河流水环境容量一维计算模型分析
- 格式:doc
- 大小:27.00 KB
- 文档页数:4
河流水环境容量一维计算模型分析在一定水文设计条件和水质目标前提下,根据一维河流水质模型理论,探讨不同控制断面和排污口位置下的河流水环境容量的计算方法。
在计算水环境容量时,对于长度较短的河段,排污口均匀概化和中点概化差异不大;对于长度较长的河段,排污口均匀概化比中点概化更接近实际情况。
段首法最为严格,适于经济发达地区、水源地或旨在改善水质的区域;段尾法次之;功能区末端控制法要求达到的环境目标值更低。
标签:水环境容量;排污口概化;段首控制法;段尾控制法水环境容量是指某一水环境单元在特定的环境目标下所能容纳污染物的量,也就是环境单元依靠自身特性使本身功能不至于破坏的前提下能够允许容纳的污染物的量[1]。
其大小与水环境功能目标、水体特征、污染物特性及排污方式相关。
通常以单位时间(如:一年)内水体所能承受的污染物排放总量表示。
水环境容量也可称为水域的纳污能力。
1 计算流程在计算水环境容量时一般按以下流程:(1)调查收集水环境功能区的基本资料并分析整理;(2)调查分析水环境功能区的水质状况;(3)调查分析沿河排污口的位置分布、排污负荷等具体情况;(4)调查水环境功能区水文参数;(5)确定水体的水质目标;(6)选用适当的计算模型,计算水域的环境容量;(7)分析、验证计算结果的合理性。
2 计算模型根据所采用的水质数学模型维数的不同,水环境容量计算模型可分为零维模型、一维模型和二维模型。
其中零维模型主要适用于污染物均匀混合的小型河流及河网流域;一维模型主要适用于河道宽深比不大,在较短时间内污染物质能在横断面上均匀混合的中小型河流;二维模型主要适用于河道宽度较大,河流横向距离显著大于垂向距离,在横断面上污染物分布不均匀的河流,或者宽度虽然不大,但是存在如鱼类的洄游通道等特殊功能需求的河流。
以下将重点讨论河流非持久性污染物的一维水环境容量计算模型。
一维稳态水质模型:式中C1为排污口废水浓度,mg/L;q为废水量,m3/s;C0为上游河水浓度,mg/L;Q0为流量,m3/s;K为水质降解系数,1/d;x为距排污口的距离,m;u 为流速,m/s。
采用一维水质模型计算河流纳污能力中设计条件和参数的影响分析张文志(广东省水文局惠州分局,广东 惠州 516001)摘 要:分析采用一维水质模型计算河流纳污能力过程中,污染源概化、设计流量和流速、上游本底浓度、污染物综合衰减系数等设计条件和参数对计算结果的影响;讨论如何确定设计条件和参数,以提高计算结果的准确性和合理性。
关键词:纳污能力;一维水质模型;设计条件;参数;影响分析中图分类号:T V149.2 文献标识码:B 文章编号:100129235(2008)0120019202收稿日期:2007202205作者简介:张文志,男,湖北大悟人,主要从事水环境监测、水资源分析及评价工作。
纳污能力,是指水体在一定的规划设计条件下的最大允许纳污量。
纳污能力随规划设计目标的变化而变化,反映了特定水体水质保护目标与污染物排放量之间的动态输入响应关系。
其大小与水体特征、水质目标及污染物特性等有关,在实际计算中受污染源概化、设计流量和流速、上游本底浓度、污染物综合衰减系数等设计条件和参数的影响。
东江干流岭下至虾村河段位于东江干流惠州市境内,全长36k m,水质目标为Ⅱ类。
本文以该段河段氨氮纳污能力计算为例,分析采用一维水质模型计算纳污能力过程中设计条件和参数对计算结果的影响,并讨论如何确定设计条件和参数,以提高计算结果的准确性和合理性。
1 一维水质模型概述对于宽深比不大的河流,污染物在较短的时间内,基本上能在断面内均匀混合,污染物浓度在断面上横向变化不大,可用一维水质模型模拟污染物沿河流纵向的迁移问题来计算纳污能力。
在稳态或准稳态的情况下,一维水质数学模型为:C (x )=C 0exp-kx u(1)式中 C 0———基准断面污染物的本底浓度,mg/L ;k ———污染物综合衰减系数,d-1(计算时换算为s-1);u ———断面设计流速,m /s ;x ———计算断面至基准断面的距离,m ;C (x )———计算断面污染物的浓度,mg/L 。
根据《规划环境影响评价技术导则 总纲》(HJ 130-2014), 规划环评应“在充分考虑累积环境影响的情况下, 动态分析不同规划时段可供规划实施利用的资源量、环境容量及总量控制指标”。
本章就上述内容展开分析。
14.1 环境容量分析14.1.1 水环境容量估算《规划环境影响评价技术导则 总纲》(HJ 130-2014)中未详细给出环境容量的计算方法, 故本次评价参考《开发区区域环境影响评价技术导则》(HJ/T 131-2003)附录B 的2.4条和2.5条, 采用水质模型建立污染物排放和受纳水体水质之间的输入响应关系, 并应考虑多点排污的叠加影响, 以受纳水体水质按功能达标为前提, 估算其最大允许排放量。
14.1.1.1 估算指标按照各级环境保护规划, 国家将化学需氧量(COD )、氨氮(NH3-N )作为水污染物总量控制指标, 因此本次水环境容量估算的指标也定为上述两项。
14.1.1.2 控制单元划分及其所对应的环境功能区划水环境容量计算的控制单元一般是在综合考虑混合过程段长度及重点污染源排放口、大型水工构筑物、水质控制断面等因素的基础上进行划分。
河流岸边排污的混合过程段长度计算采用如下公式:()()()210065.0058.06.04.0gHI B H Bua B L +-=式中: L ——混合过程段的长度, m B ——河流宽度, m H ——平均水深, m I ——平均坡度, 无量纲 u——平均流速, m/sa ——排放口到岸边的距离, m根据其水文参数, 滃江干流枯水期岸边排放污染物情况的混合过程段长度计算结果如表14.1-1所示。
表14.1-1滃江干流岸边排放污染物情况的混合过程段长度计算一览表清远华侨工业园的废水排放受纳水体最终均为滃江。
根据调查, 园区附近的滃江干流上主要建有3座低水头径流式水电站, 分别为红桥水电站、英华水电站及狮子口水电站;此外, 大镇水汇入口处为滃江干流的水质交界断面, 该断面上游江段的水质控制目标为Ⅲ类, 其下游江段的水质控制目标为Ⅱ类。
《河南水利与南水北调》2009年第9期水文与水资源HENAN□常建中(郑州水文水资源勘测局)摘要:利用一维水质数学模型模拟污染物扩散情况,以此进行水质预报和预警预测,制订污染物排放标准和水质规划,有效文中一维水质模型用LW-Lim进行离散,然后借助二维水质模拟软件,考虑一维扩散条件下进行数值计算,揭示污地防治水污染。
染物扩散趋势和影响范围。
关键词:水质模型;数值模拟;一维对流扩散;逆风格式一、水质模型的概念及研究意义水是人类生命之源,同时也是关系到国计民生的重要资源。
合理进行水环境规划管理、水污染综合防治是环境工作者的重要任务之一,水质数学模型(简称水质模型)是水环境污染治理规划决策分析中不可缺少的重要工具。
水质模型,是描述参加水循环的水体中各水质组分所发生的物理、化学、生物和生态学等诸多方面变化规律和相互影响关系的数学方法。
研究水质模型的目的,主要是为了描述污染物在水体中的迁移转化规律,为水环境保护服务。
它可用于水质模拟和水质评价,进行水质预报和预警预测,制订污染物排放标准和水质规划,是水污染防治的重要工具。
二、水质模型简介水质模型是描述水体(河流、湖泊等)水质要素(BOD,DO化学、生物等)作用下随时间和空间变化等)在其他因素(物理、关系的数学表达式,经过近百年发展,水质模型已经相当成熟。
污染物进入水体后随水流迁移,在迁移过程中受水力学、水文、物理、化学、生物、生态、气候等因素影响,引起污染物的输移、混合、分解、稀释和降解。
建立水质模型的目的就是力图把这些互相制约因素的定量关系确定下来,对水质进行预报,为水质控制和管理服务。
规划、水质模型按其建模方法和求解特点可分为确定性模型和随机模型;按模型描述的系统是否具有时间稳定性可分为稳态模型和动态模型;按系统内参数的空间分布特性可分为一维、二维和三维模型,如果参数在3个方向上都均匀分布,水体处于完全混合状态,这种模型为零维模型;按水质参数的转移特性可分为随流模型、扩散模型和随流扩散模型;按反应动力学性质可分为纯转移模型、纯反应模型、转移及反应模型和生态模型。
第七章 一维非恒定河流和河网水量水质模型对于中小型河流,通常其宽度及水深相对于长度数量较小,扩散质(污染物质、热量)很容易在垂向及横向上达到均匀混合,即扩散质浓度在断面上基本达到均匀状态。
这种情况下,我们只需要知道扩散质在断面内的平均分配状况,就可以把握整个河道的扩散质空间分布特征,这是我们可以采用一维圣维南方程描述河流水动力特征或水量特征(水位、流量、槽蓄量等);用一维纵向分散方程描述扩散质在时间及河流纵向上的变化状况。
特别地,对于稳态水流,可以采用常规水动力学方法推算水位、断面平均流速的沿程变化;采用分段解析解法计算扩散质浓度沿纵向的变化特征。
但是,在非稳态情况下(水流随时间变化或扩散质源强随时间变化)解析解法将无能为力(水流非恒定)或十分繁琐(水流稳态、源强非恒定),这时通常采用数值解法求解河道水量、水质的时间、空间分布。
在模拟方法上,无论是单一河道还是由众多单一河道构成的河网,若采用空间一维手段求解,描述水流、水质空间分布规律的控制方程是相同的,只不过在具体求解方法上有所差异而已。
7.1 单一河道的控制方程 7.1.1 水量控制方程采用一维圣维南方程组描述水流的运动,基本控制方程为:(1)023/422=+-++RQ u n g x Au x Z gA x Q u t Q ∂∂∂∂∂∂∂∂ (2) 式中t 为时间坐标,x 为空间坐标,Q 为断面流量,Z 为断面平均水位,u 为断面平均流速,n 为河段的糙率,A 为过流断面面积,B W 为水面宽度(包括主流宽度及仅起调蓄作用的附加宽度),R 为水力半径,q 为旁侧入流流量(单位河长上旁侧入流场)。
此方程组属于二元一阶双曲型拟线性方程组,对于非恒定问题,现阶段尚无法直接求出其解析解,通常用有限差分法或其它数学离散方法求其数值解。
在水流稳态、棱柱形河道条件下,上述控制方程组退化为水力学的谢才公式,可采用相应的方法求解水流特征。
7.1.2 扩散质输运控制方程描述河道扩散物质运动及浓度变化规律的控制方程为:带源的一维对流分散(弥散)方程,形式如下:S S h AKAC x c AE x x QC t AC r x ++-⎪⎪⎭⎫ ⎝⎛=+∂∂∂∂∂∂∂∂)()( (3) 式中,C 为污染物质的断面平均浓度,Q 为流量,为纵向分散系数,S 为单位时间内、单位河长上的污染物质排放量,K 为污染物降解系数,S r 为河床底泥释放污染物的速率。
河流纳污能力计算一维模型主要参数的取值分析彭振华;尤爱菊;徐海波【摘要】According to the calculation criteria of watershed environmental capacity,a one dimensional model is recommended for most of medium or small rivers. The estimation of two important coefifcients in themodel,which are river flow velocity and pollutant comprehensive degeneration coefifcient,are basically unreliable due to the insufifcient data. Based on the ifeld observation and the calculation of the river environmental capacity of Yongkang city,the method to determine these two important coefifcients in the model and the range of these two coefifcients will be discussed and analyzed in this study in order to construct a one dimensional model representing the river environmental capacity of Yongkang city.%根据水域纳污能力计算规程,中小型河流纳污能力的计算推荐采用河流一维水质模型。
由于基础观测资料普遍不足,模型的河流流速、污染物综合衰减系数2个重要参数的取值往往缺少可靠依据。
水环境容量计算方法总结目录水环境容量计算方法总结 (1)目录 (1)一、一维模型 (1)二、二维模型 (4)三、感潮河段零维模型 (6)四、湖库模型 (6)一、一维模型1、适用范围:全国水环境容量核定技术指南1)宽浅河段;2)污染物在较短的时间内基本能混合均匀;3)污染物浓度在断面横向方向变化不大,横向和垂向的污染物浓度梯度可以忽略;4)一般情况下适用于河宽小于200m的河流,但注意利用不均匀系数对其容量进行修正。
2、一维衰减公式:排污口、支流排入断面完全混合模型:EP E E P P Q Q Q C Q C C ++= 式中:C 为断面混合后的水质浓度值;C P 为排污口排出的污水的水质浓度值;Q P 为排污口废水排放量;C E 为河水的水质浓度值;Q E 为河水流量。
3、算例:假设该河段水环境功能区目标为III 类,假设该河段上边界COD 来水控制目标为20mg/L ,90%最枯月保证率流量为20m³/s ,该河段平均流速为0.2m/s ,COD降解系数约0.1/d,概化排污口流量为1m³/s,COD浓度90mg/L,支流流量5m³/s,COD浓度为25mg/L。
C 目=Q∗C∗exp(−k∗X186400u)+q∗c+WQ+qexp(−kX286400u)通过上游来水衰减,区间内中间混合后衰减等于水质目标,可以反推出区间内水环境容量,注意公式中的单位,通过上述公式算出的W单位为g/s。
Q:m³/s、C:mg/L、u:m/s、K:1/d、x:m。
(1)上边界→节点1(混合前浓度):C2=C1*exp( kx/u)=20*exp( 0.1*20000/86400/0.2)=18.875mg/L(2)概化排污口汇入混合:C3=(c1*q1+C2*Q1)/(q1+ Q1)=(90*1+18.875*20)/(20+1)=22.262mg/L(3)节点1→节点2:C4= C3*exp( kx/u)=22.262*exp( 0.1*5000/86400/0.2)=21.627mg/L(超标)(4)节点2→节点3(混合前浓度):C5= C4*exp( kx/u)=21.627*exp( 0.1*20000/86400/0.2)=19.264mg/L(5)支流汇入混合:C6=(c2*q2+C5*Q2)/(q2+ Q2)=(25*5+19.264*21)/(5+21)=20.367mg/L(6)节点3→节点4:C7= C6*exp( kx/u)=20.367*exp( 0.1*5000/86400/0.2)=19.786mg/L(7)节点4→控制断面:C8= C7*exp( kx/u)=19.786*exp( 0.1*8000/86400/0.2)=18.891mg/L可见,该河段在现状排污情况下水质能达到地表水III类,但河段允许排放量根据实际情况分配不均匀,上游计算断面1存在超标情况,下游容量仍有富裕,在因此需进一步通过试算的方法,削减概化排污口排污量,此外可根据实际情况对下游支流水质目标进行适当调整,将容量进行合理分配。
河流水环境容量估算和分配的研究河流是自然界中非常重要的水资源,对于维持生态平衡和人类经济社会发展起着至关重要的作用。
随着人类活动的不断增加,河流水环境容量日益受到压力。
对河流水环境容量的估算和合理分配具有重要意义。
本文将对河流水环境容量估算和分配的研究进行探讨。
一、河流水环境容量的定义和评价指标河流水环境容量是指河流系统在一定时间和空间范围内,能够承载特定水生态系统的维持和水质保持的能力。
根据河流系统的自身特点和对不同污染物的敏感性不同,水环境容量可以分为水量容量和水质容量。
1. 水量容量:即河流系统能够容纳的最大水量。
它与河流的地理特征、降雨量以及土壤类型等因素有关。
评价河流水环境容量的主要指标包括:水质指标、水量指标和水生态指标。
水质指标包括溶解氧、氨氮、总磷等;水量指标包括流量、径流速度等;水生态指标包括水生植物群落结构、鱼类物种数量等。
河流水环境容量估算方法可以分为定性估算和定量估算两类。
1. 定性估算方法:根据河流本身的特点和已有的水质标准,通过观测河流的水质情况,判断水环境容量。
这种方法主要是根据经验判断和专家判断。
2. 定量估算方法:根据河流的物质平衡、动力学模型和水环境容量公式,通过对污染物的输入和输出、转化过程的分析和计算,估算河流的水环境容量。
这种方法需要大量的水质监测数据和专业的计算模型。
常用的定量估算方法包括:负荷法、动态模拟方法、水质指数法和生态承载力法。
负荷法是通过分析污染物的输入负荷和处理能力,确定河流的水环境容量。
动态模拟方法是建立河流水环境容量的动态数学模型,并通过对模型的运行和参数的调整,估算河流水环境容量。
水质指数法是根据河流的水质指标和水质标准,计算出河流的水质指数,并通过比较指数大小来评价河流的水环境容量。
生态承载力法是通过对河流的水生态系统结构和功能的分析和评价,估算河流的水环境容量。
河流水环境容量的分配原则主要包括可供性原则、可持续利用原则和公平原则。
关于一维模型水环境容量计算方法参数详细介绍一维模型0s 31.54*(*exp(-*/86400/))*()i j W C K x u C Q Q =-+式中:W ——排污口允许排放量,t/a ;C 0——初始浓度值,mg/L ;C s ——水质目标浓度,mg/L ;Q i ——河道节点后流量,m3/s ;Q j ——第i 节点处废水入河量,m3/s ;u ——第i 个河段的设计流速,m/s ;x ——计算点到节点的距离,m 。
目录1设计流量的选择 ...................................... 1 2设计流速 ............................................ 3 3湖库设计库容和感潮河段设计槽蓄量 .................... 5 4初始浓度值C 0的确定 .................................. 6 5水质目标C s 值的确定 .................................. 6 6 综合衰减系数的确定 . (6)1 设计流量的选择总体上,各水功能区所在的河段均选择最近10年最枯月平均流量(水量)或90%保证率最枯月平均流量(水量)作为设计流量(水量)。
原则上,优先采用近10年最枯月平均流量。
对于近年来已撤销的水文站,将采用90%保证率最枯月流量为设计流量。
有常规水文控制站的河段直接采用水文部门提供的有关数据,没有水文控制站的河段通过水文学方法产生。
(1)直接有流量控制站的控制单元对于这类控制单元,直接引用由广东省水文局提供的各水文站的90%保证率最枯月或近十年最枯月流量资料。
(2)邻近有流量控制站,且降雨量和自然条件相差不大当某计算单元的上游或下游附近有水文控制站时,将邻近计算单元(参证计算单元)的设计流量,乘以集雨面积比,换算到本计算单元,换算公式为:Q Q A A s j cz s j cz =⋅ (5-1a)式中,Q sj 为本计算单元的流量,Q cz 为参证计算单元的流量,Asj 为本单元的集雨面积,A cz 为参证单元的集雨面积。
水环境容量计算模型1)河流水环境容量模型水环境容量是在水资源利用水域内,在给定的水质目标、设计流量和水质条件的情况下,水体所能容纳污染物的最大数量。
按照污染物降解机理,水环境容量W 可划分为稀释容量W 稀释和自净容量W 自净两部分,即:W W W =+稀释自净稀释容量是指在给定水域的来水污染物浓度低于出水水质目标时,依靠稀释作用达到水质目标所能承纳的污染物量。
自净容量是指由于沉降、生化、吸附等物理、化学和生物作用,给定水域达到水质目标所能自净的污染物量。
河段污染物混合概化图如图11.4-1。
根据水环境容量定义,可以给出该河段水环境容量的计算公式:图11.4-1 完全混合型河段概化图0()i si i i W Q C C =-稀释 i i si i W K V C =⋅⋅自净即:0()i i si i i i si W Q C C K V C =-+⋅⋅考虑量纲时,上式整理成:086.4()0.001i i si i i i siW Q C C K V C =-+⋅⋅其中:当上方河段水质目标要求低于本河段时:0i si C C = 当上方河段水质目标要求高于或等于本河段时:00i i C C =式中:i W —第i 河段水环境容量(kg/d ); i Q —第i 河段设计流量(m 3/s ); i V —第i 河段设计水体体积(m 3); i K —第i 河段污染物降解系数(d -1);si C —第i 河段所在水功能区水质目标值(mg/L );0i C —第i 河段上方河段所在水功能区水质背景值(mg/L ),取上游来水浓度。
若所研究水功能区被划分为n 个河段,则该水功能区的水环境容量是n 个河段水环境容量的叠加,即:1nii W W ==∑01131.536()0.000365n ni si i i i i i i W Q C C K V C ===-+⋅⋅∑∑式中:W —水功能区水环境容量(t/a ); 其他符合意义和量纲同上。
河流水环境容量一维计算模型分析
在一定水文设计条件和水质目标前提下,根据一维河流水质模型理论,探讨不同控制断面和排污口位置下的河流水环境容量的计算方法。
在计算水环境容量时,对于长度较短的河段,排污口均匀概化和中点概化差异不大;对于长度较长的河段,排污口均匀概化比中点概化更接近实际情况。
段首法最为严格,适于经济发达地区、水源地或旨在改善水质的区域;段尾法次之;功能区末端控制法要求达到的环境目标值更低。
标签:水环境容量;排污口概化;段首控制法;段尾控制法
水环境容量是指某一水环境单元在特定的环境目标下所能容纳污染物的量,也就是环境单元依靠自身特性使本身功能不至于破坏的前提下能够允许容纳的污染物的量[1]。
其大小与水环境功能目标、水体特征、污染物特性及排污方式相关。
通常以单位时间(如:一年)内水体所能承受的污染物排放总量表示。
水环境容量也可称为水域的纳污能力。
1 计算流程
在计算水环境容量时一般按以下流程:(1)调查收集水环境功能区的基本资料并分析整理;(2)调查分析水环境功能区的水质状况;(3)调查分析沿河排污口的位置分布、排污负荷等具体情况;(4)调查水环境功能区水文参数;(5)确定水体的水质目标;(6)选用适当的计算模型,计算水域的环境容量;(7)分析、验证计算结果的合理性。
2 计算模型
根据所采用的水质数学模型维数的不同,水环境容量计算模型可分为零维模型、一维模型和二维模型。
其中零维模型主要适用于污染物均匀混合的小型河流及河网流域;一维模型主要适用于河道宽深比不大,在较短时间内污染物质能在横断面上均匀混合的中小型河流;二维模型主要适用于河道宽度较大,河流横向距离显著大于垂向距离,在横断面上污染物分布不均匀的河流,或者宽度虽然不大,但是存在如鱼类的洄游通道等特殊功能需求的河流。
以下将重点讨论河流非持久性污染物的一维水环境容量计算模型。
一维稳态水质模型:
式中C1为排污口废水浓度,mg/L;q为废水量,m3/s;C0为上游河水浓度,mg/L;Q0为流量,m3/s;K为水质降解系数,1/d;x为距排污口的距离,m;u 为流速,m/s。
当C=CS时,C1q=W即为环境容量,推导出单排污口河流一维水环境容量模型:
式中W为水环境容量,kg/d;CS为水质目标。
因为考虑了污染物排入河流后产生的混合区,更加贴近河流实际的水环境容量,因而该模型应用更为普遍。
3 控制断面
针对不同水污染控制模式,周孝德、郭瑾珑等[2]提出了段首控制、段尾控制和功能区末端控制三种方法,计算一维稳态条件下水环境容量。
3.1 段首控制
段首控制就是要求污染物入河后,在计算河段段首处,水质达到相应水环境功能区目标。
沿河流流向,随着有机物的降解,污染物浓度在该计算河段内处处达标,无超标河段。
从水环境管理角度来说,段首控制最为严格。
概化示意见图1所示。
注:A-第i-1段浓度衰减曲线;B-第i段浓度衰减曲线;C-第i-1个计算河段段首降解到段末处的质量浓度差值,mg/L;D-第i个计算河段段首降解到段末处的质量浓度差值,mg/L;Ci-来水衰减到第i个断面处的质量浓度,mg/L;Qi-混合后干流流量,m3/s。
第i段计算河段的水环境容量为:
式中Mi为第i个计算河段的水环境容量,g/s;Ci为第i个计算河段的质量浓度,mg/L;Qi为第i个计算河段的设计流量,m3/s;Cs,i为第i个计算河段的水质标准,mg/L;C0,i为第i个计算河段的上游来水污染物浓度,mg/L;Ki 为第i个计算河段降解系数,1/d;Li为第i个计算河段长度,m;ui为第i个计算河段平均流速,m/s。
3.2 段尾控制
段尾控制就是要求污染物入河后,在计算河段段尾处,水质达到相应水环境功能区目标。
然而由于有机物沿河流流向降解,段尾以上河段水质则低于相应水环境功能区目标要求,计算河段水质全部超标。
概化示意见图2所示,其中参数意义与图1相同,第i段计算河段的水环境容量为:
3.3 功能区末端控制
功能区末端控制就是根据河流水环境管理要求,将计算河段某断面设定为水质控制断面,从而控制水质达标河段长度。
从该水质控制断面到下游计算河段段尾,水质处处达标;而从该水质控制断面到上游计算河段段首,水质是全部超标的。
其概化示意见图3所示,其中参数意义与图1相同,第i段计算河段的水环
境容量为:
式中?籽i为第i河段的水质达标率,即达标河段长度所占百分率。
4 多个排污口影响控制断面水质时的处理方法
河流水环境容量与污染物的排放位置及排放方式有关,限定的排放方式是确定河流水环境容量的一个重要确定因素[3]。
当某一段河流设置了多个排污口,且排污口间距较小,则可把多个排污口概化成一个集中排污口。
目前污染源排污口概化主要有中点概化、均匀概化和排污口重心概化三种方法。
4.1 中点概化
中点概化法是将计算河段内的多个排污口概化为置于河段的中点处的一个集中排污口,该排污口的有机物降解长度是河段长度的一半。
中点概化河段水环境容量的计算公式为:
当计算功能区河段太长时,首先需要把功能区河段分成几个较短的计算河段,然后每一个较短的计算河段采用该公式来计算水环境容量,最后再相加,就得到整个功能区河段的水环境容量。
这样分段处理而计算的水环境容量与实际情况更符合。
4.2 均匀概化
均匀概化法是将计算河段内的多个分布不规则的排污口概化为均匀分布的多个排污口,并且污染物排放也均匀分布。
例如,在计算河段内选择一微小河段dx,距河段段首距离为x,此微段污染物输运至x=L处的剩余质量为dm,上游各微段质量降解到x=L断面处的总质量迭加设为m,则:
均匀概化河段水环境容量的计算公式为[4]:
4.3 重心概化法
排污口概化的重心计算如下[5]:
X=(Q1C1X1+Q2C2X2+…+QnCnXn)/(Q1C1+Q2C2+…+QnCn)
式中X为概化的排污口到功能区划下断面或控制断面的距离;Qn为第n个排污口(支流口)的水量;Xn为第n个排污口(支流口)到功能区划下断面的距离;Cn为第n个排污口(支流口)的污染物浓度。
排污口重心概化河段水环境容量的计算公式为:
5 结束语
(1)因段首控制法要求非常严格,适用对象应为污染较轻或为了改善水质条件的河段,所以主要应用于水质较好的源头地区,或对水质要求较高、污染治理能力强的地区。
(2)段尾控制法对水质的要求相对最低,主要是为了控制污染,而非为了改善水质,所以适用于水体污染较严重或污染治理能力较弱的地区。
(3)功能区末端控制法主要用于控制对特定区段水质有很高要求的河段,而对其他区段水质要求较低的水体。
在特定段段首处严格限制水质,其上游河段排污量只要满足特定段段首控制要求即可。
(4)在计算水环境容量时,对于长度较短的河段,排污口均匀概化和中点概化差异不大;对于长度较长的河段,排污口均匀概化比中点概化更接近实际情况。
参考文献
[1]逄勇,陆桂华.水环境容量计算理论及应用[M].北京:科学出版社,2010:
1.
[2]周孝德,郭瑾珑,程文,等.水环境容量计算方法研究[J].西安理工大学学报,1999,15(3):1-6.
[3]周美正.不同流量下的皖河流域纳污能力研究[D].合肥:合肥工业大学,2006.
[4]劳国民.污染源概化对一维模型纳污能力计算的影响分析[J].浙江水利科技,2009(5):8-10.
[5]中国环境规划院.全国水环境容量核定技术指南[R].北京:中国环境规划院,2003.
作者简介:陈明(1986-),男,毕业于河海大学,学士,工程师,研究方向为环境影响评价。