人教版小学数学六年级下册第五单元《数学广角—鸽巢问题》大单元集体备课整体设计
- 格式:docx
- 大小:47.51 KB
- 文档页数:3
第五单元数学广角《鸽巢问题》教学设计六年级下册数学人教版教学内容《鸽巢问题》是六年级下册数学人教版第五单元数学广角的教学内容。
本节课主要引导学生利用抽屉原理(鸽巢原理)解决生活中的实际问题,通过观察、分析、推理等方法,让学生理解并掌握抽屉原理,并能灵活运用抽屉原理解决相关的数学问题。
教学目标1. 知识与技能:理解并掌握抽屉原理,能灵活运用抽屉原理解决生活中的实际问题。
2. 过程与方法:通过观察、分析、推理等方法,培养学生的逻辑思维能力和解决问题的能力。
3. 情感、态度和价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
教学难点理解并掌握抽屉原理,能灵活运用抽屉原理解决实际问题。
教具学具准备1. 教具:多媒体教学设备、PPT课件、教鞭等。
2. 学具:练习本、笔、尺子等。
教学过程1. 导入:通过一个有趣的故事引入新课,激发学生的兴趣。
2. 新课:讲解抽屉原理,通过实例演示和讲解,让学生理解并掌握抽屉原理。
3. 活动一:分组讨论,让学生在实际问题中运用抽屉原理,培养学生的合作意识和解决问题的能力。
4. 活动二:让学生独立完成练习题,巩固所学知识。
6. 作业布置:布置课后作业,让学生在实际生活中运用抽屉原理解决问题。
板书设计1. 《鸽巢问题》2. 抽屉原理3. 实例演示4. 练习题5. 课后作业作业设计1. 完成课后练习题,巩固所学知识。
2. 观察生活中的实际问题,运用抽屉原理解决问题,并记录下来。
课后反思本节课通过故事导入、实例演示、分组讨论等活动,让学生在轻松愉快的氛围中学习抽屉原理,并能在实际问题中灵活运用。
在教学过程中,注重培养学生的合作意识和解决问题的能力,激发学生对数学的兴趣。
但在教学过程中,也存在一些不足之处,如课堂气氛调控不够到位,部分学生参与度不高;课堂练习时间分配不够合理,部分学生完成练习题的时间较长。
在今后的教学中,需要针对这些问题进行改进,提高教学效果。
教学难点理解并掌握抽屉原理,能灵活运用抽屉原理解决实际问题。
第五单元数学广角——鸽巢问题
单元教学总述
本单元通过几个直观例子,借助实际操作,向学生介绍“鸽巢原理”,使学生在理解“鸽巢原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”。
“鸽巢原理”实际上是一种解决某种特定结构的数学问题或生活问题的模型,理论本身并不复杂,但却是一类较为抽象的数学问题,教材选择学生常见的、熟悉的事物为学习素材,降低了学习难度。
“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到令人惊异的结果。
因此,“鸽巢原理”在数论、集合论、组合论中都得到了广泛的应用。
用“说理”的方式来理解“鸽巢原理”的过程是一种数学证明的雏形,有助于逐步提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
1.初步了解“鸽巢原理”的两种形式。
2.理解“鸽巢原理”的含义,掌握用“鸽巢原理”解决问题的方法。
3.能运用逆向思维解决问题。
4.通过“鸽巢原理”的学习,增强学生的逻辑推理能力。
重点:了解“鸽巢原理”的两种形式,能把具体问题转化为“鸽巢问题”,能运用“鸽巢原理”解决简单的实际问题。
难点:找出解决“鸽巢问题”的窍门,反复推理,掌握用“鸽巢原理”解决问题的方法。
课时教学设计
鸽巢原理
解决问题
子里摸出2种不同颜
色的球,至少要摸出解决问题。
(6)个。
第五单元《鸽巢问题》单元备课《数学广角—鸽巢问题》教案教学目标1、知识与技能知道什么是“鸽巢问题”并掌握解决“鸽巢问题”的方法。
2、过程与方法通过探究“鸽巢问题”的解决过程,掌握数形结合的学习思想。
3、情感态度和价值观通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,培养学生独立思考问题的能力。
教学重难点把具体问题转化成“鸽巢问题”并总结“鸽巢问题”解决的方法。
教学用具多媒体课件教学过程一、情景引入(课件展示)我给大家变一个“魔术”:一副扑克牌,抽掉大小王之后还有52张牌,现在你们5个人每人随意抽一张,我知道至少有两张牌是同花色的,你相信我吗?二、导入新课例1、把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?学生动手操作:方法一:把各种情况都摆出来。
(列举法)方法二:把4分解成3个数。
(分解法)例1提出的问题就是“鸽巢问题”,4支铅笔就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。
例2、把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。
为什么呢?如果有8本书会怎样呢?10本书呢?方法一:把7本书放进3个抽屉里,共有8种情况,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。
方法二:如果每个抽屉最多放2本,那么3个抽屉最多放6本,可是题目要求放7本,那么剩下的那本书要放在3个抽屉中的其中一个中。
所以7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
8÷3=2余2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本;放进其中一个抽屉里,这个抽屉就变成4本。
六年级数学下册教学设计《5 数学广角—鸽巢问题》-人教版一. 教材分析《5 数学广角—鸽巢问题》是人教版六年级数学下册的一章内容。
本章主要向学生介绍鸽巢问题的基本概念和解决方法。
通过本章的学习,学生能够理解鸽巢问题的实质,掌握解决鸽巢问题的基本方法,并能够应用到实际问题中。
二. 学情分析六年级的学生已经具备了一定的数学基础和逻辑思维能力。
他们对数学问题充满了好奇心和求知欲,但同时也存在一定的恐惧心理,害怕遇到复杂的问题。
因此,在教学过程中,教师需要注重激发学生的学习兴趣,引导他们通过观察、思考、实践等方式主动探索和解决问题。
三. 教学目标1.知识与技能:使学生理解鸽巢问题的概念,掌握解决鸽巢问题的基本方法。
2.过程与方法:培养学生观察、思考、归纳、推理的能力。
3.情感态度与价值观:培养学生积极参与数学学习的态度,增强学生面对困难的勇气和信心。
四. 教学重难点1.教学重点:使学生理解鸽巢问题的概念,掌握解决鸽巢问题的基本方法。
2.教学难点:如何引导学生观察、思考和归纳出解决鸽巢问题的方法。
五. 教学方法1.情境教学法:通过生活实例引入鸽巢问题,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、思考和归纳解决鸽巢问题的方法。
3.合作学习法:鼓励学生与他人交流、讨论,共同解决问题。
六. 教学准备1.教学课件:制作与教学内容相关的课件,以便于引导学生直观地理解鸽巢问题。
2.教学素材:准备一些实际问题,作为学生练习解决鸽巢问题的例子。
3.教学用具:准备黑板、粉笔等教学用具,以便于进行板书。
七. 教学过程1.导入(5分钟)利用课件展示一些生活实例,如鸟巢、鸽舍等,引导学生观察并思考:在这些实例中,鸽子是如何分布在这些巢穴中的?通过观察和思考,引出鸽巢问题的概念。
2.呈现(10分钟)呈现一个具体的鸽巢问题,如“有10只鸽子,要有几个鸽巢才能让每只鸽子都有一个鸽巢?”引导学生观察问题,并思考解决方法。
3.操练(10分钟)让学生分组讨论,每组尝试解决同一个鸽巢问题。
人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗第五单元数学广角——鸽巢问题第一课时课题:鸽巢问题教学内容:教材第68-70页例1、例22,及“做一做”的第1题,及第71页练习十三的1-2题。
教学目标:1、知识与技能:理解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜想、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。
难点:找出“鸽巢问题”解决的窍门实行反复推理。
教学准备:课件。
教学过程:一.情境导入二、探究新知1.教学例1.(课件出例如题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→理解“鸽巢问题”的学习过程来解决问题。
(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,能够发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:用“枚举法”证明。
方法二:用“分解法”证明。
把4分解成3个数。
由图可知,把4分解3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。
方法三:用“假设法”证明。
通过以上几种方法证明都能够发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)理解“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描绘就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
(新人教版)六年级数学下册第五单元数学广角——鸽巢问题教学设计一. 教材分析新人教版六年级数学下册第五单元“数学广角——鸽巢问题”,主要让学生理解并掌握鸽巢问题的原理及应用。
本节课通过生活中的实例,引导学生探究和发现规律,培养学生的逻辑思维能力和解决实际问题的能力。
二. 学情分析六年级的学生已经具备了一定的数学基础,思维活跃,具有较强的探究欲望。
但在解决实际问题时,部分学生可能会受到生活经验的影响,难以把握问题的本质。
因此,在教学过程中,教师需要关注学生的个体差异,引导他们逐步理解和掌握鸽巢问题的解决方法。
三. 教学目标1.让学生理解鸽巢问题的概念,掌握鸽巢问题的解决方法。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生合作交流、积极思考的良好学习习惯。
四. 教学重难点1.重点:理解鸽巢问题的原理,学会用鸽巢问题解决实际问题。
2.难点:如何引导学生发现生活中的鸽巢问题,并运用所学知识解决。
五. 教学方法1.情境教学法:通过生活实例,引导学生发现和提出问题,激发学生学习兴趣。
2.启发式教学法:引导学生独立思考、合作交流,培养学生解决问题的能力。
3.实践操作法:让学生在实际操作中感受和理解鸽巢问题的应用,提高学生的动手能力。
六. 教学准备1.准备相关的生活实例和问题,以便在教学中引导学生探究。
2.准备课件和教学素材,以便进行生动的教学展示。
3.准备鸽巢问题的相关练习题,以便进行课堂巩固和拓展。
七. 教学过程1.导入(5分钟)利用一个生活实例,如公园里的鸽子巢穴,引出鸽巢问题。
提问:“如果有10只鸽子,而只有5个巢穴,那么至少有一个巢穴里有2只或以上的鸽子吗?”让学生思考并回答。
2.呈现(10分钟)呈现更多的鸽巢问题实例,引导学生观察和分析问题。
如:“一个班级有30个学生,如果有5个小组,那么至少有一个小组有7个或以上的学生吗?”学生进行讨论,让学生尝试找出问题的规律。
3.操练(10分钟)让学生分组进行练习,运用所学知识解决实际问题。
六年级数学下册教学设计《5 数学广角——鸽巢问题》(人教版)一. 教材分析《5 数学广角——鸽巢问题》是人教版六年级数学下册的一章内容。
本章主要介绍鸽巢问题的相关知识。
鸽巢问题是一种典型的数学问题,通过对鸽巢问题的研究,让学生体会数学在生活中的应用,培养学生解决问题的能力。
本章内容较为抽象,需要学生具备一定的逻辑思维能力。
二. 学情分析六年级的学生已经具备了一定的数学基础,对简单的一元一次方程、图形的认识等知识有了初步了解。
但鸽巢问题作为一种典型的数学问题,对学生来说较为抽象,需要学生在已有知识的基础上,进一步培养逻辑思维能力和解决问题的能力。
三. 教学目标1.让学生了解鸽巢问题的基本概念,理解鸽巢问题的解题思路。
2.培养学生解决问题的能力,提高学生的逻辑思维能力。
3.让学生感受数学在生活中的应用,激发学生学习数学的兴趣。
四. 教学重难点1.鸽巢问题的理解和解题思路的掌握。
2.如何将生活中的问题转化为数学问题,运用数学知识解决。
五. 教学方法1.采用问题驱动的教学方法,让学生在解决问题的过程中,理解鸽巢问题的解题思路。
2.利用实例讲解,让学生直观地感受鸽巢问题的生活情境。
3.采用小组合作学习的方式,培养学生的团队协作能力。
六. 教学准备1.准备相关的生活实例,用于讲解鸽巢问题。
2.准备练习题,巩固学生对鸽巢问题的理解。
七. 教学过程1.导入(5分钟)利用一个生活中的实例,引入鸽巢问题。
例如:假设有一个班级,有若干名学生,每名学生有一个座位,现有一批新来的学生,需要安排座位,如何安排才能使每个学生都有座位?2.呈现(10分钟)展示鸽巢问题的相关图片,让学生直观地感受鸽巢问题。
同时,引导学生思考,如何将生活中的问题转化为数学问题。
3.操练(10分钟)让学生分组讨论,每组尝试解决一个鸽巢问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对每组解决的问题,进行讲解和分析,让学生理解鸽巢问题的解题思路。
人教版数学六下第五单元《数学广角鸽巢问题》教学设计一. 教材分析《数学广角鸽巢问题》是人教版数学六下第五单元的教学内容。
本节课主要通过鸽巢问题引导学生理解并掌握数学中的组合知识,培养学生的逻辑思维能力和问题解决能力。
教材以生活中的实例引入,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
通过探究、交流、合作等活动,让学生在实际操作中理解鸽巢问题的本质,掌握解决类似问题的方法。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和问题解决能力,他们对数学知识有一定的了解和掌握。
但学生在解决实际问题时,往往还停留在表面,不能深入挖掘问题的本质。
因此,在教学过程中,教师要关注学生的认知水平,引导学生从实际问题中抽象出数学模型,培养学生解决问题的能力。
三. 教学目标1.让学生理解鸽巢问题的概念,掌握解决鸽巢问题的方法。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.重点:理解鸽巢问题的概念,掌握解决鸽巢问题的方法。
2.难点:如何引导学生从实际问题中抽象出数学模型,运用数学知识解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入鸽巢问题,让学生感受数学与生活的紧密联系。
2.探究式学习:引导学生分组讨论,自主探究鸽巢问题的解决方法。
3.案例教学法:分析实际问题,引导学生抽象出数学模型,解决问题。
4.小组合作学习:培养学生团队协作能力,提高解决问题的能力。
六. 教学准备1.教学课件:制作多媒体课件,展示生活实例和教学内容。
2.教学素材:准备相关的生活案例,供学生探讨和分析。
3.教学用具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用生活实例引入鸽巢问题,激发学生学习兴趣。
例如,讲述一个关于鸽巢问题的故事,让学生思考如何解决。
2.呈现(10分钟)展示鸽巢问题的相关图片和实例,引导学生关注问题的本质。
同时,让学生尝试用数学语言描述鸽巢问题,为后续解决问题打下基础。
第五单元数学广角《鸽巢问题》单元计划一、教材分析:本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。
和以往的义务教育教材相比,这部分内容是新增的内容。
本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。
在数学问题中,有一类与“存在性”有关的问题。
在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。
这类问题依据的理论我们称之为“抽屉原理”。
“但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。
“鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。
教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。
能不能将这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。
所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。
六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。
教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。
二、教学目标:1、知识与技能:引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。
2、过程与方法:(1)经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
(2)学会与人合作,并能与人交流思维过程和结果。
3、情感态度与价值观:(1)积极参与探索活动,体验数学活动充满着探索与创造。
(2)体会数学与生活的紧密联系,感受数学在实际生活中的作用,体验学数学、用数学的乐趣。
(3)通过“鸽巢原理”的灵活应用,感受数学的魅力。
《鸽巢问题》单元整体设计一、单元主题解读(一)课程标准要求分析《鸽巢问题》单元是数与代数第三学段“统计与概率”中的重要内容。
《课程标准》在“内容要求”提出了:通过实例感受简单的随机现象及其结果发生的可能性,在实际情境中,对一些简单随机现象发生可能性的大小作出定性描述。
《课程标准》在“学业要求”中指出:能列举生活中的随机现象,列出简单随机现象中所有可能发生的结果,判断简单随机现象发生可能性的大小。
对于现实生活中的一些简单问题,能根据数据提供的信息,判断随机现象发生的可能性。
(二)单元教材内容分析本单元的主要教学内容是:例1描述的是“鸽巢原理”的最简单情况。
例2描述了“鸽巢原理”更为一般的形式。
例3是“鸽巢原理”的具体运用,是一个运用逆向思维来解决问题的例子。
(三)学生认知情况本单元是在学生已经掌握随机现象发生的可能性基础上教学的。
二、单元目标拟定(一)教学目标1.使学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。
2.使学生通过鸽巢原理的学习,增强对逻辑推理、模型思想的体验,提高学习数学的兴趣和应用意识。
三、关键内容确定(一)教学重点:经历“鸽巢原理”的探究过程,初步理解“鸽巢原理”的含义。
掌握“鸽巢原理”的一般形式,会运用“鸽巢原理”。
掌握“鸽巢原理”的逆应用。
(二)教学难点:能熟练地运用“鸽巢原理”解决生活中的实际问题。
四、单元整合框架及说明整合指导思想定位:会用数学的眼光观察现实世界会用数学的思维思考现实世界会用数学的语言表达现实世界这是数学课程的核心素养内涵。
使学生通过鸽巢原理的学习,增强对逻辑推理、模型思想的体验,提高应用意识。
使学生在参与学习活动的过程中,培养主动与他人合作交流的意识,体验数学学习活动的乐趣,增强对数学学习的自信心。
从具体编排来说:(1)以学生熟悉的或者感兴趣的材料作为学习素材,缓解学习难度带来的压力。
(2)例题(习题)的编排关注细节,充分考虑学生学习的重、难点。