第一单元 分数乘法概念总结
- 格式:doc
- 大小:17.50 KB
- 文档页数:3
第一单元分数乘法
(一)分数乘法的意义
1.分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:5
12×6,表示:6个
5
12
相加是多少,还表示
5
12
的6倍是多少。
2.一个数(小数、分数、整数)乘分数:表示这个数的几分之几是多少。
例如:6×5
12,表示:6的
5
12
是多少。
2 7×
5
12
,表示:
2
7
的
5
12
是多少。
(二)分数乘法的计算法则:
1.整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2.分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
注意:先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)数大小的比较:
一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
分数乘法知识点总结分数乘法是数学中一个基础且重要的概念,在我们日常生活中也经常会用到。
掌握分数乘法的知识点,不仅可以帮助我们解决实际问题,还可以提升我们的逻辑思维能力和数学运算能力。
本文将对分数乘法的一些关键知识点进行总结和讲解。
1. 分数乘法的定义及运算规则分数乘法的定义是:乘法是将两个数相乘得到一个积的运算。
在分数乘法中,我们需要将两个分数相乘,然后简化结果,得到最简分数。
分数乘法的运算规则是:两个分数相乘时,先将两个分数的分子相乘,然后将两个分数的分母相乘,最后将得到的分子和分母组成一个新的分数。
例如,对于分数2/5和3/4的乘法运算:2/5 × 3/4 = (2 × 3)/(5 × 4) = 6/20 = 3/102. 分数乘法的整数乘法推导分数乘法可以通过整数乘法进行推导。
当我们将分数看作是一个整数的比例时,可以用整数乘法来解释分数乘法的概念。
例如,对于分数2/5乘以整数3,我们可以将3看作是3/1,然后将分数乘法转换为整数乘法:2/5 × 3 = (2 × 3)/(5 × 1) = 6/5通过整数乘法的推导,我们可以更好地理解分数乘法的概念,进而灵活运用。
3. 分数乘法的交换律和结合律分数乘法满足交换律和结合律。
交换律表示:对于任意两个分数a和b,a × b = b × a。
结合律表示:对于任意三个分数a、b和c,(a × b) × c = a × (b × c)。
这两个运算规律使得我们在分数乘法中可以更加自由地变换顺序,简化运算。
4. 分数乘法的分子和分母的乘法关系在分数乘法中,分子和分母之间存在一定的乘法关系。
当我们进行分数乘法时,可以将分子和分母分别进行乘法运算,然后组成一个新的分数。
例如,对于分数1/3乘以分数2/5,我们可以将分子和分母分别进行乘法运算:(1 × 2)/(3 × 5) = 2/15这个乘法关系在简化分数时尤为重要。
一、引言在教育教学领域,数学一直是学生们普遍认为比较困难的学科之一。
特别是在小学阶段,学生们对数学的学习经常面临着许多挑战。
分数是小学阶段数学中一个较为抽象和难以理解的概念,而分数乘法更是其中的一个难点。
本文将以人教版六年级数学上册第一单元的分数乘法知识点为中心,深入探讨这一主题,帮助读者更好地理解和掌握相关知识。
二、分数乘法的基本概念分数乘法是指两个分数相乘的运算。
在学习分数乘法时,首先需要掌握分数的基本概念和相关运算规则。
分数是指一个整体被分成若干等分,其中的一份或几份。
在表示分数时,通常用一个分子和一个分母来表示,分子表示被分成的份数,分母表示整体被分成了几等分。
分数乘法的基本规则是将两个分数的分子和分母分别相乘,得到的乘积作为新分数的分子和分母。
在进行分数乘法运算时,需要注意分子、分母的乘法运算,以及乘积的化简。
通常情况下,分数乘法的结果可能是一个不可约分数,需要将其化简为最简形式。
了解分数乘法的基本概念和运算规则是掌握这一知识点的关键。
三、人教版六年级数学上册第一单元分数乘法知识点的具体内容在人教版六年级数学上册第一单元中,分数乘法知识点主要包括以下内容:1. 乘法的定义和基本性质2. 带分数的乘法3. 含有两个因数的分数的乘法4. 含有三个因数的分数的乘法5. 分数的乘法口诀通过学习这些知识点,学生们可以逐步掌握分数乘法的基本运算技巧,并能够灵活运用到实际问题中。
四、对分数乘法知识点的理解与思考在学习分数乘法知识点的过程中,我深刻理解到分数乘法是在掌握了分数的基本概念和运算规则后的延伸应用。
掌握分数乘法不仅可以帮助学生们更好地理解数学知识,还可以培养他们的逻辑思维能力和解决问题的能力。
在解决实际问题中,分数乘法常常与分数除法、加法、减法等运算相结合,需要学生们灵活运用,提高数学解题能力。
五、总结通过本文的探讨,我们对人教版六年级数学上册第一单元的分数乘法知识点有了更全面、深入的理解。
第一单元《分数乘法》知识点归纳一、分数乘法的意义:1:分数与整数相乘:分数乘整数的意义是求几个相同加数的和的简便运算。
2.整数乘分数的意义:整数乘分数的意义是求一个数的几分之几是多少。
3.分数乘分数的意义分数乘分数的意义是求一个分数的几分之几是多少。
二、分数乘法的计算方法:1.分数与整数相乘的计算方法:用分数的分子和整数相乘的积作分子,分母不变。
计算时,应该先约分再计算。
计算结果要约成最简分数。
2. 分数乘分数的计算方法:分子相乘的积做分子,分母相乘的积做分母,能约分的可以先约分。
(结果要求是最简分数。
)带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3.分数与小数相乘的计算方法分数乘小数,可统一成分数乘分数,按照分数乘分数的方法计算;也可以统一成小数乘小数,按照小数乘小数的方法计算。
当分数不能化成有限小数时,则最好统一成分数乘分数三、乘法中乘数与积的大小关系的规律:一个数(0除外)乘小于1(真分数)(0除外)的数,积小于这个数。
一个数(0除外)乘1,积等于这个数。
一个数(0除外)乘大于1(带分数)的数,积大于这个数。
四、分数混合运算的运算顺序与整数的运算顺序相同:1、整数加法的交换律结合律,对分数乘法同样适用。
加法交换律:a+b=b+a 加法结合律:(a+b )+c=a+(b+c )加法的交换律、结合律往往混合运用:三个或三个以上的数相加可以任意的交换加数的位置,可以任意的把其中两个加数结合在一起。
2、整数乘法的交换律、交换律和分配律,对分数乘法同样适用。
乘法交换律: a ×b = b ×a乘法结合律:(a ×b )×c = a ×(b ×c )乘法分配律:(a+b )×c = ac+bc乘法交换律和结合律往往混合运用:三个或三个以上的数相乘可以任意的交换因数的位置,也可以任意的把其中两个因数结合在一起五、分数乘法的解决问题已知单位“1”的量用乘法1、画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。
第一单元《分数乘法》知识点1、 分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
比如:72×3 ,表示求3个72相加是多少,或者求72的3倍是多少。
2、 一个数乘分数的意义:就是求这个数的几分之几是多少。
比如:3×72 ,表示求3的72是多少。
3、 分数乘法包括:① 分数和整数相乘:整数和分子相乘的积作分子,分母不变,能约分的要先约分。
(注意:整数和分子不能约分) 比如:103×5 ,分母10和整数5约分。
② 分数和分数相乘:用分子相乘的积作分子,用分母相乘的积作分母,能约分的要先约分。
(注意:分子只能和分母约分,分子与分子,分母与分母之间不能约分) 比如:152×85 ,分子2和分母8约分,分子5和分母15约分。
③ 分数和小数相乘:可以把小数化成分数;也可以把分数化成小数;或者直接用小数和分母进行约分。
比如:85×1.6 ,可以把1.6化成1016;也可以把85化成0.625;或者直接将分母8和小数1.6约分。
4、 分数乘法的运算顺序和整数乘法相同,先算乘除,后算加减,有括号先算括号里面的。
比如:85-83×65,先算乘法,再算减法,不能先用85减去83。
5、 整数乘法的交换律、结合律和分配律,对于分数乘法也适用。
交换律:a × b = b × a结合律:(a × b )× c = a ×(b × c )分配律:a ×(b + c )= a × b + a × c 比如:154×94+154×95,运用乘法分配律,将两边乘法中相同的分数154提到括号外面,再乘括号中的(94+95)。
6、 分数乘法应用题分为:① 连续求一个数的几分之几是多少。
②求比一个数多(或少)几分之几的数是多少。
第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
"分数乘整数"指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
"一个数乘分数"指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
人教版六年级上册第一单元分数乘法知识点(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
一、分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98的和是多少? 2、分数乘分数是求一个数的几分之几是多少。
例如: 98×43表示求98的43是多少? (二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几。
4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为..倒数。
第一单元:分数乘法一、分数乘法的概念分数乘法是指在乘法运算中,其中有一个或两个乘数是分数,通过乘法运算规则,计算出分数的乘积。
分数乘法涉及到分数的乘法运算法则,要求掌握分数相乘的方法和技巧。
二、分数乘法的基本原理1. 分数乘法的定义分数乘法是指两个分数相乘的运算。
示例:1/2 × 3/4 = 3/82. 分数乘法的规则分数相乘时,先将两个分数的分子和分母分别相乘,得到的结果即为分数的乘积。
示例:1/3 × 2/5 = (1×2) / (3×5) = 2/153. 分数乘法的方法分数相乘时,可以先化简分数,然后再进行乘法运算得到最简分数,也可以先进行分子相乘和分母相乘,再进行化简得到最简分数。
示例:4/6 × 5/3 = 20/18 = 10/9三、分数乘法的实际应用1. 分数乘法在日常生活中的运用分数乘法在日常生活中有着广泛的应用,比如在烹饪中需要按照食谱中的比例计算食材的用量,就需要进行分数乘法的运算来得到准确的结果。
示例:如果食谱中需要用1/2杯的面粉,而需要一倍的食谱,则需要1/2 × 1 = 1/2杯的面粉。
2. 分数乘法在数学问题中的应用在解决数学问题中,也会遇到分数相乘的情况,需要根据题目要求进行分数乘法的运算。
示例:假设一个长方形的长为2/3米,宽为1/4米,求其面积。
解:长方形的面积为长乘以宽,即(2/3) × (1/4) = 2/12 = 1/6平方米。
四、分数乘法中的注意事项1. 分数乘法的注意事项在进行分数乘法运算时,需要注意分子相乘、分母相乘的顺序,并且最终的结果需要进行化简,得到最简分数形式。
示例:5/6 × 2/3 = (5×2) / (6×3) = 10/18 = 5/92. 分数乘法中的常见错误在分数乘法中,常见的错误包括忽略化简、分子错乘、分母错乘等,需要学生在练习分数乘法时要注意避免这些错误。
1.分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
2.两个数找最大公因数的办法:短除法:一般用这两个数除以它们的(公因数),一直除到所得的两个商(只有公因数1)为止。
然后把最后所有的(除数)连乘,就得到了两个数的最大公因数。
(三)积与因数的关系一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a (b ≠0).一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a . 注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c3.运用乘法运算定律可以使分数乘法的计算简便。
(1)几个分数连乘时,可以运用乘法运算律或结合律碱性简算。
(2)几个分数的和与整数相乘时,如果所乘整数时这几个人分数分母的公倍数,可以运用乘法分配律进行简算。
4.运用乘法运算律进行简便计算的方法一看:观察算式的特点。
二想:想一想运用哪种运算律能使计算简便。
三算:按运算律计算出结果。
(五)分数乘法应用题——用分数乘法解决问题1. 解决连续求一个数的几分之几是多少的实际问题关键是找对单位“1”。
方法1:用这个数(单位“1”的量)连续乘对应的分率;方法2:先求所求量占已知单位“1”的量的几分之几,再用已知单位“1”的量乘这个几分之几。
第一单元分数乘法概念总结
1.
分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。
例如:的意义是:表示求5个的和是多少。
2.
分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
(为了计算简便,能约分的要先约分,然后再乘。
)
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3.
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
例如:的意义是:表示求5的是多少。
的意义是:表示求的是多少。
4.
分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
(为了计算简便,可以先约分再乘。
)
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
5.
整数乘法的交换律、结合律和分配律,对分数乘法同样适用。
6.
乘积是1的两个数互为倒数。
7.
求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
1的倒数是1。
0没有倒数。
真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。
8.
一个数(0除外)乘以一个真分数,所得的积小于它本身。
例如:
9.
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
例如:
10.
一个数(0除外)乘以一个带分数,所得的积大于它本身。
例如:
11.如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
例如:a×= b×= c×(a、b、c都不为0)
因为<<,所以b > a > c。
12.乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?
(2)找单位“1”的方法:从含有分数的句子中找,“的”前“比”后的规则。
(3)当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(4)乘法应用题中,单位“1”是已知的。
(5)单位“1”不同的两个分率不能相加减。
(6)分率与量要对应。
①多的比较量对多的分率;②少的比较量对少的分率;③增加的比较量对增加的分率;
④减少的比较量对减少的分率;
⑤提高的比较量对提高的分率;
⑥降低的比较量对降低的分率;
⑦工作总量的比较量对工作总量的分率;⑧工作效率的比较量对工作效率的分率;
⑨部分的比较量对部分的分率;⑩总量的比较量对总量的分率;
第二单元分数除法概念总结
1.
分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
例如:
表示:已知两个数的积是与其中一个因数,求另一个因数是多少。
2.
分数除以整数(0除外),等于分数乘这个整数的倒数。
整数除以分数等于整数乘以这个分数的倒数。
3.
一个数除以分数的计算法则:一个数除以分数,等于这个数乘以分数的倒数。
4.
分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
5.
两个数相除又叫做两个数的比。
比的前项除以后项所得的商,叫做比值。
6.
比值通常用分数、小数和整数表示。
7.
比的后项不能为0。
8.
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;
9.
根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
10.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
11.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
12.一个数(0除外)除以一个真分数,所得的商大于它本身。
13.一个数(0除外)除以一个假分数,所得的商小于或等于它本身。
14.一个数(0除外)除以一个带分数,所得的商小于它本身。
解分数应用题注意事项:
1.找单位“1”的方法:从含有分数的句子中找,“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
2.找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。
单位“1”×分率=比较量;比较量÷分率=单位“1”
3.注意比较量与分率的对应:
①多的比较量对多的分率;②少的比较量对少的分率;③增加的比较量对增加的分率;
④减少的比较量对减少的分率;⑤提高的比较量对提高的分率⑥降低的比较量对降低的分率;
⑦工作总量的比较量对工作总量的分率;⑧工作效率的比较量对工作效率的分率;
⑨部分的比较量对部分的分率;⑩总量的比较量对总量的分率;
4.单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。
5.单位“1”的特点:①单位“1”为分母;②单位“1”为不变量。
第三单元分数四则混合运算和应用题概念总结
1.分数四则混合运算的顺序与整数四则混合运算的运算顺序相同。
在有一级运算和二级运算的计算中,要先算二级运算再算一级运算,即:先乘除后加减。
在同级运算中,应按从左到右的顺序依次计算。
2.在分数四则混合运算中,可以应用运算定律使计算简便。
运算定律包括:加法的交换律、加法的结合律、乘法的交换律、乘法的结合律、乘法的分配律。
3.解分数应用题注意事项:与第二单元相同。