仓中进行存储的过程。
在数据加载时,需要考虑数据的存储结构和存储方式,以及对数据进行分区和索引等优化操作,以提高数据的查询效率。
五、数据分析在数据加载完成后,需要对数据进行分析和挖掘,以支持企业的决策分析。
数据分析的过程包括数据可视化、报表分析、多维分析、数据挖掘等。
在数据分析中,需要选择合适的工具和技术,以提高数据的分析效率和精度。
六、数据维护和更新数仓建设并不是一次性的过程,需要进行长期的维护和更新。
在数据维护和更新中,需要对数仓中的数据进行定期清理和更新,以保证数据的准确性和完整性。
同时,需要对数仓的性能进行监控和调整,以满足不断增长的业务需求。
综上所述,数仓的设计及开发流程包括需求调研、数据建模、数据抽取、数据加载、数据分析、数据维护和更新等多个环节。
只有按照完整的流程进行建设和维护,才能保证数仓的高效运作和可靠性。