生物炭-超富集植物联合修复镉污染土壤的研究
- 格式:docx
- 大小:1.72 MB
- 文档页数:13
生物炭在土壤重金属污染修复中的应用土壤重金属污染是指土壤中镉、铬、铅、汞等重金属超过一定的安全标准,对植物生长和人类健康都会造成严重影响的现象。
随着工业化和城市化的发展,土壤重金属污染已经成为世界范围内面临的一大环境问题。
针对土壤重金属污染问题,科学家们致力于寻找有效的修复方法,而生物炭则成为近年来备受关注的一种修复土壤重金属污染的材料。
本文将对生物炭在土壤重金属污染修复中的应用进行探讨。
一、生物炭的特点生物炭是指通过高温热解植物残体得到的一种碳质固体材料。
其主要特点包括孔隙率大、比表面积大、孔径均匀、化学稳定性高等。
这些特性使得生物炭成为一种理想的土壤修复材料,特别是在重金属污染土壤的修复中具有独特的优势。
生物炭的高孔隙率和大比表面积有助于吸附土壤中的重金属离子,从而降低土壤中重金属的有效性,减少其对植物的毒害作用。
生物炭本身具有良好的化学稳定性,不易分解,可以稳定地存在于土壤中,从而保持其修复效果长久。
生物炭在修复土壤重金属污染过程中起到的主要作用是吸附和固定重金属离子。
土壤中的重金属离子在接触到生物炭时,会通过化学吸附和离子交换等机制被固定在生物炭的孔隙中,从而减少其在土壤中的有效性。
生物炭中的有机功能团还可以与重金属形成配位键结合,从而降低重金属在土壤中的迁移和生物有效性。
生物炭在土壤中的存在还可以改善土壤的结构和通气性,促进土壤微生物的繁殖和活动,从而促进土壤中重金属的降解和稳定。
目前,生物炭在土壤重金属污染修复中得到了广泛的应用。
一方面,生物炭可以直接添加到重金属污染的土壤中,通过形成土壤生物炭复合物的方式,减少土壤中重金属的有效性,降低其对植物的毒害作用。
生物炭还可以作为土壤修复材料的组成部分,与其他修复材料如有机肥、硫酸盐等混合使用,以达到更好的修复效果。
生物炭还可以通过混入土壤底层、表层覆盖等方式应用到重金属污染的土壤中,发挥其修复作用。
生物炭在土壤重金属污染修复中具有重要的应用价值。
土壤重金属污染现状及修复技术研究作者:王慧芳李辕成杨雪吕东蓬来源:《种子科技》2021年第20期摘要:土壤以多种方式影响着人们的健康。
文章主要从近些年国内外土壤重金属污染的现状、常见土壤重金属,如镉(Cd)、砷(As)、汞(Hg)、铅(Pb)等对人体的危害,介绍了相关修复方法,主要有物理、化学、生物3种修复方式。
其中,物理法包括电修法、空气浸提技术等,化学法包括氧化还原技术、添加天然无机矿物材料等,生物法包括植物、动物、微生物以及联合修复技术,而生物修复技术由于成本低、不会引起二次污染,受到人们的广泛关注。
关键词:土壤重金属;重金属污染;联合修复文章編号:1005-2690(2021)20-0081-02 中国图书分类号:X53 文献标志码:B我国是农业大国,粮食基本上都来源于土壤。
据国土资源部调查报告显示,我国被重金属污染的耕地已达到了1 000 hm2,约占我国耕地面积的10%[1]。
随着经济的快速发展,土壤污染越来越严重。
污染物中含有大量的重金属元素,在土壤中会随地下水进入到食物链中,影响人们的身体健康,因此土壤重金属污染受到了广大学者的关注,并提出许多相应的解决措施。
科技虽然带给了人们很多便利之处,但也给环境带来了许多负面影响。
1 重金属土壤现状1.1 国内现状中国土壤环境质量全国调查报告(2014年)显示,我国土壤污染已达16.1%,重度污染、中度污染、轻度污染及轻微污染的占比分别为1.1%、1.5%、2.3%、11.2%。
土壤污染的种类主要有重金属污染、有机污染物污染、放射性元素污染和病原微生物污染,其中重金属污染由于具有累积性、隐蔽性、不可降解性等特点,给人们带来了巨大的危害[2]。
1.2 国外现状人们每天使用数千种不同的化学物质,据环境污染期刊-特刊全球土壤污染状况报道,到2030年,全球非药物化学物质的使用将激增,导致环境污染负担不断增加[3]。
20世纪中叶,美国、荷兰、日本等国家随意倾倒化学试剂,当地土壤被严重污染[4],截至目前,土壤污染已遍布各大洲各大洋,但是这些发达国家实施管理措施较早,比如荷兰从1985年开始对土壤污染采取有效措施,国土面积45 000 km2的荷兰每年用于修复受污染土地的费用折合人民币达到31亿元以上[5]。
植物联合固氮菌修复土壤重金属污染的研究进展引言土壤重金属污染是当前全球环境问题中的一个重要方面。
由于工业化和人类活动的增加,土壤重金属污染问题日益突出,给生态环境和人类健康带来了严重威胁。
研究土壤重金属污染的治理技术具有非常重要的现实意义。
植物联合固氮菌修复土壤重金属污染技术是一种绿色、环保的土壤修复方法,受到了越来越多的关注。
一、植物联合固氮菌修复技术的原理植物联合固氮菌修复技术是一种生物修复技术,其原理是将植物和固氮菌共同利用土壤中的重金属进行修复。
固氮菌是一类能够将空气中的氮气转化为植物可以利用的形式的微生物,通过与植物根系形成共生关系,共同生长并利用土壤中的养分。
在修复土壤重金属污染时,植物可以通过吸收土壤中的重金属离子将其积累在地上部分,并将部分重金属通过根分泌物排出体外或沉积在根系周围,同时利用固氮菌将土壤中的氮气转化为植物可以利用的形式,促进植物生长,从而降低土壤重金属的生物有效性。
二、植物联合固氮菌修复技术的适用性植物联合固氮菌修复技术适用于对重金属污染的土壤进行修复,并且在不同环境条件下都有着广泛的适应性。
植物的选择是植物联合固氮菌修复技术成功的关键,一般来说,对重金属污染土壤修复效果较好的植物具有较强的耐重金属性和较高的寿命,如铜钱草、石蒜等。
固氮菌的选择也是影响修复效果的重要因素,不同的固氮菌菌株对不同的植物有着不同的促生作用和固氮效果。
植物联合固氮菌修复技术的适用性较强,但需要根据具体的环境条件和污染情况进行合理的植物和固氮菌选择。
三、植物联合固氮菌修复技术的优势植物联合固氮菌修复技术在修复土壤重金属污染方面具有许多优势。
该技术是一种生物修复技术,具有绿色环保的特点,避免了传统的土壤修复方法中对土壤进行挖掘和替换的方式带来的二次污染问题。
在修复过程中,植物的生长能力和固氮菌的促生固氮作用可以促进土壤的自然修复过程,有助于改善土壤的综合性能。
植物联合固氮菌修复技术较为灵活,可以根据实际情况选择适用的植物和固氮菌菌株,因此可以在不同的环境中发挥出较好的修复效果。
《污泥-草炭土复合改良镉污染土壤下的植物修复技术》一、引言随着工业化的快速发展,土壤重金属污染问题日益严重,尤其是镉污染。
镉是一种有毒的重金属,对环境和人类健康构成严重威胁。
为了有效解决这一问题,科研人员致力于研发各种土壤修复技术。
其中,植物修复技术以其经济、环保的特性受到了广泛关注。
本文将探讨一种以污泥和草炭土复合改良镉污染土壤的植物修复技术。
二、污泥和草炭土的特性及其在土壤改良中的应用1. 污泥特性:污泥是一种常见的工业废弃物,含有丰富的有机质和微量元素。
经过适当的处理,可以作为土壤改良剂。
2. 草炭土特性:草炭土是一种富含有机质的土壤,具有良好的保水保肥能力。
其有机质和微生物对重金属有较好的吸附和固定作用。
3. 复合应用:将污泥和草炭土复合使用,可以发挥二者的优势,提高土壤的肥力和重金属吸附能力,从而达到改良镉污染土壤的目的。
三、植物修复技术植物修复技术是利用植物及其根系微生物对重金属的吸收、富集、稳定等作用,降低土壤中重金属的含量,达到修复污染土壤的目的。
本技术将选择耐镉能力强的植物进行种植。
四、污泥-草炭土复合改良镉污染土壤下的植物修复技术1. 准备工作:首先对镉污染土壤进行检测,了解其污染程度和类型。
然后根据土壤类型和污染程度,确定合适的污泥和草炭土比例。
2. 混合改良剂施加:将污泥和草炭土按照一定比例混合,施加到镉污染土壤中。
注意均匀施撒,避免局部浓度过高。
3. 植物种植:选择耐镉能力强的植物进行种植。
在种植过程中,注意合理施肥、浇水,保持植物生长良好。
4. 监测与评估:定期对土壤和植物进行检测,了解重金属含量、植物生长状况等。
根据检测结果,调整施加的改良剂比例和植物种类,以达到最佳的修复效果。
五、技术优势与展望1. 技术优势:本技术利用污泥和草炭土的复合作用,提高土壤的肥力和重金属吸附能力。
同时,通过植物修复技术,降低土壤中重金属的含量,达到双重修复效果。
此外,本技术具有成本低、环保、可持续等优点。
《水稻秸秆生物炭对镉的吸附性能研究》一、引言随着工业化和城市化的快速发展,重金属污染问题日益严重,尤其是镉(Cd)污染,已成为环境科学领域关注的焦点。
镉是一种有毒的重金属,其进入人体后不易被排除,能引起肾脏和骨骼等多系统的损伤。
目前,各种修复技术中,吸附法因其操作简便、成本低廉等优点备受关注。
水稻秸秆作为一种农业废弃物,具有来源广泛、成本低廉等优点,经过炭化处理后的生物炭具有良好的吸附性能。
因此,研究水稻秸秆生物炭对镉的吸附性能,对于解决镉污染问题具有重要的现实意义。
二、材料与方法1. 材料(1)水稻秸秆:采集自本地农田,经过清洗、晾干、破碎等预处理。
(2)镉溶液:采用CdCl2·2.5H2O配制不同浓度的镉溶液。
(3)生物炭:将预处理后的水稻秸秆进行炭化处理,制备生物炭。
2. 方法(1)生物炭的制备:将水稻秸秆在管式炉中,以一定温度和时间进行炭化处理,制备生物炭。
(2)吸附实验:在一定温度下,将生物炭与镉溶液混合,充分搅拌后静置,测定上清液中镉的浓度,计算生物炭对镉的吸附量。
(3)数据分析:采用Excel和SPSS软件进行数据整理和分析。
三、结果与分析1. 生物炭的表征通过扫描电子显微镜(SEM)观察生物炭的形貌,发现生物炭表面具有丰富的孔隙结构,有利于吸附重金属离子。
通过X射线衍射(XRD)分析,发现生物炭中含有大量的无定形碳和石墨化碳。
2. 吸附性能研究(1)吸附等温线在不同温度下,测定生物炭对镉的吸附等温线。
结果表明,随着镉浓度的增加,生物炭对镉的吸附量也逐渐增加。
在相同浓度下,温度越高,生物炭对镉的吸附量也越大。
这表明生物炭对镉的吸附过程是吸热反应。
(2)吸附动力学研究在不同时间点测定生物炭对镉的吸附量,绘制吸附动力学曲线。
结果表明,生物炭对镉的吸附过程符合准二级动力学模型,表明化学吸附是速率控制步骤。
(3)影响因素研究pH值、离子强度和共存离子等因素对生物炭吸附镉的影响进行了研究。
生物炭-壳聚糖复合材料对镉污染土壤的修复效果研究作者:杨克俭李忠徽姜凌闫江涛王显炜杨雅杰来源:《安徽农业科学》2024年第08期摘要[目的]探讨生物炭-壳聚糖复合材料(CBC)对镉(Cd)污染土壤的修复效果。
[方法]以黑麦草为供试植物进行盆栽试验,探究向酸性低镉土壤、中性高镉土壤和碱性高镉土壤中分别添加0、0.5%、1.0% 和3.0%(W/W)的CBC时,土壤pH、全镉含量、有效态镉含量、黑麦草根和茎叶的生物量以及其中的全镉含量变化情况。
[结果]施用CBC可以提高酸性和中性土壤的pH。
随着CBC施用量的增加,土壤中有效态镉含量降低,当施加量至3.0%时达到显著水平。
CBC可以钝化土壤中的镉活性,其钝化效果与土壤污染程度、酸碱性密切相关。
随着CBC施加量的增加,黑麦草根和茎叶中镉含量降低,尤其植物地上部分降低效果明显,也证明了CBC对土壤中镉具有钝化作用;黑麦草的富集系数(BCF)和转运系数(TF)随CBC施用量的增加而减小,表明施用CBC能够减弱土壤中的镉向植株体内的迁移,从而达到缓解镉毒害的作用。
[结论]CBC可以用于镉污染土壤的修复,尤其是在污染程度严重的酸性土壤中效果更加显著。
关键词生物炭-壳聚糖复合材料;土壤酸碱性;钝化修复;镉污染土壤;黑麦草中图分类号 X53 文献标识码 A文章编号 0517-6611(2024)08-0066-05doi:10.3969/j.issn.0517-6611.2024.08.016Study on the Remediation Effect of Biochar-chitosan Composite on Cd Contaminated SoilYANG Ke-jian1,LI Zhong-hui1,JIANG Ling2 et al(1.Shaanxi Hydrogeology Engineering Geology and Environment Geology Survey Center,Xi’an,Shaanxi 710068;2.College of Water and Environment,Chang’an University,Xi’an,Shaanxi 710054)Abstract [Objective]To explore the remediation effect of biochar-chitosan composite (CBC) on Cd contaminated soil.[Method]A pot experiment was conducted with ryegrass as the test plant,the changes of soil pH,total Cd content,available Cd content,biomass of ryegrassroots and leaves,and total Cd content in acidic low Cd soil,neutral high Cd soil and alkaline high Cd soil were investigated when CBC was added to 0,0.5%,1.0% and 3.0% (W/W) respectively.[Result]The application of CBC could increase the pH of acidic and neutral soils.The available Cd decreased with the increase of CBC application,and reached a significant level when the application amount reached 3.0%.CBC could passivate Cd activity in soil,and its passivation effect was closely related to the degree of soil pollution and acid-base property.With the increase of CBC application,the Cd content in the roots and shoots of ryegrass decreased,especially the effect on the aboveground part of plants was significant,directly indicating that CBC had a immobilization effect on Cd in soil.The BCF and TF of ryegrass decreased with the increase of CBC application rate,indicating that the application of CBC could reduce the migration of Cd from soil to the plant body,thereby achieving the effect of alleviating Cd toxicity.[Conclusion]The CBC can be used for the remediation of Cd contaminated soil,especially in heavily polluted acidic soils.Key words Biochar-chitosan composite (CBC);Soil acidity and alkalinity;Immobilization remediation;Cd contaminated soil;Ryegrass镉(Cd)是重金属“五毒”元素之一,具有移动性大、毒性强、难降解等特点,易被植物吸收富集,严重影响农作物的产量和品质,并通过食物链进入人体,危害人体健康[1-2]。
土壤重金属污染联合修复技术研究进展【摘要】本文对土壤重金属污染联合修复技术的研究进展进行了综述。
在文章介绍了研究背景、研究目的和研究意义。
在首先分析了土壤重金属污染的现状,然后综述了传统修复技术,并详细讨论了联合修复技术的研究现状和应用案例。
探讨了土壤重金属污染联合修复技术的发展趋势。
结论部分展望了该技术的未来发展,并提出了存在的问题与挑战,指出了未来研究的方向。
通过本文的研究,为解决土壤重金属污染问题提供了重要的参考和指导,同时也为相关研究领域提供了新的思路和方法。
【关键词】土壤重金属污染、联合修复技术、研究进展、应用案例、发展趋势、展望、问题、挑战、研究方向1. 引言1.1 研究背景土壤重金属污染是全球环境问题中备受关注的一个重要方面。
随着工业化和城市化进程的加快,大量的工业废水、废渣和废气排放导致了土壤中重金属含量的不断增加,严重影响了土壤的生态功能和农作物的品质安全。
重金属在土壤中具有较强的毒性和蓄积性,长期暴露在重金属污染土壤环境中会对人体健康和生态系统造成严重危害。
目前,传统的土壤修复技术无法完全解决土壤重金属污染问题,迫切需要采用更加有效的修复技术来净化受污染的土壤。
开展土壤重金属污染联合修复技术的研究成为当前环境科学领域的热点之一。
通过综合利用生物修复、物理修复和化学修复等多种修复技术的优势,联合修复技术能够更有效地清除土壤中的重金属污染物,提高土壤的生态功能和农产品的质量安全。
深入研究土壤重金属污染联合修复技术的机理和应用方法,对于保护环境、改善农业生产质量和人类健康具有重要意义。
1.2 研究目的土壤重金属污染已经成为当今环境科学领域的一个严重问题,对人类健康和生态系统造成了严重影响。
本文旨在通过研究相关联合修复技术,提高土壤重金属污染的修复效率和质量,保护环境和人类健康。
具体研究目的包括:探讨当前土壤重金属污染的现状,总结传统修复技术的优缺点,分析联合修复技术的研究现状,归纳土壤重金属污染联合修复技术的应用案例,探讨其发展趋势,为未来研究提供参考。
2021年第02期现代园艺重金属Cd污染土壤的植物修复研究王从梅,王波*(苏州大学,江苏苏州215000)摘要:重金属污染是当下威胁环境安全、威胁人类健康的重要污染形式之一,重金属污染广泛存在水环境和土壤环境中,通过富集的方式堆积在植物、动物体内,最终沿着食物链大量积累在人体内。
重金属污染的治理已经成为土壤和水环境污染治理的重点之一,植物修复是常见且常用的修复治理方法,就是通过植物对重金属的富集作用来吸收、分解、转化、固定重金属元素,降低土壤中重金属的含量。
主要围绕重金属镉(Cd)的植物修复进行分析和探讨,希望可以为增强我国污染土壤植物修复能力提供一些思路。
关键词:重金属;土壤污染;植物修复土壤重金属污染自工业革命初期就开始逐渐显现,直到今天仍未停止。
根据调查可知,截止到2013年,我国受到重金属污染的土壤已达到2000万hm2,7年间这个数值还在不断上升,且每年会因重金属污染造成的粮食损失已超过1200万t。
在土壤修复领域中,重金属镉作为一种毒性较强的重金属元素,有极易被植物吸收、迁移性强的特点,针对此重金属元素展开植物修复探讨,比较具有代表性。
1重金属镉污染土壤中单一植物修复效果的研究方法在重金属污染土壤的植物修复开展前,需要先了解植物对重金属的耐受性、修复能力,即植物能够忍受的土壤重金属浓度和植物对土壤中重金属的富集程度,可以通过实验室研究为不同浓度重金属污染土壤选择最合适的植物进行修复处理。
以菊科草本植物为例,万寿菊、矢车菊、百日草等都是现代城市园林栽培中常见的菊科植物,判断菊科草本植物在重金属镉的修复方面效果,需要进行一系列对比试验。
1.1实验准备实验室需准备成分相同的土壤,按照重量进行准确称重。
分别称取不同重量的重金属镉,拌入准备好的土壤制成浓度为5mg/kg、10mg/kg、15mg/kg、20mg/kg的受污染土壤,并准备1份浓度为0mg/kg的空白对照组。
1.2实验过程经过21d的静置稳定后,在这5份土壤中分别进行相同深度、相同重量的菊科草本植物种子,每盆保留10株出苗植株,生长30~60d后进行统一收获。
生物炭改良污染土壤效能探究一、生物炭的概述与土壤污染背景生物炭是一种由生物质在缺氧或低氧条件下热解得到的固体物质,它具有高度的孔隙性、丰富的化学稳定性和较高的比表面积。
生物炭的这些特性使其在土壤改良、污染物固定、温室气体减排等方面展现出巨大的应用潜力。
随着工业化进程的加快,土壤污染问题日益严重,其中重金属污染、有机污染物和盐碱化等问题尤为突出。
土壤污染不仅影响农作物的生长和产量,还可能通过食物链对人类健康造成威胁。
1.1 生物炭的特性及其在土壤改良中的作用生物炭具有吸附、离子交换、缓冲pH值和增加土壤有机质等多种功能。
它可以提高土壤的保水性和通气性,改善土壤结构,从而促进植物根系的生长。
此外,生物炭的孔隙结构能够吸附土壤中的有害物质,减少污染物对植物的毒性。
1.2 土壤污染的类型与危害土壤污染主要包括无机污染物和有机污染物两大类。
无机污染物如重金属,可以通过植物吸收进入食物链,对人体健康构成威胁。
有机污染物如农药残留、石油烃等,长期积累会对土壤生态系统造成破坏。
土壤盐碱化则影响土壤的肥力和作物的生长条件。
二、生物炭改良污染土壤的机理与应用生物炭作为一种环境友好型材料,在改良污染土壤方面具有独特的优势。
本文将探讨生物炭如何通过物理、化学和生物作用改善土壤环境,以及其在实际应用中的效果。
2.1 生物炭对土壤物理性质的改善生物炭的加入可以显著改善土壤的物理性质。
它的孔隙结构有助于提高土壤的孔隙度,增加土壤的持水能力和通气性,从而改善土壤的排水和渗透性能。
此外,生物炭还能够增加土壤的团聚体稳定性,减少土壤侵蚀。
2.2 生物炭对土壤化学性质的调节生物炭具有调节土壤pH值的能力,能够缓冲土壤酸碱度,为植物生长提供适宜的化学环境。
同时,生物炭表面的官能团可以吸附土壤中的重金属离子和有机污染物,降低它们在土壤中的生物有效性,减少对植物的毒性。
2.3 生物炭对土壤生物活性的影响生物炭可以作为微生物的栖息地,增加土壤微生物的多样性和数量。
农田土壤镉污染研究与治理修复建议摘要:土壤是人类赖以生息的自然资源,在我国的重金属土壤污染中,镉污染是危害性最大的。
Cd元素已被联合国环境规划署列为全球性意义危害化学物质之首。
镉污染会影响农作物的生长,造成土壤的可利用性降低,同时通过食物链危害人体健康。
本文针对Cd目前在我国的一些背景值、污染现状、形态、性质及其严重危害做一些介绍,并针对其特征提出治理建议,为农田土壤镉污染治理和修复提供参考。
关键词:农田土壤;镉;污染;治理;土壤是人类赖以生息的自然资源,随着人口、经济发展和矿产资源开发利用的增长,土壤镉污染问题日益突出。
镉污染是危害性较大,会影响农作物的生长,造成土壤的可利用性降低,土壤中Cd通过食物链富集到人体影响健康,有许多报道表明,进食少量的Cd便可能引发严重的中毒症状。
世界卫生组织确定Cd为有限研究的食品污染物,联合国环境规划署提出12种具有全球性意义的危险化学物质,Cd被列为首位。
1.土壤Cd污染概况1.1土壤Cd污染现状Cd不是人体所必需的元素,它在地壳中一般含量是0.01-2mg/kg,一般我国背景值为0.097mg/kg,【1】我国《土壤环境质量-农用地土壤污染风险管控标准(试行)》最低风险筛选值为0.3mg/kg。
在一些铅锌矿周边,背景值会超过在0.6 mg/kg,20世纪90年代初,我国污灌农田约1.4×106公顷,污灌对造成Cd污染耕地1.3×104公顷,涉及11个县市的25个地区。
“十三五”以来,国家制定《土壤环境质量-农用地土壤污染风险管控标准(试行)》对农用地土壤重金属含量的风险筛选值和管控值做了规定,随着全国农用地土壤状况调查相继开展,农用地土壤超筛选值、甚至管控值情况大幅增加,仅陕南某市就发现数超风险筛选值耕地1.1×104公顷,超风险管控值耕地860余公顷。
1.2 土壤Cd污染的来源土壤在与周围环境进行物质和能量的交换过程中,不可避免地会有外源Cd进入土壤,进入土壤的镉会因化学作用、物理吸附以及土壤的相对固定而不断在土壤中累积。
生物炭修复重金属污染土壤研究进展司马小峰,孟玉,沈贤城,李堃,于鹏㊀(安徽省城建设计研究总院股份有限公司,安徽合肥230051)摘要㊀作为一种经济有效的土壤原位修复材料,生物炭可以通过对土壤重金属的固定与转化,降低重金属的生物有效性㊂生物炭与植物㊁动物㊁微生物或其他类型材料联合使用对重金属污染土壤进行修复,不仅能提高污染的修复效率,还能增强污染修复效果的稳定性㊂探讨了生物炭单一修复对土壤理化性质及土壤重金属的影响,并综述了生物炭与其他技术联合修复重金属污染土壤相关的研究进展,展望了未来的研究趋势㊂关键词㊀生物炭;重金属;污染土壤;联合技术;原位修复中图分类号㊀X53㊀㊀文献标识码㊀A㊀㊀文章编号㊀0517-6611(2022)12-0031-03doi:10.3969/j.issn.0517-6611.2022.12.007㊀㊀㊀㊀㊀开放科学(资源服务)标识码(OSID):ResearchProgressonBiocharRemediationofHeavyMetalContaminatedSoilSIMAXiao⁃feng,MENGYu,SHENXian⁃chengetal㊀(AnhuiUrbanConstructionDesignInstituteCo.,Ltd.,Hefei,Anhui230051)Abstract㊀Asaneconomicalandeffectivesoilremediationmaterial,biocharcanreducethebioavailabilityofheavymetalsthroughfixationandtransformationofheavymetalsinsoil.Biocharcombinedwithplant,animals,microorganismorothertypesofmaterialscannotonlyim⁃provetheremediationefficiency,butalsoenhancethestabilityoftheremediationeffectofcontaminatedsoil.Inthispaper,theeffectsofbiocharsingleonsoilphysicalandchemicalpropertiesandheavymetalswerediscussed,andtheprogressofitscombinationtechnologywasreviewed,whilethefuturedevelopmentwasprospected.Keywords㊀Biochar;Heavymetals;Contaminatedsoil;Combinationtechnology;In⁃situremediation作者简介㊀司马小峰(1986 ),男,湖北公安人,高级工程师,博士,从事重金属污染土壤原位修复研究㊂收稿日期㊀2022-01-11㊀㊀随着矿产开采㊁金属冶炼㊁化工生产㊁污水灌溉等人类生产活动的进行,土壤重金属污染日益严重㊂据2014年发布的‘全国土壤污染状况调查公报“公开数据,全国土壤总的点位超标率为16.1%,主要污染物为无机污染物,其中镉㊁汞㊁砷㊁铜㊁铅㊁铬㊁锌㊁镍8种重金属超标率分别为7.0%㊁1.6%㊁2.7%㊁2.1%㊁1.5%㊁1.1%㊁0.9%㊁4.8%[1]㊂重金属污染不仅会降低土壤肥力及作物产量,而且会通过生物积聚㊁生物放大作用威胁人类健康,并破坏生态环境[2],所以,解决土壤的重金属污染问题刻不容缓㊂近年来,生物炭的炭封存效应引起了广泛关注,同时生物炭也开始用于土壤污染修复,其孔隙率高㊁比表面积大等特点,使其有极强的吸附能力,能够降低土壤中重金属生物毒性[3],且生物炭制备来源广泛,制备方式简单,在土壤污染修复方面具有巨大潜力㊂1㊀生物炭修复技术生物炭是生物质(如木头㊁粪便㊁树叶等)在缺氧或限氧且相对低温(<700ħ)条件下加热制得的富含碳的固体残渣[4]㊂生物炭主要成分是烷基和芳香结构,组成元素主要为C㊁H㊁O等,且含有N㊁P㊁K等植物生长所需的营养物质,具有较高的pH和阳离子交换能力,可以改善土壤肥力㊁促进作物生长㊂另外,生物炭颗粒具有大量微孔结构和丰富的含氧官能团,从而降低土壤重金属的迁移性和生物有效性,因此,利用生物炭修复土壤重金属污染得到了越来越多的关注[5-6]㊂1.1㊀对重金属的吸附固定作用㊀生物炭对土壤中重金属的吸附固定机理比较复杂㊂部分学者认为生物炭对重金属以物理吸附为主,由于生物炭具有高比表面积和多孔结构,重金属离子会被吸附至生物炭表面或扩散进入孔隙内[7]㊂Beesley等[8]也认为生物炭降低As㊁Cd和Zn等重金属离子的迁移和生物有效性主要依靠物理吸附,这种物理吸附主要源于分子间力,故这种吸附可能是可逆的[7]㊂相关研究发现[9],低温热解制备的生物炭对重金属离子的固定主要依靠静电作用,这主要是由于低温条件热解制备的生物炭表面有更多含氧官能团,使其带有更多的负电荷,通过静电吸引力降低了重金属离子的移动性㊂沉淀作用也是生物炭固定重金属的重要机理,生物炭的pH普遍较高,在土壤中会促进重金属离子生成金属氢氧化物㊁金属磷酸盐或碳酸盐沉淀㊂Jiang等[10]发现加入稻秸秆生物炭使土壤pH上升,土壤生成氢氧化物沉淀,且生物炭对氢氧化物的吸附力更大,进一步降低了土壤中的重金属移动性㊂Cao等[11]也通过XRD和FTIR表征方式证明了乳制品生物炭对土壤中Pb去除主要是由于生成磷酸盐与碳酸盐沉淀,且沉淀在总吸附作用中占比达到84% 87%㊂此外,生物炭表面含氧官能团也能通过离子交换和络合作用参与重金属离子的吸附固定[12-13]㊂1.2㊀改变土壤性质与环境㊀生物炭在土壤中不仅可以直接与重金属离子发生反应,还可以通过改变土壤的生物化学性质影响土壤重金属的迁移性与生物有效性㊂生物炭的添加主要会影响土壤pH㊁有机质㊁阳离子交换量(CEC)㊁持水能力及微生物群落等㊂生物炭含有的碱性物质会导致土壤pH升高,降低酸可提取态重金属的含量,进而降低其生物有效性[14]㊂生物炭含有的矿物质会导致土壤阳离子交换容量升高,从而提高其对重金属的静电作用,更容易发生络合,促进重金属在土壤中的吸附[15-16]㊂大量研究表明,生物炭的添加会提高土壤有机质含量[17-18],其表面官能团会与重金属形成金属络(螯)合物,从而影响重金属在土壤中的迁移[19]㊂生物炭添加还会导致土壤可溶性磷含量提高,与Cd㊁Pb㊁Zn等重金属形成磷酸盐难溶性物质,促进对重金属的固定[20]㊂安徽农业科学,J.AnhuiAgric.Sci.2022,50(12):31-33㊀㊀㊀2㊀生物炭联合修复技术单一使用生物炭修复土壤存在一定的局限性,所以生物炭的联合修复逐渐兴起,将生物炭与植物㊁微生物㊁动物和其他添加物联合使用,可降低土壤重金属的生物有效性,缩短重金属污染土壤的修复周期㊂2.1㊀生物炭与植物联合使用㊀植物修复技术是指利用植物生长特性对土壤重金属进行吸收和富集,并通过收割植物实现土壤重金属的转移㊂该技术具有治理成本低㊁土壤微生态影响小等优点,但是存在修复周期长㊁适应性弱及重金属植物毒害影响等局限性㊂生物炭的添加不仅对土壤重金属有一定的钝化作用,而且可以提高土壤肥力㊁改善土壤结构,缓解重金属对植物生长的毒害㊂生物炭与植物修复联合用于土壤重金属修复时,生物炭不仅能通过吸附固定作用降低重金属的生物有效性,缓解重金属对植物的毒性,还能提供营养物质促进植物生长,从而有效修复土壤重金属㊂王玺洋等[21]研究了稻秆炭与巨菌草联合修复铜㊁镉复合污染土壤,发现稻秆生物炭的施用不仅提高了巨菌草的成活率和其地上部分的生物量,也提升了巨菌草的地上部分对Cu㊁Cd的富集量,土壤有效态Cu㊁Cd含量显著降低㊂董双快等[22]的研究也表明,土壤中过高浓度的Cd和Pb会抑制苏丹草的生长,而生物炭的添加能缓解这种抑制作用,并促进土壤对Cd和Pb的固持能力㊂然而,有研究发现这种协同促进作用与生物炭的添加量相关,刘蕾等[23]发现采用麦秸秆生物炭㊁玉米秸秆生物炭和黑麦草联合修复镉污染土壤时,生物炭的添加可以提高黑麦草对土壤中镉的吸收效果,但过量添加反而会使镉固定在土壤中,这与笔者前期的相关研究结论类似[24]㊂2.2㊀生物炭-微生物联合修复技术㊀在重金属污染土壤中,部分微生物可以分泌一些特殊蛋白与重金属生成螯合物,或通过铁载体络合作用降低重金属的生物毒性,从而实现重金属污染土壤的修复[25]㊂然而,游离微生物在污染土壤中极易遭受不良环境的影响,导致修复效果不佳,生物炭表面的孔隙结构可能成为微生物的庇护所,添加至土壤中能改善土壤的通气条件㊁pH和保水能力,并提高土壤矿物质和有机物等含量,进而改善微生物栖息环境,促进土壤微生物丰度和数量的增加[26-27]㊂任晓斌等[28]通过室内盆栽试验探究了光合细菌和生物炭对土壤铬污染的修复效果,修复30d后,联合修复后土壤中铬的生物可利用性较单一光合细菌和生物炭修复分别降低了8.03%和9.11%,土壤中的过氧化氢酶㊁脲酶㊁转化酶和碱性磷酸酶活性均显著增高,极大地促进了铬胁迫下小白菜植株生长,同时还大幅度降低了小白菜根系及地上部分的铬含量㊂龚诚君等[29]研究发现,产吲哚乙酸菌与生物炭联合修复Ni和Cd污染土壤效果较好,土壤中重金属有效态的固定能力高于二者单独修复,小白菜的生长鲜重为38.94g,也远高于二者单独修复的9.97g和5.86g,这可能是生物炭缓解了Cd㊁Ni对菌株的毒害作用,同时,其孔隙结构和营养元素为菌株生长提供了良好的环境,进而使得产吲哚乙酸菌保持较高的活性㊂李琋等[30]利用生物炭负载微生物修复石油烃-镉复合污染土壤的试验也得到了相似结论,生物炭固定化微生物使土壤中的可交换态镉含量显著降低,且明显低于单独添加生物炭和游离微生物,此外,固定化微生物可显著增加土壤细菌数量㊁土壤脱氢酶活性㊁过氧化氢酶活性以及多酚氧化酶活性㊂Zhang等[31]研究了内生菌㊁生物炭和植物3种方式协同强化固定化修复镉污染土壤,他们发现3种方式联合使用具有显著的植物促生效果,能显著降低土壤镉含量及有效态含量㊂2.3㊀生物炭-动物联合修复技术㊀目前,生物炭与动物联合修复技术主要为蚯蚓相关的研究㊂蚯蚓广泛存在于土壤中,是典型的无脊椎动物,其体内含有的微生物能增加土壤微生物量,并提高重金属的生物有效性[32]㊂苏倩倩等[33-34]研究发现,蚯蚓与生物炭联合修复后,土壤的水溶态As含量明显低于蚯蚓或生物炭单独修复,蚯蚓的引入增加了变形菌门的相对丰度,而变形菌门与土壤水溶态As含量呈显著负相关,即变形菌门可能参与了土壤As的转化与固定,此外,生物炭添加后蚯蚓体内富集的As含量显著增加,且蚯蚓存活率没有明显变化㊂2.4㊀生物炭-其他材料联合修复技术㊀近年来有研究人员开始将生物炭与其他材料联合用于土壤重金属修复㊂余红等[35]将生物炭和堆肥产品联合用于土壤汞污染修复,结果显示,生物炭和堆肥产品联合修复时,汞的生物有效性下降61.8%,明显优于生物炭或堆肥产品单独施用的修复效果,发现堆肥过程促进了生物炭表面活性基团的形成,同时生物炭促进了堆肥过程中腐殖质的形成,而腐殖质通过阳离子交换㊁吸附㊁形成配位化合物等方式进一步改变重金属的赋存形态[36]㊂赵首萍等[37]研究发现,石灰与生物炭联合使用对土壤镉有效态的降低发挥了叠加作用,对土壤理化性质的改善作用明显优于石灰或生物炭单独使用,并大幅度降低水稻中Cd含量㊂肖亮亮等[38]研究发现,麦饭石的添加也能促进生物炭的修复效果,二者联合施用后,Cd的弱酸提取态显著降低,残渣态明显增加,主要原因是麦饭石在短时间提高了土壤pH,与生物炭提供的有机质共同作用促进了土壤重金属的吸附固定与沉淀作用㊂3㊀展望生物炭原位修复具有良好的生态和经济效益,但是单一的生物炭修复存在局限性,针对生物炭修复存在的问题,目前已有较多生物炭相关的联合技术研究,在一定程度上提高了修复效率,但仍然存在各种问题㊂如何进一步改善生物炭修复效果,提高修复效率,可以从以下几个方面进一步深入研究㊂①生物炭可以降低土壤重金属的生物有效性,但存在活化形成二次污染的风险,通过超富集植物可将重金属富集而从土壤移除,且经济环保,具有较好应用前景㊂但是需要进一步寻找生长周期短㊁环境适应能力强㊁且对多种重金属富集效率高的超富集植物㊂②将生物炭修复与植物㊁转基因㊁微生物㊁农艺措施等相结合,进一步提高重金属修复效率㊂③改性生物炭在土壤重金属修复方面相关研究也较多,23㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年未来可考虑针对与其他技术联合修复进行定向改性研究㊂④目前大部分的试验仍在实验室或小型田间进行,大规模田间试验将是后续研究的重点方向㊂参考文献[1]环境保护部,国土资源部.全国土壤污染状况调查公报[R].2014.[2]李富荣,王琳清,李文英,等.水芹对重金属的吸收累积及其应用研究进展[J].生态环境学报,2021,30(12):2423-2430.[3]常春英,曹浩轩,陶亮,等.固化/稳定化修复后土壤重金属稳定性及再活化研究进展[J].土壤,2021,53(4):682-691.[4]LEHMANNJ,JOSEPHS.Biocharforenvironmentalmanagement[M].2nded.London:Routledge,2015.[5]鲁秀国,过依婷,奉向东.生物炭对土壤中重金属作用及影响研究进展[J].应用化工,2018,47(4):775-779.[6]兰玉顺,刘维娜,王丹,等.施用典型有机固废生物炭对土壤重金属生物有效性的影响[J].环境工程学报,2021,15(8):2701-2710.[7]王宏胜,唐朝生,巩学鹏,等.生物炭修复重金属污染土研究进展[J].工程地质学报,2018,26(4):1064-1077.[8]BEESLEYL,INNEHOS,NORTONGJ,etal.Assessingtheinfluenceofcompostandbiocharamendmentsonthemobilityandtoxicityofmetalsandarsenicinanaturallycontaminatedminesoil[J].Environmentalpollu⁃tion,2014,186:195-202.[9]贾明云,王芳,卞永荣,等.秸秆生物质炭吸附溶液中Cu2+的影响因素研究[J].土壤,2014,46(3):489-497.[10]JIANGJ,XURK,JIANGTY,etal.ImmobilizationofCu(II),Pb(II)andCd(II)bytheadditionofricestrawderivedbiochartoasimulatedpollu⁃tedUltisol[J].Journalofhazardousmaterials,2012,229/230:145-150.[11]CAOXD,MALN,GAOB,etal.Dairy⁃manurederivedbiochareffective⁃lysorbsleadandatrazine[J].Environmentalscience&technology,2009,43(9):3285-3291.[12]DONGXL,MALQ,ZHUYJ,etal.MechanisticinvestigationofmercurysorptionbyBrazilianpepperbiocharsofdifferentpyrolytictemperaturesbasedonX⁃rayphotoelectronspectroscopyandflowcalorimetry[J].Envi⁃ronmentalscience&technology,2013,47(21):12156-12164.[13]SUNJK,LIANF,LIUZQ,etal.Biocharsderivedfromvariouscropstraws:CharacterizationandCd(II)removalpotential[J].Ecotoxicology&environmentalsafety,2014,106(2):226-231.[14]李江遐,吴林春,张军,等.生物炭修复土壤重金属污染的研究进展[J].生态环境学报,2015,24(12):2075-2081.[15]杨惟薇,张超兰,曹美珠,等.4种生物炭对镉污染潮土钝化修复效果研究[J].水土保持学报,2015,29(1):239-243.[16]张迪,胡学玉,柯跃进,等.生物炭对城郊农业土壤镉有效性及镉形态的影响[J].环境科学与技术,2016,39(4):88-94.[17]SMEBYEA,ALLINGV,VOGTRD,etal.Biocharamendmenttosoilchangesdissolvedorganicmattercontentandcomposition[J].Chemo⁃sphere,2016,142:100-105.[18]张华纬,甄华杨,岳士忠,等.水稻秸秆生物炭对污染土壤中镉生物有效性的影响[J].生态环境学报,2017,26(6):1068-1074.[19]曹人升,范明毅,黄先飞,等.金沙燃煤电厂周围土壤有机质与重金属分析[J].环境化学,2017,36(2):397-407.[20]牛晓丛,何益,金晓丹,等.酵素渣和秸秆生物炭钝化修复重金属污染土壤[J].环境工程,2018,36(10):118-123.[21]王玺洋,辛在军,李晓晖,等.稻秆炭与巨菌草联合对铜镉污染土壤的修复[J].农业环境科学学报,2021,40(1):74-82.[22]董双快,朱新萍,梁胜君,等.添加生物炭对苏丹草修复Cd㊁Pb污染土壤的影响[J].新疆农业大学学报,2016,39(3):233-238.[23]刘蕾,王淑晴,黄子玲,等.生物炭联合黑麦草修复镉污染土壤研究[J].河南工程学院学报(自然科学版),2021,33(1):43-47,53.[24]司马小峰,孟玉,吴东彪,等.生物炭-超富集植物联合修复镉污染土壤的研究[J].安徽农业科学,2021,49(6):80-84.[25]杨雍康,药栋,李博,等.微生物群落在修复重金属污染土壤过程中的作用[J].江苏农业学报,2020,36(5):1322-1331.[26]ZHENGH,WANGX,LUOXX,etal.Biochar⁃inducednegativecarbonmineralizationprimingeffectsinacoastalwetlandsoil:Rolesofsoilag⁃gregationandmicrobialmodulation[J].Scienceofthetotalenvironment,2018,610/611:951-960.[27]YUANP,WANGJQ,PANYJ,etal.Reviewofbiocharforthemanage⁃mentofcontaminatedsoil:Preparation,applicationandprospect[J].Sci⁃enceofthetotalenvironment,2019,659:473-490.[28]任晓斌,白红娟,卫燕红,等.光合细菌和生物炭对污染土壤中铬的稳定化效果及小白菜生长的影响[J].农业环境科学学报,2021,40(10):2141-2149.[29]龚诚君,周昕霏,杨昳,等.产IAA菌与生物炭对镍和镉复合污染土壤的修复[J].环境科学与技术,2021,44(5):140-147.[30]李琋,王雅璇,罗廷,等.利用生物炭负载微生物修复石油烃-镉复合污染土壤[J].环境工程学报,2021,15(2):677-687.[31]ZHANGX,YUJL,HUANGZL,etal.EnhancedCdphytostabilizationandrhizospherebacterialdiversityofRobiniapseudoacaciaL.byendo⁃phyteEnterobactersp.YG⁃14combinedwithsludgebiochar[J/OL].Sci⁃enceofthetotalenvironment,2021,787[2021-07-28].https://doi.org/10.1016/j.scitotenv.2021.147660.[32]成杰民,俞协治.蚯蚓在植物修复铜㊁镉污染土壤中的作用[J].应用与环境生物学报,2006,12(3):352-355.[33]苏倩倩,李莲芳,朱昌雄,等.蚯蚓/改性生物炭对As污染红壤的稳定化效应[J].农业环境科学学报,2021,40(5):999-1007.[34]杨生权.蚯蚓与生物质炭联合作用对土壤吸附铅的影响[J].山西农业科学,2018,46(2):246-250.[35]余红,檀文炳.生物炭和堆肥产品施用对水稻体系中汞生物有效性的影响[J].环境生态学,2021,3(2):47-52.[36]罗高节,黄志宏.生物炭和腐殖质联合修复重金属污染土壤研究进展[J].河南科技学院学报(自然科学版),2018,46(6):5-10.[37]赵首萍,陈德,叶雪珠,等.石灰㊁生物炭配施硅/多元素叶面肥对水稻Cd积累的影响[J].水土保持学报,2021,35(6):361-368.[38]肖亮亮,丁园.药渣生物炭联合麦饭石对铜镉污染土壤修复研究[J].环境科学与技术,2019,42(2):145-150.3350卷12期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀司马小峰等㊀生物炭修复重金属污染土壤研究进展。
生物炭在土壤重金属和有机物污染修复中的应用研究进展梁慧,李如美,朱钰晓,刘同金,李瑞娟,房锋∗㊀(山东省农业科学院植物保护研究所,山东济南250100)摘要㊀土壤中重金属和有机物污染既造成巨大经济损失,又严重威胁人类健康㊂生物炭作为来源广泛㊁制备简单,比表面积大㊁表面官能团丰富㊁孔隙结构发达的材料,被广泛应用于农业㊁生态修复和环境保护领域㊂从生物炭的来源与制备工艺㊁对污染物的吸附机理㊁影响因素以及在土壤重金属和有机物污染修复中的应用现状等方面进行了综述,同时对生物炭材料在土壤污染修复中的研究重点进行了展望,为生物炭在土壤污染修复中的应用提供参考㊂关键词㊀生物炭;重金属;有机物;土壤修复中图分类号㊀X53㊀㊀文献标识码㊀A㊀㊀文章编号㊀0517-6611(2024)06-0017-04doi:10.3969/j.issn.0517-6611.2024.06.004㊀㊀㊀㊀㊀开放科学(资源服务)标识码(OSID):ResearchProgressofBiocharforRemediationofHeavyMetalandInorganicPollutantinSoilLIANGHui,LIRu⁃mei,ZHUYu⁃xiaoetal㊀(InstituteofPlantProtection,ShandongAcademyofAgriculturalSciences,Jinan,Shandong250100)Abstract㊀Thepollutionofheavymetalsandorganicmatterinsoilnotonlycauseshugeeconomiclosses,butalsoseriouslythreatenshumanhealth.Biochariswidelyusedinagriculture,ecologicalrestorationandenvironmentalprotectionbecauseofitswiderangeofrawmaterials,sim⁃plepreparationmethod,largespecificsurfacearea,richsurfacefunctionalgroupsanddevelopedporestructure.Inthispaper,thesourceandpreparationtechnologyofbiochar,theadsorptionmechanismofpollutants,theinfluencingfactorsandtheapplicationstatusofbiocharinsoilheavymetalandorganicpollutionremediationwerereviewed.atthesametime,theresearchfocusofbiocharmaterialsincontaminatedsoilre⁃mediationwasprospected,inordertoprovidereferencefortheapplicationofbiocharinsoilpollutionremediation.Biochariswidelyusedinag⁃riculture,ecologicalrestorationandenvironmentalprotectionbecauseofitswiderangeofrawmaterials,simplepreparationmethod,largespecif⁃icsurfacearea,richsurfacefunctionalgroupsanddevelopedporestructure.Inthispaper,thesourceandpreparationofbiochar,theadsorptionmechanismofpollutants,theinfluencingfactorsandtheapplicationstatusofbiocharinsoilheavymetalandorganicpollutionremediationwerereviewed.Finally,theresearchfocusofbiocharmaterialsincontaminatedsoilremediationwasprospected,inordertoprovidereferencefortheapplicationofbiocharinsoilpollutionremediation.Keywords㊀Biochar;Heavymetal;Organicpollutants;Soilremediation基金项目㊀山东省农业科学院农业科技创新工程项目(CXGC2021B13)㊂作者简介㊀梁慧(1984 ),女,山东泰安人,助理研究员,博士,从事污染修复与农产品安全研究㊂∗通信作者,副研究员,从事农药科学使用与残留检测㊁作物病虫草害综合防控研究㊂收稿日期㊀2023-04-24㊀㊀随着现代工农业生产的快速发展,大量的无机㊁有机类污染物进入土壤环境中㊂根据2014年公布的全国土壤污染状况调查[1],受无机(镉㊁砷㊁铅等)和有机物(滴滴涕㊁多环芳烃等)污染的耕地面积约占全国耕地总面积的1/5,直接导致了严重的粮食污染与减产,造成了巨大的经济损失㊂重金属㊁农药㊁抗生素及多环芳烃是无机和有机类污染物的典型代表,来源广泛且能在土壤中长期存在㊂由于常具有致突变㊁致畸㊁致癌效应和较高的生物累积性,这些土壤污染物的扩散不仅会破坏生态平衡㊁污染环境,还可以通过食物链途径危害人体健康㊂因此,重金属和有机物污染土壤的修复引起了众多研究者的关注㊂土壤中施用生物炭能够改善土壤环境,降低环境风险,并能提高粮食产量,因而生物炭技术受到广泛关注㊂生物炭原料来源丰富,制备工艺相对简单,具有比表面积大㊁含氧官能团丰富㊁孔隙结构发达㊁导电性良好等特点[2-3],可作为一种经济高效的吸附剂用于治理土壤中的无机和有机污染物㊂该研究对生物炭的来源与制备工艺㊁与土壤中重金属和有机污染物的作用机理进行了综述,总结了生物炭在土壤重金属和有机物污染修复中的应用现状,为生物炭在土壤污染修复中的应用提供参考㊂1㊀生物炭的来源及制备工艺生物炭通常由生物质在缺氧或限氧情况下,经高温热解产生,是一类多孔㊁稳定㊁芳香度高㊁富含碳素的固态物质[4]㊂由于其具有较高的化学稳定性㊁优异的吸附能力和良好的环境相容性等特点,被视为一种性能优良的土壤污染修复材料[5]㊂生物炭来源广泛,根据原料来源不同,主要有植物源生物炭(木头㊁树叶㊁秸秆㊁稻壳等生物炭)㊁动物源生物炭(动物粪便生物炭)和污泥生物炭㊂研究发现,原料来源㊁制备条件对生物炭的理化性质及吸附能力影响显著㊂一般来说,植物源生物炭的比表面积更大,吸附性能和重金属固定性能更高,而动物粪便生物炭含有更多的钙㊁磷㊁钾等微量元素[6]㊂除高温热解外,生物炭还可由水热法碳化制得㊂水热碳化是在相对较高(2 10MPa)的压力下,将生物质在热水(180 280ħ)中转化为生物炭的方法㊂与热解生物炭相比,水热生物炭表面含有更多的含氧官能团和阳离子交换量,对土壤污染物具有更好的吸附性能[7]㊂2㊀生物炭修复土壤污染的机理2.1㊀生物炭修复重金属污染土壤的机理㊀生物炭孔隙结构发达,比表面积大,阳离子交换量高,并含有丰富的含氧基团[8],对重金属污染土壤有良好的修复效果㊂大量研究表明,生物炭对重金属污染土壤的修复机理较为复杂,主要通过物理吸附㊁静电吸引㊁离子交换㊁表面络合㊁共沉淀等多种途径稳定重金属,实现土壤中重金属的钝化[9]㊂安徽农业科学,J.AnhuiAgric.Sci.2024,52(6):17-20㊀㊀㊀物理吸附主要是通过范德华力将重金属吸附在生物炭表面或分散进孔隙中,因此生物炭的吸附能力受其孔隙结构和比表面积制约㊂原料来源㊁制备工艺对生物炭的孔隙结构和比表面积有着重要的影响㊂Nzediegwu等[10]研究表明,500ħ下热解,秸秆生物炭的比表面积为3.2m2/g,动物粪便生物炭为9.7m2/g,而锯末生物炭可达43.0m2/g;并且,生物炭表面的官能团丰度也随着热解温度的升高而降低㊂Cao等[11]研究了不同热解温度下制备的牛粪生物炭,发现生物炭的比表面积随热解温度的升高而增大,在高温下热解制得的生物炭比低温时的微孔数量和比表面积都要大得多,而在低温生物炭却含有更多的含氧官能团,这与Nzediegwu等[10]的研究发现一致㊂Zhang等[12]测试了不同热解温度生物炭对Pb的固定能力,发现700ħ制得的生物炭是400ħ的9倍㊂生物炭表面所带电荷与带相反电荷的重金属离子之间的静电吸引是生物炭固定重金属的另一重要机制㊂静电吸引机理主要依赖于生物炭的zeta电位和土壤pH,生物炭的zeta电位通常为负值,表明生物炭表明带负电荷,因此容易与带正电荷的重金属离子(Hg2+㊁Pb2+㊁Cd2+㊁Cr3+等)发生静电吸附;然而土壤pH较低易引起官能团质子化而致使生物炭带正电,此时生物炭对阴离子具有较强的静电引力,如HAsO2-4㊁Cr2O2-7和Sb(OH)-6等更容易被吸附[13]㊂生物炭表面的离子与含相同电荷的重金属离子进行交换从而固定重金属的过程即为离子交换㊂离子交换能力与生物炭表面官能团的性质㊁离子半径及带电性质紧密相关[14]㊂研究表明,采用枣籽生物炭吸附Cu(Ⅱ)和Ni(Ⅱ),离子交换可占Cu(Ⅱ)㊁Ni(Ⅱ)总吸附量的69%和72%,同时同样电荷量的Na+㊁K+㊁Ca2+和Mg2+被释放出来[15]㊂周雅兰等[16]在污泥生物炭对Cd(Ⅱ)的吸附研究中,发现溶液中Na+㊁K+㊁Ca2+和Mg2+浓度随Cd(Ⅱ)初始质量浓度的增加而增加,说明Cd(Ⅱ)的去除是通过离子交换实现的㊂生物炭表面的羟基㊁羰基㊁羧基等含氧基团可与土壤中的重金属离子发生络合作用,形成金属配合物㊂Wang等[17]研究发现,在吸附Cr(Ⅵ)后玉米秸秆生物炭的C―C/C―H㊁C―O―C及O=C―O等键含量发生了不同程度的改变,说明表面络合对Cr(Ⅵ)的吸附起着重要的作用㊂同样的,莫官海等[18]在去除U(Ⅵ)时,吸附后的生物炭羟基㊁羧基等基团出现峰位迁移,验证了生物炭表面的含氧基团与重金属发生了络合反应㊂生物炭中的CO2-3㊁PO3-4㊁SO2-4㊁OH-等矿物组分易与重金属阳离子结合形成不溶于水的沉淀物,促进重金属的吸附和固定[19]㊂例如,稻秆生物炭中CO2-3的C2O2-4和可与Pb分别形成Pb3(CO3)2(OH)2和PbC2O4沉淀,是固定Pb的主要机制[20]㊂研究发现,生物炭表面的酚羟基也能够促进重金属形成共沉淀,以提高重金属的固定效率[21]㊂2.2㊀生物炭修复有机物污染土壤的机理㊀土壤中的有机污染物主要有农药㊁抗生素和多环芳烃等,生物炭主要通过静电吸引㊁孔隙填充㊁π-π相互作用㊁分配作用和氢键等途径去除土壤中有机污染物[22]㊂与吸附重金属离子类似,孔隙结构㊁比表面积和表面官能团也是影响生物炭对有机污染物吸附的重要因素㊂研究表明,增大比表面积㊁提高含氧基团的丰度后,稻壳生物炭对四环素的吸附量提升了1倍,且主要是π-π相互作用增强引起的[23];而提高污泥生物炭的孔隙率,能够有效降低空间位阻效应,增强孔隙填充作用从而促进对四环素的吸附[24]㊂Zheng等[25]认为,质子化作用能够有效增强有机污染物与生物炭表面负电荷的静电吸引,因此生物炭经酸处理改性后,对莠去津的吸附能力得到显著提升㊂低温热解制备的生物炭对有机污染物的吸附多是分配作用,而高温热解生物炭则是表面静电吸附和分配作用共同作用[26]㊂Chen等[27]探讨了多环芳烃在松叶生物炭上的吸附机理,当热解温度较低时,生物炭中无定形的有机质含量丰富,对多环芳烃的吸附以分配作用为主;当热解温度升高,生物炭中芳香碳结构增多,表面静电吸附起主导作用㊂氢键是指氢原子与电负性大的原子之间以共价键结合,低温热解生物炭或水热生物炭表面含有较多的极性官能团,易与含极性官能团的有机污染物形成氢键,一般来说,生物炭表面的羟基中的氢为供体,有机物氮和氧为受体[28]㊂Tan等[29]通过改性增加玉米秸秆生物炭表面的含氧官能团,阿特拉津与生物炭之间的π-π相互作用和H键作用得到增强,因而提升了对阿特拉津的吸附能力㊂除了吸附土壤污染物外,生物炭的应用还可显著改善土壤质量㊁提高土壤肥力和持水能力,同时有利于提升土壤微生物的种群数量和丰度,促进微生物对有机污染物的降解[30]㊂3㊀生物炭在修复土壤污染领域中的应用现状生物炭用于修复土壤重金属污染已开展了大量的研究和应用㊂Bian等[31]将小麦秸秆生物炭施用在水稻田中,有效地固定了重金属镉,减少了水稻植株中的Cd含量,因而水稻呈现更好的生长态势㊂Moore等[32]开展鸡粪生物炭固定铜离子的田间试验,发现土壤中施加5%的鸡粪生物炭时,90%的可交换态铜能够得到有效固定;同时,该课题组研究发现,当生物炭的施用量为20t/hm2时,土壤中Cd含量最多可降低89%,而用量为10t/hm2时最多只降低了62%㊂因此,重金属的固定效果与生物炭的投加量有关㊂Gao等[33]制备的玉米秸秆生物炭可使土壤中可提取态Cd含量降低91%,并有效缓解了Cd对植物生长的胁迫;对浸出前后生物炭的分析表明,钝化机理以离子交换和表面络合为主㊂Guo等[34]提出,花生壳生物炭的施用使土壤有机质含量得到显著提升,土壤碱解氮(N)㊁速效磷(P)㊁速效钾(K)含量明显提高;同时,土壤中脲酶㊁磷酸酶㊁过氧化氢酶㊁蔗糖酶的活性,以及土壤中细菌㊁放线菌和真菌的数量都有明显的增加;研究还发现,施用花生壳生物炭降低了土壤中Cr的有效性,与对照组相比,不同处理下的根部和地上部分的Cr含量均有所降低㊂目前,生物炭用于修复土壤重金属污染的研究相对较81㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2024年多,而用于修复土壤有机物污染的研究相对较少,但呈逐年递增的趋势㊂Deng等[35]采用热解法制得木薯生物炭,并开展对除草剂阿特拉津的吸附研究㊂结果表明,生物炭对阿特拉津的吸附量随着投加量增大而增大,当投加量增加到5%时,阿特拉津在木薯生物炭上的吸附量高达246mg/kg㊂因此,生物炭对土壤中除草剂有显著的固定作用,能够有效减少阿特拉津在土壤中的淋溶和迁移,进而降低除草剂在土壤中的浓度,修复土壤污染㊂同样,Spokas等[36]的研究也证明,当土壤中的锯末生物炭含量达到5%时,可明显增加对乙草胺等除草剂的吸附,减少其淋溶和径流损失;同时研究结果还表明,锯末生物炭具有抗微生物降解的能力,是一种有效的固碳方式㊂李桂荣等[37]开展生物炭与黑麦草联合修复Cd-芘复合污染土壤研究,发现当黑麦草种植密度合适,并投加适量的生物炭时,能够有效降低土壤中Cd和芘的含量,同时,土壤微生物群落的丰富度也得到显著提升㊂随着研究的深入,如吸附位点少㊁吸附能力有限等不足束缚了生物炭的进一步应用;但经过物理㊁化学或生物方法改性后,其孔隙体积㊁比表面积㊁表面官能团的种类和数量以及理化性质都有较大的改变㊂大量研究表明,改性后的生物炭具有更强的吸附能力和土壤修复能力㊂表1中列举了部分不同改性方法处理后的生物炭对土壤污染物的吸附情况,由表1可知,改性生物炭的吸附能力和土壤修能力得到极大的提升,但提升效果随污染物和改性方式的不同而有所差异㊂表1㊀不同改性方法生物炭对土壤污染物的吸附Table1㊀Adsorptionofsoilpollutantsbybiocharwithdifferentmodificationmethods序号No.原料Rawmaterial热解温度Pyrolysistemperatureʊħ改性方法Modificationmethod污染物Pollutant效果Effect参考文献Reference1松木600氯化锰Pb2+吸附速率提高18倍[38]2坚果壳600氧化铁Cd2+吸附量增加10倍[39]3玉米秸秆500硫化钠Hg2+吸附能力增强76.95%[29]4稻壳500聚乙烯亚胺Cr6+吸附能力增强18倍[40]5木屑500硫酸+硝酸Cu2+吸附能力增强8倍[41]6稻壳450 500甲醇四环素吸附量增加1倍[23]7玉米秸秆500氢氧化钾阿特拉津吸附能力增强46.39%[29]8稻壳500磁性氧化铁菲吸附量可达97.6mg/g[42]9坚果壳500硝酸盐菲吸附能力增强1.9倍[43]4㊀结论综述了生物炭的来源与制备工艺,总结了生物炭对土壤中重金属㊁有机物等污染物的去除机理,以及生物炭在土壤污染修复中的应用现状㊂生物炭在土壤修复中的应用,既可固定土壤中的污染物,又可提升土壤微生物的种群数量和丰度,改善土壤质量㊂总体来看,生物炭在土壤污染修复中发挥着越来越重要的作用㊂首先,生物炭用于土壤污染修复的研究大多处于实验室阶段,实际应用还有待开展;其次,多数研究局限于单一污染物的修复,对土壤复合污染的情况研究较少,机理难以明确;最后,生物炭的长期影响和负面影响也需受到重视㊂参考文献[1]环境保护部,国土资源部.全国土壤污染状况调查公报[J].国土资源通讯,2014(8):26-29.[2]YAASHIKAAPR,KUMARPS,VARJANIS,etal.Acriticalreviewonthebiocharproductiontechniques,characterization,stabilityandapplicationsforcircularbioeconomy[J].Biotechnologyreports,2020,28:1-15.[3]LIUZG,ZHANGFS.Removalofleadfromwaterusingbiocharspreparedfromhydrothermalliquefactionofbiomass[J].Journalofhazardousmateri⁃als,2009,167(1/2/3):933-939.[4]HAMIDY,TANGL,SOHAILMI,etal.Anexplanationofsoilamendmentstoreducecadmiumphytoavailabilityandtransfertofoodchain[J].Scienceofthetotalenvironment,2019,660:80-96.[5]WEBERK,QUICKERP.Propertiesofbiochar[J].Fuel,2018,217:240-261.[6]宗大鹏,田稳,李韦钰,等.农林废弃物生物炭钝化典型土壤重金属的机制研究进展[J].生态毒理学报,2023,18(1):232-245.[7]HUFFMD,KUMARS,LEEJW.Comparativeanalysisofpinewood,peanutshell,andbamboobiomassderivedbiocharsproducedviahydrothermalconversionandpyrolysis[J].Journalofenvironmentalmanagement,2014,146:303-308.[8]MANDALS,SARKARB,BOLANN,etal.Enhancementofchromatere⁃ductioninsoilsbysurfacemodifiedbiochar[J].Journalofenvironmentalmanagement,2017,186:277-284.[9]QINP,WANGHL,YANGX,etal.Bamboo⁃andpig⁃derivedbiocharsre⁃duceleachinglossesofdibutylphthalate,cadmium,andleadfromco⁃con⁃taminatedsoils[J].Chemosphere,2018,198:450-459.[10]NZEDIEGWUC,ARSHADM,ULAHA,etal.Fuel,thermalandsurfacepropertiesofmicrowave⁃pyrolyzedbiocharsdependonfeedstocktypeandpyrolysistemperature[J].Bioresourcetechnology,2021,320:1-11.[11]CAOXD,HARRISW.Propertiesofdairy⁃manure⁃derivedbiocharperti⁃nenttoitspotentialuseinremediation[J].Bioresourcetechnology,2010,101(14):5222-5228.[12]ZHANGJZ,HOUDY,SHENZT,etal.Effectsofexcessiveimpregna⁃tion,magnesiumcontent,andpyrolysistemperatureonMgO⁃coatedwater⁃melonrindbiocharanditsleadremovalcapacity[J].Environmentalre⁃search,2020,183:1-7.[13]LYUP,LILF,HUANGXY,etal.Pre⁃magneticbamboobiocharcross⁃linkedCaMgAllayereddouble⁃hydroxidecomposite:High⁃efficiencyre⁃movalofAs(III)andCd(II)fromaqueoussolutionsandinsightintothemechanismofsimultaneouspurification[J].Scienceofthetotalenviron⁃ment,2022,823:1-14.[14]黄安香,杨定云,杨守禄,等.改性生物炭对土壤重金属污染修复研究进展[J].化工进展,2020,39(12):5266-5274.[15]MAHDIZ,YUQJ,ELHANANDEHA.Investigationofthekineticsandmechanismsofnickelandcopperionsadsorptionfromaqueoussolutionsbydateseedderivedbiochar[J].Journalofenvironmentalchemicalengi⁃neering,2018,6(1):1171-1181.[16]周雅兰,周冰.Fe浸渍污泥生物炭对含Cd(Ⅱ)废水的吸附性能研究[J].工业水处理,2021,41(5):80-85.9152卷6期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀梁慧等㊀生物炭在土壤重金属和有机物污染修复中的应用研究进展[17]WANGK,SUNYB,TANGJC,etal.AqueousCr(VI)removalbyano⁃velballmilledFeO-biocharcomposite:Roleofbiocharelectrontransfercapacityunderhighpyrolysistemperature[J].Chemosphere,2020,241:1-11.[18]莫官海,谢水波,曾涛涛,等.污泥基生物炭处理酸性含U(Ⅵ)废水的效能与机理[J].化工学报,2020,71(5):2352-2362.[19]YANGX,ZHANGSQ,JUMT,etal.Preparationandmodificationofbio⁃charmaterialsandtheirapplicationinsoilremediation[J].Appliedsci⁃ences,2019,9(7):1-25.[20]TANZX,LINCSK,JIXY,etal.Returningbiochartofields:Areview[J].Appliedsoilecology,2017,116:1-11.[21]EL⁃SHAFEYEI.RemovalofZn(Ⅱ)andHg(Ⅱ)fromaqueoussolutiononacarbonaceoussorbentchemicallypreparedfromricehusk[J].Journalofhazardousmaterials,2010,175(1/2/3):319-327.[22]ANAEJ,AHMADN,KUMARV,etal.Recentadvancesinbiocharengi⁃neeringforsoilcontaminatedwithcomplexchemicalmixtures:Remedia⁃tionstrategiesandfutureperspectives[J].Scienceofthetotalenviron⁃ment,2021,767:1-25.[23]JINGXR,WANGYY,LIUWJ,etal.Enhancedadsorptionperformanceoftetracyclineinaqueoussolutionsbymethanol⁃modifiedbiochar[J].Chemicalengineeringjournal,2014,248:168-174.[24]TANGL,YUJF,PANGY,etal.Sustainableefficientadsorbent:Alkali-acidmodifiedmagneticbiocharderivedfromsewagesludgeforaqueousorganiccontaminantremoval[J].Chemicalengineeringjournal,2018,336:160-169.[25]ZHENGW,GUOMX,CHOWT,etal.Sorptionpropertiesofgreenwastebiocharfortwotriazinepesticides[J].Journalofhazardousmaterials,2010,181(1/2/3):121-126.[26]PIGNATELLOJJ,XINGBS.Mechanismsofslowsorptionoforganicchemicalstonaturalparticles[J].Environmentalscience&technology,1996,30(1):1-11.[27]CHENBL,YUANMX.Enhancedsorptionofpolycyclicaromatichydro⁃carbonsbysoilamendedwithbiochar[J].Journalofsoilsandsediments,2011,11(1):62-71.[28]KEERTHANANS,RAJAPAKSHASM,TRAKALL,etal.Caffeineremov⁃albyGliricidiasepiumbiochar:Influenceofpyrolysistemperatureandphysicochemicalproperties[J].Environmentalresearch,2020,189:1-12.[29]TANGC,SUNWL,XUYR,etal.Sorptionofmercury(Ⅱ)andatrazinebybiochar,modifiedbiocharsandbiocharbasedactivatedcarboninaque⁃oussolution[J].Bioresourcetechnology,2016,211:727-735.[30]ZHANGGX,GUOXF,ZHUYE,etal.Theeffectsofdifferentbiocharsonmicrobialquantity,microbialcommunityshift,enzymeactivity,andbio⁃degradationofpolycyclicaromatichydrocarbonsinsoil[J].Geoderma,2018,328:100-108.[31]BIANRJ,JOSEPHS,CUILQ,etal.Athree⁃yearexperimentconfirmscontinuousimmobilizationofcadmiumandleadincontaminatedpaddyfieldwithbiocharamendment[J].Journalofhazardousmaterials,2014,272:121-128.[32]MOOREF,GONZÁLEZME,KHANN,etal.Copperimmobilizationbybiocharandmicrobialcommunityabundanceinmetal⁃contaminatedsoils[J].Scienceofthetotalenvironment,2018,616/617:960-969.[33]GAOX,PENGYT,ZHOUYY,etal.Effectsofmagnesiumferritebiocharonthecadmiumpassivationinacidicsoilandbioavailabilityforpackoi(BrassicachinensisL.)[J].Journalofenvironmentalmanagement,2019,251:1-9.[34]GUOXF,JIQ,RIZWANM,etal.EffectsofbiocharandfoliarapplicationofseleniumontheuptakeandsubcellulardistributionofchromiuminIp⁃omoeaaquaticainchromium⁃pollutedsoils[J].Ecotoxicologyandenviron⁃mentalsafety,2020,206:1-12.[35]DENGH,FENGD,HEJX,etal.Influenceofbiocharamendmentstosoilonthemobilityofatrazineusingsorption⁃desorptionandsoilthin⁃layerchromatography[J].Ecologicalengineering,2017,99:381-390.[36]SPOKASKA,KOSKINENWC,BAKERJM,etal.Impactsofwoodchipbiocharadditionsongreenhousegasproductionandsorption/degradationoftwoherbicidesinaMinnesotasoil[J].Chemosphere,2009,77(4):574-581.[37]李桂荣,陈富凯,贾胜勇,等.茄子秆生物炭联合黑麦草对土壤镉-芘复合污染修复的影响[J].河南农业科学,2020,49(9):51-61.[38]WANGL,WANGYJ,MAF,etal.Mechanismsandreutilizationofmodi⁃fiedbiocharusedforremovalofheavymetalsfromwastewater:Areview[J].Scienceofthetotalenvironment,2019,668:1298-1309.[39]TRAKALL,VESELSKÁV,ŠAFAR㊅ÍKI,etal.Leadandcadmiumsorp⁃tionmechanismsonmagneticallymodifiedbiochars[J].Bioresourcetech⁃nology,2016,203:318-324.[40]MAY,LIUWJ,ZHANGN,etal.Polyethyleniminemodifiedbiocharad⁃sorbentforhexavalentchromiumremovalfromtheaqueoussolution[J].Bioresourcetechnology,2014,169:403-408.[41]YANGGX,JIANGH.Aminomodificationofbiocharforenhancedad⁃sorptionofcopperionsfromsyntheticwastewater[J].Waterresearch,2014,48:396-405.[42]GUOW,WANGSJ,WANGJK,etal.Sorptiveremovalofphenanthrenefromaqueoussolutionsusingmagneticandnon⁃magneticricehusk⁃de⁃rivedbiochars[J].Royalsocietyopenscience,2018,5(5):1-11.[43]YANGXN,CHENZF,WUQH,etal.Enhancedphenanthrenedegrada⁃tioninriversedimentsusingacombinationofbiocharandnitrate[J].Sci⁃enceofthetotalenvironment,2018,619/620:600-605.02㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2024年。
山西农经//2020年10期DOI:10.16675/14-1065/f.2020.10.041浅谈生物炭修复重金属污染土壤的机理与注意事项□熊竹楠摘要:在我国工业化高速发展进程下,土壤重金属污染已成为当前不容小觑的生态环境问题。
由于生物炭具有较高的孔隙率、较大的比表面积、较强的阳离子交换能力和高度的芳香性等性质,在重金属污染土壤修复方面有巨大的优势和应用潜力,近年来成为土壤污染治理和修复方面的研究热点。
但同时,生物炭的施用也存在着一些潜在风险和不足,人们对此还缺乏全面系统的了解,相关研究还应加强并继续深入。
关键词:生物炭;土壤污染;重金属;土壤修复;风险文章编号:1004-7026(2020)10-0074-02中国图书分类号:X53文献标志码:A(河北农业大学资源与环境科学学院河北保定071000)近年来,随着工、矿业和农业活动日益加剧,重金属与农药残留形成的有机污染物积累于土壤中,引发了许多土壤环境污染问题。
我国最新发布的《全国土壤污染状况调查公报》显示,全国土壤环境状况总体不容乐观,耕地土壤环境质量堪忧。
在本次调查的面积约630万km2的土壤中,总污染点位超标率高达16.1%且以无机污染物为主,镉、汞、砷、铜、铅、铬、锌、镍8种无机污染物点位超标率均较高[1]。
由此可见,土壤重金属污染正严重威胁着我国农产品质量与粮食安全,污染土壤修复工作迫在眉睫。
国内外相关专家和学者实践和研究表明,生物炭能在一定程度上缓解土壤重金属污染。
生物炭是一种将动、植物有机残体在低氧或缺氧条件下,高温干馏而热解炭化形成的一种高度芳香化的难熔性固态土壤改良剂和污染场地修复材料。
向土壤中施加生物炭,不仅能有效吸附污染土壤中的重金属和有机污染物,还能增加土壤肥力以及保水性能,提高土壤的养分有效性和保肥能力等,从而提高农作物产量。
总之,生物炭对于重金属污染的修复主要通过直接缓解植物重金属胁迫,以及改善植物生长的土壤条件的间接方式来发挥作用[2]。
Vol. 33,No. 1Mar. 2021第33卷第1期2021年3月河南工程学院学报(自然科学版)JOURNAL OF HENAN UNIVERSITY OF ENGINEERING 生物炭联合黑麦草修复镉污染土壤研究刘 蕾1,王淑晴1,黄子玲2,唐一凡1,李亚林1(1.河南工程学院环境与生物工程学院,河南郑州451191; 2.郑州轻工业大学材料与化学工程学院,河南郑州450002)摘 要:以小麦秸秆和玉米秸秆为原料制备生物炭,采用生物炭和黑麦草联合对镉质量分数为30 mg/kg 的污染土壤进行修复,修复过程中研究了 土壤的理化性质和黑麦草植株生长情况。
结果表明:当尬埠:m**土展:土你为1: 0. 01:0, 01时, 修复50 d 后土壤中的镉质量分数可以降至18.2 mg/kg;生物炭的掺加显著增加了土壤中的有机质,有利于黑麦草的生长;生物炭的加入还可以提升镉在黑麦草中的吸收效果。
关键词:土壤修复;生物炭;黑麦草;镉中图分类号:X53 文献标志码:A 文章编号= 1674 -330X(2021)01 -0043 -05Remediation of cadmium contaminated soil basedon biochar combined with ryegrassLIU Lei 1, WANG Shuqing 1, HUANG Ziling 2, TANG Yifan 1, LI Yalin 1(1. College of Environment and Biological Engineering , Henan University of Engineering ,Zhengzhou 451191, China ; 2. School of Materials and Chemical Engineering , Zhengzhou Universityof Light Industry, Zhengzhou 450002, China)Abstract : After the biocliar was prepared from wheat straw and com straw , the contaminated soil with cadmium of 30 mg/kg was treated by combined with biochar and ryegrass , studying the physiochemical properties of the soil and the plant growth of ryegrassing remediation. The iesult shows that when the mass ratio of soil and biochar of : m com biocliar : m wheat biochar was 1: 0. 01: 0. 01, the Cdcontent in the soil could be reduced to 18.2 mg/kg after 50 cl of remediation, and tlie content of organic matter in soil increasecl signifi cantly with the addition of biochar, which was beneficial to promoting the growth of ryegrass. At the same time, the addition of biochar could help improve tlie absoiption effect of Cd in ryegrass.Keywords : soil remediation ; biochar ; ryegrass ; cadmium近年来,随着经济的发展,我国土壤重金属污染问题十分严重,工矿业、农业等人为活动及十壤环境背 景值高是造成土壤污染的主要原因。
农田土壤镉污染现状与治理方法研究进展一、本文概述随着工业化和城市化的快速发展,重金属污染问题日益严重,其中镉污染问题尤为突出。
镉是一种有毒的重金属元素,对环境和生物体具有极大的危害。
农田土壤作为人类食物生产的重要基地,其镉污染问题不仅影响农作物的产量和质量,还通过食物链对人类健康构成潜在威胁。
因此,研究农田土壤镉污染现状与治理方法具有重要意义。
本文旨在全面综述农田土壤镉污染的现状、来源、危害以及治理方法的研究进展。
通过收集和分析相关文献和数据,阐述农田土壤镉污染的现状和趋势,揭示镉污染的主要来源和危害。
重点介绍现有的农田土壤镉污染治理方法,包括物理、化学和生物修复技术等,并分析其优缺点和适用条件。
展望农田土壤镉污染治理的未来研究方向和发展趋势,为农田土壤镉污染的防治提供科学依据和技术支持。
通过本文的综述,期望能够为相关部门和决策者提供决策参考,推动农田土壤镉污染治理工作的深入开展,为保障农产品质量安全和人类健康做出贡献。
二、农田土壤镉污染现状农田土壤镉污染问题日益严重,成为全球性的环境问题。
镉是一种有毒的重金属元素,长期存在于土壤中会对农作物的生长和品质产生负面影响,进而威胁人类的食物安全和健康。
在全球范围内,工业排放、城市污水灌溉和化肥农药的滥用是农田土壤镉污染的主要来源。
中国作为世界上最大的农业国之一,农田土壤镉污染问题尤为突出。
在过去的几十年里,随着工业化和城市化的快速发展,大量的工业废水、废气未经处理就直接排放,导致农田土壤受到严重的镉污染。
农业活动中的化肥和农药过量使用,也加剧了土壤镉污染的程度。
据相关统计数据显示,中国部分地区农田土壤镉含量已超过国家标准的数倍甚至数十倍,严重制约了农业生产和生态环境的质量。
农田土壤镉污染不仅影响农作物的产量和品质,还会通过食物链进入人体,对人类的健康构成潜在威胁。
镉在人体内积累过多会导致肾脏、骨骼和消化系统等多个器官受损,甚至引发癌症等严重疾病。
因此,对农田土壤镉污染进行有效的治理和修复,对于保障农业生产和人类健康具有重要意义。
生物炭-超富集植物联合修复镉污染土壤的研究作者:司马小峰孟玉吴东彪来源:《安徽农业科学》2021年第06期摘要 [目的]探究生物炭与超富集植物联合修复镉污染土壤的效果。
[方法]采用盆栽试验模拟镉污染土壤,构建生物炭-超富集植物联合修复试验系统,考察不同生物炭添加量和植物种类对植物重金属吸收与土壤中重金属形态的影响,并通过复种农作物评价修复效果。
[结果]水稻秸秆生物炭添加比例为1%时,能显著提高超富集植物对镉的富集作用,且与黑龙葵联合时对镉修复效果最好,对镉的富集量比黑龙葵单独修复提高了26.74%,且修复后复种作物镉含量也有显著降低。
[结论]生物炭和超富集植物联合可以用于镉污染土壤的修复,为该技术的工程应用提供了科学依据和理论支持。
关键词镉;联合修复;生物炭;超富集植物;土壤Abstract [Objective]The research aimed to explore the combined remediation of cadmium contaminated soil by biochar and hyperaccumulators.[Method]A pot experiment was conducted to simulate cadmium-contaminated soil,and a combined biochar/hyperaccumulators remediation system was established to investigate the effects of plant and biochar on heavy metal uptake by plant and heavy metal speciation in soil,and the remediation effect was evaluated by multiple cropping crops.[Result]When the proportion of rice straw biochar was 1%,the cadmium accumulation of plants was significantly improved,and the recovery effect was the best when combined with nightshade,which was 26.74% higher than that of nightshade alone.In addition,the cadmium content in the replanted crops was significantly reduced.[Conclusion]The biochar and hyperaccumulators can be used for remediation of cadmium contaminated soil,providing scientific references and theoretical support for the engineering application of this technology.Key words Cadmium;Combined remediation;Biochar;Hyperaccumulators;Soil随着我国社会经济的快速发展,有色金属开采、选矿及冶炼过程中产生的废石、废渣、污水导致土壤镉(Cd)污染严重。
据土壤污染调查公报显示,我国镉污染超标率已高达7%[1],而Cd是毒性最强的重金属之一[2],如何解决土壤Cd污染已成为突出的环境问题。
生物炭是生物质在缺氧环境中高温碳化得到的固体物质[3],是一种孔隙结构发达、含碳量高的碳化物质,具有较大的比表面积、孔容量和丰富的表面含氧官能团,并且在环境中稳定存在[4]。
这些特性使其成为一种廉价有效的土壤修复剂,并引起国内外学者的广泛关注[5-8],他们研究了其理化特性(原材料种类、热解温度、生物炭添加量)对土壤Cd修复的影响,研究发现,生物炭能在一定程度上降低Cd的生物有效性,但是不能固定所有的重金属,所以仍然有一部分Cd会进入农作物内,降低农作物的品质[9]。
孟令阳等[10]研究发现,草炭、活性炭和风化煤可以有效降低突发性Cd污染土壤中有效态Cd的含量,却增强了已被污染的土壤中Cd的活性,导致玉米中Cd的含量也增加。
另外,生物炭修复处理后,Cd仍保留在土壤中,随着时间的推移有更新活化的可能,存在进入植物体和渗透到地下水的风险[11]。
超富集植物修复具有土壤微生態影响小、治理成本低、原位提取等特点[12-13],也在国内外得到一定的应用,但是却受到见效周期长、效果不显著等条件的限制[14]。
利用超富集植物进一步提取生物炭修复后土壤中剩余生物可利用的Cd却鲜有报道。
因此,该研究通过室内盆栽试验,研究生物炭和不同超富集植物联合使用对土壤中Cd的修复效果,以期为Cd污染土壤的修复应用提供科学依据和技术支撑。
1 材料与方法1.1 材料1.1.1 试验材料。
土壤取自合肥市肥东县巢湖附近农田,取样深度为耕层10~20 cm,带回实验室的土壤剔除杂物、自然风干后过60目筛备用,实验室分析得到土壤Cd背景值为0.07 mg/kg。
1.1.2 样品制备。
生物炭在实验室制备,原料稻秸秆取自安徽六安农田,纯水洗净,105 ℃烘干至恒重,粉碎过筛(120目)后在 600 ℃热解2 h,置于密封袋中保存备用。
通过实验室分析,生物炭的pH为10.70,Cd含量为0.28 μg/g,Cd最大吸附量为250.00 mg/g。
1.1.3 供试植物。
黑龙葵(Solanum nigrum L.)、商陆(Phytolacca acinosa Roxb.)种子取自山东潍坊,生菜(Var.ramosa Hort.)种子购买于安徽当地种子公司。
1.2 试验设计1.2.1 土培试验。
将400 g过筛的土壤装入试验盆(直径10 cm,高8.5 cm),加入营养元素使土壤内N、P、K含量分别为0.18、0.09和0.11 g/kg,混合均匀后稳定7 d。
以Cd2+溶液形式向试验盆中加入使土壤Cd含量为2.0 mg/kg,充分混匀稳定7 d后加入生物炭,添加量分别为土壤质量的0%、1%、3%和5%,试验组分别命名为0%RC、1%RC、3%RC、5%RC,数字表示生物炭浓度,RC表示稻秸秆生物炭,对照组(无生物炭及Cd添加)命名为CK。
生物炭添加完成后,各组土壤的pH分别为CK 7.16、0%RC 7.06、1%RC 7.92、3%RC 8.44、5%RC 8.78。
共设10个试验组,分别为黑龙葵组(CK、0%RC、1%RC、3%RC、5%RC)、商陆组(CK、0%RC、1%RC、3%RC、5%RC),每组试验设2个重复。
将消毒后(种子于10%H2O2溶液中消毒10 min,用纯水润洗数遍后浸泡2 h)的植物种子播种于准备好的试验盆内,每盆10粒种子,发芽后每盆定苗3株。
随后,所有试验盆随机置于人工气候箱内(光照14 h,昼夜温度分别为25、20 ℃,相对湿度65%)。
试验过程中定时定量浇水,并测量植物株高。
土培试验持续60 d,试验结束后收割地上部分植株,并取少量土壤测定Cd形态。
为方便对比,另外进行一组只添加不同比例生物炭的试验组,相同试验条件完成试验后测定土壤Cd形态。
1.2.2 复种试验。
将土培后的土壤翻松,再播种生菜,每盆10粒种子,发芽后每盆定苗3株,随机置于人工气候箱内,定时定量浇水,1个月后进行收割。
1.3 项目测定与方法1.3.1 生物量。
收割后的植株清水洗净后用吸水纸吸干,称重,即为植株湿重。
然后105 ℃烘干至恒重,再次称重,即为植株干重。
1.3.2 植株镉含量测定。
烘干后的植株样品采用 HNO3/H2O2消解,再通过ICP-MS测定Cd含量。
1.3.3 土壤镉形态测定。
取修复后土壤自然风干至恒重后,磨碎过200目筛,采用Tessier 顺序提取法[15],依次测定Cd的可交换态、碳酸盐态、铁锰氧化态、有机态和残渣态含量。
1.4 统计分析所有的误差均用标准差(SD)表示,试验数据统计分析采用软件 SPSS 13.0,用 one-way ANOVA (analysis of variance,HSD 检验法)进行显著性差异检验,P<0.05 时认为差异显著。
2 结果与分析2.1 植物的生物量黑龙葵和商陆收割时的生长状况见图1,黑龙葵和商陆生长情况均较好,试验结束时植物株高见图2,可以发现Cd的存在对黑龙葵和商陆的生长状态没有显著影响。
然而,生物炭的添加对超富集植物的生长有一定影响,图2A显示,生物炭添加量为1%时,黑龙葵株高明显高于空白组和其他添加量试验组(P<0.05)。
图2B显示,生物炭添加量为3%时商陆的生长形势最好,添加量为5%时最差,说明生物炭添加量对商陆的株高影响较大。
植株湿重的结果(图3)与植株生长高度结果几乎一致。
2.2 植物对Cd的富集从植株体内Cd含量的测定结果(图4)可以看出,在Cd污染的土壤中,无生物炭添加时,黑龙葵的Cd吸收量为48.09 mg/kg,高于商陆的Cd吸收量(9.69 mg/kg),结合2种植物的生物量,黑龙葵的生物量也明显高于商陆,表明黑龙葵相对于商陆而言是更理想的Cd污染修复植物。
植物与生物炭联合使用时,生物炭添加量为1%时,黑龙葵体内Cd含量达54.18 mg/kg,相对无生物炭添加组,对Cd的吸收量提高了近13%,随着生物炭添加比例的继续提高,黑龙葵对Cd的吸收量开始降低。
而商陆对Cd的吸收与生物炭的添加量表现为负相关,在添加生物炭后其对Cd的提取能力反而降低了,表明商陆并不适合与生物炭进行联合修复。
从表1可以看出,生物炭添加量为1%时,单株黑龙葵植株干重是0.54 g,吸收Cd总量为29.26 μg;生物炭添加量为3%时,单株商陆植株干重最大(0.52 g),其对Cd的吸收总量仅有3.07 μg,而不添加生物炭时,单株商陆对Cd的吸收总量最高,为3.59 μg。
由此可见,在黑龙葵和商陆2种植物中,黑龙葵不仅生物量大,其对Cd的吸收量也是最高的。
因此,生物炭-黑龙葵联合修复效果优于生物炭-商陆,且生物炭添加量为1%最佳。
2.3 土壤中Cd形態分布植物收割后土壤中Cd形态的分析结果如图5所示。
生物炭对土壤Cd形态的影响如图5a 所示,土壤中Cd可交换态含量随生物炭添加量增加呈下降趋势,添加量为0%、1%、3%和5%时,Cd可交换态含量分别为1.44、1.25、1.13、1.04 mg/kg,而Cd的碳酸盐态、铁锰氧化态、有机结合态和残渣态含量随生物炭添加量增加均有升高的趋势,Cd残渣态含量增加最为明显,添加量为0%、1%、3%、5%时,Cd残渣态含量分别为0.12、0.27、0.30、0.31 mg/kg。