2015年广州市高二数学竞赛试题
- 格式:pdf
- 大小:213.77 KB
- 文档页数:9
高二数学竞赛试题及答案广东高二数学竞赛试题及答案(广东)试题一:函数与方程1. 已知函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(x) \)在区间[-1,2]上的最大值和最小值。
2. 解方程\( x^2 - 5x + 6 = 0 \)。
答案:1. 函数\( f(x) = 2x^2 - 3x + 1 \)的导数为\( f'(x) = 4x - 3 \)。
令\( f'(x) = 0 \)得\( x = \frac{3}{4} \)。
在区间[-1, 2]上,\( f(x) \)在\( x = \frac{3}{4} \)处取得最小值\( f\left(\frac{3}{4}\right) = -\frac{1}{8} \),在区间端点\( x = -1 \)和\( x = 2 \)处分别取得最大值\( f(-1) = 4 \)和\( f(2) = 5 \)。
2. 方程\( x^2 - 5x + 6 = 0 \)可以分解为\( (x - 2)(x - 3) = 0 \),解得\( x = 2 \)或\( x = 3 \)。
试题二:不等式1. 证明不等式\( \frac{1}{a} + \frac{1}{b} \geq 4 \)在\( a, b > 0 \)时成立。
2. 解不等式\( |x - 1| + |x - 3| \geq 4 \)。
答案:1. 由于\( a, b > 0 \),根据调和平均数与几何平均数的关系,有\( \frac{1}{a} + \frac{1}{b} \geq 2\sqrt{\frac{1}{ab}} =2\sqrt{\frac{1}{ab}} \cdot 2 \geq 4 \)。
2. 根据绝对值的性质,\( |x - 1| + |x - 3| \)表示数轴上\( x \)到1和3两点的距离之和。
当\( x \)在区间[1, 3]之外时,距离之和大于4。
广东高二高中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.A.B.C.D.2.若A.1B.1或C.D.1或3.在等差数列中,若,则A.14B.15C.16D.174.已知椭圆,若成等差数列,则椭圆的离心率为( )A.B.C.D.5.如图,三棱柱的所有棱长均为2,且点在面上的射影为BC中点O,则异面直线AB与CC所成角的余弦值为( )1A.B.C.D.6.已知函数,则要得到其导函数的图象,只需将函数的图象( )A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位7.已知定义域为的函数,满足;当时,单调递增.如果,对于的值,下列判断正确的是( )A.恒小于0B.恒大于0C.可能为0D.可正可负二、其他如图:向量,点为圆心的圆弧上运动,设,则的最大值为( )A.1B.C.2D.三、填空题1.已知 ;2.不等式的解集为3.把4名大学毕业生分配到A、B、C三个单位实习,每个单位至少一人,已知学生甲只去A 单位,则不同的分配方案有种(用数字作答)4.已知点为抛物线上的一个动点,为圆上的动点,设点到抛物线的准线距离为,则的最小值为5.已知数列,利用如右图所示的程序框图计算的值,则判断框中应填6.下列命题中:①在频率分布直方图中估计平均数,可以用每个小矩形的高乘以底边中点的横坐标之和;②线性相关系数r的的绝对值越接近1,表示两变量的相关性越强③回归直线一定过样本中心;④已知随机变量,则其中正确命题的序号是四、解答题1.、(本小题满分12分)已知函数为偶函数,且其图象两相邻对称轴间的距离为(1)求的解析式;(2)若把图象按向量平移,得到函数的图象,求的单调增区间.2.(本小题满分12分)高二级某次数学测试中,随机从该年级所有学生中抽取了100名同学的数学成绩(满分150分),经统计成绩在的有6人,在的有4人.在,各区间分布情况如右图所示的频率分布直方图,若直方图中,和对应小矩形高度相等,且对应小矩形高度又恰为对应小矩形高度的一半.(1)确定图中的值;(2)设得分在110分以上(含110分)为优秀,则这次测试的优秀率是多少?(3)某班共有学生50人,若以该次统计结果为依据,现随机从该班学生中抽出3人, 则至少抽到一名数学成绩优秀学生的概率是多少?3.(1)、据此说明四棱锥P-ABCD具有的特征及已知条件;(2)、由你给出的特征及条件证明:面PAD⊥面PCD(3)、若PC中点为E,求直线AE与面PCD所成角的余弦值.4.(本小题满分14分)已知为坐标原点,点F、T、M、P分别满足.(1) 当t变化时,求点P的轨迹方程;(2) 若的顶点在点P的轨迹上,且点A的纵坐标,的重心恰好为点F,求直线BC的方程.5.(本小题满分14分)已知函数()(1) 判断函数的单调性;(2) 是否存在实数使得函数在区间上有最小值恰为? 若存在,求出的值;若不存在,请说明理由.6.(本小题满分14分)下表给出的是由n×n(n≥3,n∈N*)个正数排成的n行n列数表,表示第i行第j列的数,表中第一列的数从上到下依次成等差数列,其公差为d ,表中各行中每一行的数从左到右依次都成等比数列,且所有公比相等,公比为,若已知(1)求的值;(2)求用表示的代数式;=+++……+求使不等式(3)设表中对角线上的数,,,……,组成一列数列,设Tn成立的最小正整数n.广东高二高中数学竞赛测试答案及解析一、选择题1.A.B.C.D.【答案】 D【解析】略2.若A.1B.1或C.D.1或【答案】B【解析】略3.在等差数列中,若,则A.14B.15C.16D.17【答案】C【解析】略4.已知椭圆,若成等差数列,则椭圆的离心率为( )A.B.C.D.【答案】B【解析】略5.如图,三棱柱的所有棱长均为2,且点在面上的射影为BC中点O,则异面直线AB与CC所成角的余弦值为( )1A.B.C.D.【答案】 D【解析】略6.已知函数,则要得到其导函数的图象,只需将函数的图象( )A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】 C【解析】略7.已知定义域为的函数,满足;当时,单调递增.如果,对于的值,下列判断正确的是( )A.恒小于0B.恒大于0C.可能为0D.可正可负【答案】A【解析】略二、其他如图:向量,点为圆心的圆弧上运动,设,则的最大值为( )A.1B.C.2D.【答案】C【解析】略三、填空题1.已知 ;【答案】【解析】略2.不等式的解集为【答案】(0,2)【解析】略3.把4名大学毕业生分配到A、B、C三个单位实习,每个单位至少一人,已知学生甲只去A 单位,则不同的分配方案有种(用数字作答)【答案】12【解析】略4.已知点为抛物线上的一个动点,为圆上的动点,设点到抛物线的准线距离为,则的最小值为【答案】【解析】略5.已知数列,利用如右图所示的程序框图计算的值,则判断框中应填【答案】【解析】略6.下列命题中:①在频率分布直方图中估计平均数,可以用每个小矩形的高乘以底边中点的横坐标之和;②线性相关系数r的的绝对值越接近1,表示两变量的相关性越强③回归直线一定过样本中心;④已知随机变量,则其中正确命题的序号是【答案】②③④【解析】略四、解答题1.、(本小题满分12分)已知函数为偶函数,且其图象两相邻对称轴间的距离为(1)求的解析式;(2)若把图象按向量平移,得到函数的图象,求的单调增区间.【答案】 y=2cos2x,的单调递增区间为【解析】∴又…………………………………………………7分(或由恒成立) ∴…………………………………………8分(2)由(1)得…………………………………10分令得的单调递增区间为…………………………………12分2.(本小题满分12分)高二级某次数学测试中,随机从该年级所有学生中抽取了100名同学的数学成绩(满分150分),经统计成绩在的有6人,在的有4人.在,各区间分布情况如右图所示的频率分布直方图,若直方图中,和对应小矩形高度相等,且对应小矩形高度又恰为对应小矩形高度的一半.(1)确定图中的值;(2)设得分在110分以上(含110分)为优秀,则这次测试的优秀率是多少?(3)某班共有学生50人,若以该次统计结果为依据,现随机从该班学生中抽出3人, 则至少抽到一名数学成绩优秀学生的概率是多少?【答案】0.024,,0.4,【解析】(1)由题意知,成绩分布在间的频率为0.9,3.(1)、据此说明四棱锥P-ABCD具有的特征及已知条件;(2)、由你给出的特征及条件证明:面PAD⊥面PCD(3)、若PC中点为E,求直线AE与面PCD所成角的余弦值.【答案】①ABCD为直角梯形,其中AB∥CD,AD⊥AB,(AB⊥CD)②PA⊥面ABCD,③PA="AD=CD=2, " AB="1 "【解析】(1)由图可知四棱锥P-ABCD中有①ABCD为直角梯形,其中AB∥CD,AD⊥AB,(AB⊥CD)②PA⊥面ABCD,③PA="AD=CD=2, " AB="1 " ………………………5分⑵由(1)知PA⊥面ABCD ∴PA⊥CD又在直角梯形ABCD中,AD⊥CD而PA,AD面PAD中, ∴CD⊥面PADCD面PCD∴面PAD⊥面PCD ……………………9分⑶取PD中点F,连结EF;则EF在,PA=AD,PA AD∴AF⊥PD且又由(2)知面PAD⊥面PCD∴AF⊥面PCD∴∠AEF为AE与面PCD所成的角…………………………………12分在△AEF中, ∠AFE=900,,EF=1∴即AE与面PCD所成角的余弦值为…………………………………14分(3)由E为PC中点∴E由(2)知面PCD的一个法向量为设AE与面PCD所成角为即AE与面PCD所成角的余弦值为4.(本小题满分14分)已知为坐标原点,点F、T、M、P分别满足.(1) 当t变化时,求点P的轨迹方程;(2) 若的顶点在点P的轨迹上,且点A的纵坐标,的重心恰好为点F, 求直线BC的方程.【答案】,2x+2y+5=0【解析】18、解:(1)设又由…………………………2分由①②消去t得点P的轨迹方程为:……………………………7分5.(本小题满分14分)已知函数()(1) 判断函数的单调性;(2) 是否存在实数使得函数在区间上有最小值恰为? 若存在,求出的值;若不存在,请说明理由.【答案】见详解答案【解析】当,在上为增函数,此时, …………9分当,在上为减函数,在上为增函数;此时, …………11分当,在上为减函数,此时, ……13分综上,存在满足题意. …………………14分6.(本小题满分14分)下表给出的是由n×n(n≥3,n∈N*)个正数排成的n行n列数表,表示第i行第j列的数,表中第一列的数从上到下依次成等差数列,其公差为d ,表中各行中每一行的数从左到右依次都成等比数列,且所有公比相等,公比为,若已知(1)求的值;(2)求用表示的代数式;=+++……+求使不等式(3)设表中对角线上的数,,,……,组成一列数列,设Tn成立的最小正整数n.【答案】,,4【解析】20、解:⑴由题意有:又由…………………………………4分⑶由(2)知故使原不等式成立的最小正整数为4. …………………………………14分。
广东省广州市执信中学2021 -2021学年高二数学下学期期末考试试题 文〔含解析〕一、选择题〔本大题共12个小题,每题5分,共60分.在每题给出四个选项中,只有一项为哪一项符合题目要求.〕 1.设集合{0,1,2,3}A =,{1,2,3}B =,那么A B =〔 〕A .{0,1,2,3}B .{0,3}C .{}3,2,1D .φ 【答案】C 【解析】试题分析:由{0,1,2,3}A =,{1,2,3}B =,得{}3,2,1=⋂B A ,应选C. 考点:交集运算.2.i 是虚数单位,那么(2)(3)i i ++=〔 〕A .55i -B .55i +C .75i -D .75i + 【答案】B 【解析】试题分析:()()i i i 5532+=++,应选B. 考点:复数运算.3.先后抛掷质地均匀硬币三次,那么至少一次正面朝上概率是〔 〕A .18 B .38C .58D .78【答案】D考点:互斥事件与对立事件.0:1p x ∃>,使得20210x x -+-≥,那么p ⌝为〔 〕 A .1x ∀>,使得2210x x -+-≤ B .01x ∃>,使得200210x x -+-< C .1x ∀>,使得2210x x -+-< D .1x ∀≤,使得2210x x -+-< 【答案】C 【解析】试题分析:由特称命题否认是全称命题可得:命题0:1p x ∃>,使得200210x x -+-≥否认为1x ∀>,使得2210x x -+-<,应选项为C.考点:全称命题与特称命题否认.5.如下图,一个空间几何体正视图与侧视图都是边长为1正方形,俯视图是一个圆,那么这个几何体外表积是〔 〕A .πB .32πC .2πD .52π【答案】B 【解析】考点:由三视图求面积、体积.n S 为等比数列{}n a 前n 项与,2580a a +=,那么52S S =〔 〕 A .11 B .5 C .-8 D .-11 【答案】D试题分析:设公比为q ,由2580a a +=,得08322=⋅+q a a ,解得2-=q ,所以.应选D .考点:等比数列前n 项与.sin ()y x x R =∈图象上所有点向左平移6π个单位长度,再把所得图象上所有点横坐标伸长到原来2倍〔纵坐标不变〕,得到图象函数表达式为〔 〕 A . B . C . D . 【答案】C 【解析】8.函数图象大致为〔 〕 【答案】A 【解析】试题分析:令,∵()()()x f xx x f xx x x -=-=--=---226cos 226cos ,∴函数为奇函数,∴其图象关于原点对称,可排除C ,D ;又当+→0x ,+∞→y ,故可排除B ;应选A .考点:〔1〕余弦函数图象;〔2〕奇偶函数图象对称性.111ABC A B C -中,各棱长相等,侧棱垂直于底面,点D 是侧面11BB C C 中心,那么AD与平面11BB C C 所成角大小是〔 〕A .030B .045C .060D .090 【答案】C 【解析】考点:空间中直线与平面之间位置关系.,a b ,定义a b ⊗算法原理如程序框图所示,设a 为函数223()y x x x R =-+∈ 最小值,b 为抛物线28y x =焦点到准线距离,那么计算机执行该运算后输出结果是〔 〕A .23B .32C .72D .12【答案】B 【解析】【思路点晴】此题主要考察了选择构造,根据流程图分析出计算类型是解题关键,属于根底题.分析程序中各变量、各语句作用,再根据流程图所示顺序,可知:该程序作用是计算并输出分段函数函数值,由可求函数223()y x x x R =-+∈最小值2=a ,抛物线28y x =焦点到准线距离4=b ,即可得解.12,e e 对任意实数λ都有,那么向量12,e e 夹角为〔 〕A .6πB .3πC .23πD .56π【答案】C 【解析】试题分析:设单位向量12,e e 夹角为θ,∵对于任意实数λ都有成立,∴对于任意实数λ都有成立,即θλθ2cos 41222212221e e e e -+≤++,即θλλθcos 21cos 4112-+≤++,即0cos 41cos 22≥⎪⎭⎫⎝⎛+--θθλλ恒成立,∴0cos 414cos 42≤⎪⎭⎫⎝⎛++=∆θθ,整理可得,再由可得,∵[]πθ,0∈,∴应选:C.考点:数量积表示两个向量夹角.R 函数()f x 对任意x 都有(2)(2)f x f x +=-,且其导函数'()f x 满足,那么当24a <<,有〔 〕A .2(2)(log )(2)a f f a f <<B .2(log )(2)(2)a f a f f <<C .2(2)(2)(log )a f f f a <<D .2(log )(2)(2)a f a f f << 【答案】A 【解析】【方法点晴】此题主要考察了导数运算,以及奇偶函数图象对称性与比拟大小,同时考察了数形结合思想,该题有一定思维量,属于根底题之列.先根据条件求出函数对称轴为2=x ,根据x -2符号,再求出函数单调区间,然后判定2、a 2log 、a 2大小关系,根据单调性结合图象比拟()2f 、()a f 2log 、()a f 2大小即可.第二卷〔非选择题共90分〕二、填空题〔本大题共4小题,每题5分,总分值20分.〕13.双曲线渐近线方程为____________. 【答案】x y 3±= 【解析】试题分析:令方程右边为0,得,即x y 3±=,故答案为x y 3±=. 考点:双曲线性质.ax y e =在点(0,1)处切线与直线310x y ++=垂直,那么a =___________.【答案】3 【解析】()f x 在某点()00,y x 处切线步骤:①对()f x 求导;②求()0x f '值;③利用点斜式得到切线方程()()000x x x f y y -'=-,结合与直线310x y ++=垂直,利用斜率之积为1-,得结果.15.假设变量,x y 满足约束条件,且2z x y =+最小值为6-,那么k =____________.【答案】2- 【解析】试题分析:作出不等式对应平面区域,〔阴影局部〕由y x z +=2,得z x y +-=2,平移直线z x y +-=2,由图象可知当直线z x y +-=2经过点A时,直线z x y +-=2截距最小,此时z 最小.目标函数为62-=+y x ,由,解得,即()2,2--A ,∵点A 也在直线k y =上,∴2-=k , 故答案为:2-. 考点:简单线性规划.16.对大于或等于2自然数3次方可以做如下分解:33235,37911=+=++,3413151719=+++,根据上述规律,310分解式中,最大数是____________. 【答案】109 【解析】【方法点晴】归纳推理一般步骤是:〔1〕通过观察个别情况发现某些一样性质;〔2〕从一样性质中推出一个明确表达一般性命题〔猜测〕.注意观察各个数分解时特点,不难发现:当底数是2时,可以分解成两个连续奇数之与;当底数是3时,可以分解成三个连续奇数之与.那么当底数是4时,可分解成4个连续奇数之与,进而求出32到310分解式用奇数个数,进而求出答案.三、解答题〔本大题共6小题,共70分.解容许写出文字说明、证明过程或演算步骤.〕17.等差数列{}n a 中,2474,15a a a =+=. 〔1〕求数列{}n a 通项公式; 〔2〕设,求12310b b b b ++++值.【答案】〔1〕2+=n a n ;〔2〕3910. 【解析】〔2〕∵2n a n =+,∴11111(2)(3)23n n n b a a n n n n +===-++++ 考点:〔1〕等差数列通项公式;〔2〕数列求与. 18.〔本小题总分值12分〕空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够浓护问题.当空气污染指数〔单位:3/g m μ〕为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别是为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状年8月某日某省x 个监测点数据统计如下:〔1〕根据所给统计表与频率分布直方图中信息求出,x y 值,并完成频率分布直方图;〔2〕在空气污染指数分别为50~100与150~200监测点中,用分层抽样方法抽取5个监测点,从中任意选取2个监测点,事件A “两个都为良〞发生概率是多少? 【答案】〔1〕100x =,35y =;〔2〕53. 【解析】频率分布直方图如下图:19.〔本小题总分值12分〕如图,直角三角形ABC 中,060A =,沿斜边AC 上高BD ,将ABD ∆折起到PBD ∆位置,点E 在 线段CD 上.〔1〕求证:PE BD ⊥;〔2〕过点D 作DM BC ⊥交BC 于点M ,点N 为PB 中点,假设//PE 平面DMN ,求DEDC值. 【答案】〔1〕证明见解析;〔2〕31. 【解析】【方法点晴】此题考察了空间中平行与垂直关系应用问题,也考察了空间想象能力与逻辑推理能力应用问题,是综合性题目.在第一问中主要通过线面垂判定定理得到线面垂直,然后得到线线垂直,线线垂直与线面垂直之间互化是在证明垂直过程中常用手段;在第二问中首先根据线面平行性质定理,得到//PE NF ,根据长度与角关系得到DEF ∆是等边三角形,可得解. 20.〔本小题总分值12分〕如图,圆C 与x 轴相切于点(2,0)T ,与y 轴正半轴相交于,M N 两点〔点M 在点N 下方〕,且 〔1〕求圆C 方程;〔2〕过点M 任作一条直线与椭圆相交于两点,A B ,连接,AN BN ,求证:ANM BNM ∠=∠.【答案】〔1〕22525(2)()24x y -+-=;〔2〕证明见解析.【解析】考点:直线与圆方程应用.【方法点晴】此题考察了圆方程求法及圆锥曲线与直线交点问题,化简比拟复杂,通过根与系数关系简化运算,要细心,属于中档题.第一问中利用常见弦长一半,圆半径以及圆心到弦距离构成直角三角形,从而求得圆方程;第二问中把角相等转化为两直线斜率之与为0,通过联立直线方程与椭圆方程,根据维达定理,利用整体代换得到结果. 21.〔本小题总分值12分〕 函数()ln 3(0)f x x ax a =--≠. 〔1〕求函数()f x 极值;〔2〕假设对于任意[1,2]a ∈,假设函数23'()[2()]2x g x x m f x =+-在区间(,3)a 上有最值,求实数m 取值范围.【答案】〔1〕当0a <时,()f x 无极值,当0a >时,()f x 有极大值,无极小值;〔2〕. 【解析】∴()f x 在(0,)+∞单调增,()f x 无极值; 当0a >时, 由得:,那么得:,∴()f x 在上单调递增,在上单调递减. ∴()f x 极大值,无极小值. 综上:当0a <时,()f x 无极值;当0a >时,()f x 有极大值,无极小值.〔2〕23'32()[2()]()22x m g x x m f x x a x x =+-=++-, 考点:〔1〕利用导数研究函数单调性;〔2〕导数在最大值、最小值问题中应用.【方法点晴】此题是个中档题.考察利用导数研究函数单调性与最值问题,表达了对分类讨论与化归转化数学思想考察,特别是问题〔2〕设置很好考察学生对题意理解与转化,创造性分析问题、解决问题能力与计算能力.函数在开区间内有最值等价于函数在该区间内有极值,故可转化为方程'()0g x =在(,3)a 上有一个或两个不等实根,通过数形结合,转化为'22()3(2)1510g a a m a a a ma =++•-=+-<恒成立,利用别离参数得解.请考生在第22、23题中任选一题作答,如果多做,那么按所做第一题记分.解答时请写清题号.22.〔本小题总分值10分〕选修4-1:几何证明选讲如图,AB 是圆O 直径,AC 是弦,BAC ∠平分线AD 交圆O 于点D ,DE AC ⊥,交AC 延长线于点E ,OE 交AD 于点F .〔1〕求证:DE 是圆O 切线;〔2〕假设060CAB ∠=,圆O 半径为2,1EC =,求DE 值.【答案】〔1〕证明见解析;〔2〕DE =【解析】考点:与圆有关比例线段.23.〔本小题总分值10分〕选修4-4:坐标系与参数方程在直角坐标系xOy中,直线l参数方程为〔t为参数〕,以原点为极点,x轴正半轴为极轴建立极坐标系,圆=.C极坐标方程为ρθ〔1〕写出圆C直角坐标方程;〔2〕P为直线l上一动点,当P到圆心C距离最小时,求P直角坐标.【答案】〔1〕22+-=;〔2〕(3,0).(3x y【解析】〔2〕设,又C,那么PC==故当0t=时,PC取得最小值,此时P点坐标为(3,0)考点:〔1〕点极坐标与直角坐标互化;〔2〕直线与圆位置关系.。
广东高二高中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.已知集合,则()A.B.C.D.2.已知=b-i, (a,b∈R),其中i为虚数单位,则a+b=()A.-1 B.1 C.2 D.33.已知a、b是实数,则“a>1,b>2”是“a+b>3且ab>2”的A.充分而不必要条件B.必要而不充分条件C.充分且必要条件D.既不充分也不必要条4.函数是()A.周期为的奇函数B.周期为的奇函数C.周期为的偶函数D.非奇非偶函数5.已知平面向量, , 且, 则m=( )A. 4B.-1C. 2D. -46.某几何体的三视图及尺寸如图示,则该几何体的表面积为A. B. C. D.7.已知向量,且,若变量x,y满足约束条,则z的最大值为A.1B.2C.3D.48.等差数列中,,且成等比数列,则A.B.C.D.9.以轴为对称轴,以坐标原点为顶点,准线的抛物线的方程是A.B.C.D.10.起点到终点的最短距离为A.16B.17C.18D.19二、填空题1.的定义域--__________2.校高中部有三个年级,其中高三有学生人,现采用分层抽样法抽取一个容量为的样本,已知在高一年级抽取了人,高二年级抽取了人,则高中部共有学生__ _人.3.在中,,且,则的面积是_____4.(几何证明选讲选做题)如图,已知的两条直角边,的长分别为,,以为直径的圆与交于点,则=.5.(坐标系与参数方程选做题)直线截曲线(为参数)的弦长为_ _三、解答题1.(本小题共12分)已知函数(1)求的最小正周期;(2)若,, 求的值2.(本题满分14分)有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.已知在全部105人中抽到随机抽取1人为优秀的概率为(1)请完成上面的列联表;(2)根据列联表的数据,若按的可靠性要求,能否认为“成绩与班级有关系” .(3)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.3.(本题12分)如图所示,在直四棱柱中, ,点是棱上一点.(1)求证:面;(2)求证:;4.(本题满分14分)为赢得2010年广州亚运会的商机,某商家最近进行了新科技产品的市场分析,调查显示,新产品每件成本9万元,售价为30万元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:万元,)的平方成正比,已知商品单价降低2万元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成的函数;(2)如何定价才能使一个星期的商品销售利润最大?5.(本小题满分14分)已知椭圆的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作,其中圆心P的坐标为.(1) 若FC是的直径,求椭圆的离心率;(2)若的圆心在直线上,求椭圆的方程.6.(本小题满分14分)设不等式组所表示的平面区域为,记内的格点(格点即横坐标和纵坐标均为整数的点)个数为(1)求的值及的表达式;(2)记,试比较的大小;若对于一切的正整数,总有成立,求实数的取值范围;(3)设为数列的前项的和,其中,问是否存在正整数,使成立?若存在,求出正整数;若不存在,说明理由.广东高二高中数学竞赛测试答案及解析一、选择题1.已知集合,则()A.B.C.D.【答案】B【解析】.2.已知=b-i, (a,b∈R),其中i为虚数单位,则a+b=()A.-1 B.1 C.2 D.3【答案】D【解析】,所以b=2,a=1,a+b=3.3.已知a、b是实数,则“a>1,b>2”是“a+b>3且ab>2”的A.充分而不必要条件B.必要而不充分条件C.充分且必要条件D.既不充分也不必要条【答案】A【解析】若a>1,b>2,则a+b>3且ab>2.反之不成立.所以“a>1,b>2”是“a+b>3且ab>2”的充分而不必要条件.4.函数是()A.周期为的奇函数B.周期为的奇函数C.周期为的偶函数D.非奇非偶函数【答案】C【解析】,所以f(x)是周期为的偶函数.5.已知平面向量, , 且, 则m=( )A. 4B.-1C. 2D. -4【答案】D【解析】因为,所以.6.某几何体的三视图及尺寸如图示,则该几何体的表面积为A. B. C. D.【答案】B【解析】.7.已知向量,且,若变量x,y满足约束条,则z的最大值为A.1B.2C.3D.4【答案】C【解析】因为,所以,当直线经过直线和直线的交点A(1,1)时,z取得最大值,最大值为3.8.等差数列中,,且成等比数列,则A.B.C.D.【答案】B【解析】因为成等比数列,所以.9.以轴为对称轴,以坐标原点为顶点,准线的抛物线的方程是A.B.C.D.【答案】A【解析】由题意可知抛物线的开口方向向左,并且p=2,所以应选A.10.起点到终点的最短距离为A.16B.17C.18D.19【答案】B【解析】最短距离应为,长度为4+2+4+7=17.二、填空题1.的定义域--__________【答案】【解析】由,所以定义域为.2.校高中部有三个年级,其中高三有学生人,现采用分层抽样法抽取一个容量为的样本,已知在高一年级抽取了人,高二年级抽取了人,则高中部共有学生__ _人.【答案】3700【解析】由题意知高三抽取了185-75-60=50.所以高中部共有学生.3.在中,,且,则的面积是_____【答案】6【解析】因为,所以,又因为,所以.4.(几何证明选讲选做题)如图,已知的两条直角边,的长分别为,,以为直径的圆与交于点,则=.【答案】【解析】因为AC=3,BC=4,所以AB=5,设BD=x,因为BC为圆O的切线,根据切割线定理可知.5.(坐标系与参数方程选做题)直线截曲线(为参数)的弦长为_ _【答案】【解析】曲线消参后得到普通方程为,由圆心(0,1)到直线3x+4y-7=0的距离,所以弦长.三、解答题1.(本小题共12分)已知函数(1)求的最小正周期;(2)若,, 求的值【答案】(Ⅰ)函数的最小正周期为. (Ⅱ)。
2015年高中数学竞赛试题及答案一、选择题(本大题共6小题,每小题6分,共36分.每小题各有四个选择支,仅有一个选择支正确.请把正确选择支号填在答题卡的相应位置.)1.集合{0,4,}A a =,4{1,}B a =,若{0,1,2,4,16}A B ⋃=,则a 的值为A .0B .1C .2D .42.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能... 是. ①长方形;②正方形;③圆;④菱形. 其中正确的是 A .①② B .②③ C .③④ D .①④3.设0.50.320.5,log 0.4,cos 3a b c π-===,则A .c b a <<B .c a b <<C .a b c <<D .b c a <<4. 平面上三条直线210,10,0x y x x ky -+=-=-=,如果这三条直线将平面划分为六部分,则实数k 的值为A . 1B . 2C . 0或2D . 0,1或25.函数()s i n()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到()c o s 2g x x =的图像,则只要将()f x 的图像 A .向右平移6π个单位长度 B .向右平移12π个单位长度 C .向左平移6π个单位长度 D .向左平移12π个单位长度6. 在棱长为1的正四面体1234A A A A 中,记12(,1,2,3,4,)i j i j a A A A A i j i j =⋅=≠,则i j a 不同取值的个数为A .6B .5C .3D .2二、填空题(本大题共6小题,每小题6分,共36分.请把答 案填在答题卡相应题的横线上.) 7.已知)1,(-=m a ,)2,1(-=b ,若)()(b a b a -⊥+,则m = .8.如图,执行右图的程序框图,输出的T= . 9. 已知奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 则不等式0)()1(<⋅-x f x 的解集为 .10.求值:=+250sin 3170cos 1 . 11.对任意实数y x ,,函数)(x f 都满足等式)(2)()(22y f x f y x f +=+,且0)1(≠f ,则(第5题图)(第8题图)3侧视图正视图22(第2题图)2=)2011(f .12.在坐标平面内,对任意非零实数m ,不在抛物线()()22132y mx m x m =++-+上但在直线1y x =-+ 上的点的坐标为 .答 题 卡一、选择题(本大题共6小题,每小题6分,共36分.)题号 1 2 3 4 5 6 答案二、填空题(本大题共6小题,每小题6分,共36分.)7. 8. 9. 10. 11. 12.三、解答题(本大题共6小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤.) 13.(本小题满分12分)为预防11H N 病毒暴发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:A 组B 组C 组疫苗有效 673 xy疫苗无效7790z已知在全体样本中随机抽取1个,抽到B 组的概率是0.375. (1)求x 的值;(2)现用分层抽样的方法在全部测试结果中抽取360个,问应在C 组中抽取多少个? (3)已知465≥y ,25≥z ,求该疫苗不能通过测试的概率.已知函数x x x f 2sin )12(cos 2)(2++=π.(1)求)(x f 的最小正周期及单调增区间; (2)若),0(,1)(παα∈=f ,求α的值. 15.(本题满分13分)如图,在直三棱柱111C B A ABC -中,21===AA BC AC ,︒=∠90ACB ,G F E ,,分别是AB AA AC ,,1的中点.(1)求证://11C B 平面EFG ; (2)求证:1AC FG ⊥;(3)求三棱锥EFG B -1的体积.ACBB 1A 1C 1FGE已知函数t t x x x f 32)(22+--=.当∈x ),[∞+t 时,记)(x f 的最小值为)(t q . (1)求)(t q 的表达式;(2)是否存在0<t ,使得)1()(tq t q =?若存在,求出t ;若不存在,请说明理由.已知圆22:228810M x y x y +---=和直线:90l x y +-=,点C 在圆M 上,过直线l 上一点A 作MAC ∆.(1)当点A 的横坐标为4且45=∠MAC 时,求直线AC 的方程; (2)求存在点C 使得45=∠MAC 成立的点A 的横坐标的取值范围.18.(本题满分14分)在区间D 上,若函数)(x g y =为增函数,而函数)(1x g xy =为减函数,则称函数)(x g y =为区间D 上的“弱增”函数.已知函数1()11f x x=-+. (1)判断函数()f x 在区间(0,1]上是否为“弱增”函数,并说明理由; (2)设[)1212,0,,x x x x ∈+∞≠,证明21211()()2f x f x x x -<-; (3)当[]0,1x ∈时,不等式xax +≥-111恒成立,求实数a 的取值范围.参考答案一、选择题:C B A D D C二、填空题:7. 2± 8.29 9. ),2()1,0()2,(+∞--∞10.43311.22011 12. 31(,),(1,0),(3,4)22--三、解答题:13. (本题满分12分) 解:(1)因为在全体样本中随机抽取1个,抽到B 组的概率0.375,所以375.0200090=+x , ………………2分 即660x =. ………………3分(2)C 组样本个数为y +z =2000-(673+77+660+90)=500, ………………4分 现用分层抽样的方法在全部测试结果中抽取360个,则应在C 组中抽取个数为360500902000⨯=个. ………………7分 (3)设事件“疫苗不能通过测试”为事件M.由(2)知 500y z +=,且,y z N ∈,所以C 组的测试结果中疫苗有效与无效的可能的情况有: (465,35)、(466,34)、(467,33)、……(475,25)共11个. ……………… 9分 由于疫苗有效的概率小于90%时认为测试没有通过,所以疫苗不能通过测试时,必须有9.02000660673<++y, …………………10分即1800660673<++y , 解得467<y ,所以事件M 包含的基本事件有:(465,35)、(466,34)共2个. …………………11分所以112)(=M P , 故该疫苗不能通过测试的概率为211. …………………12分14. (本小题满分12分) 解:x x x f 2sin )62cos(1)(+++=π…………………1分x x x 2sin 6sin2sin 6cos2cos 1+-+=ππx x 2sin 212cos 231++= …………………2分 1)32sin(++=πx . …………………4分(1))(x f 的最小正周期为ππ==22T ; …………………5分 又由]22,22[32πππππ+-∈+k k x , …………………6分得)](12,125[Z k k k x ∈+-∈ππππ, …………………7分 从而)(x f 的单调增区间为)](12,125[Z k k k ∈+-ππππ. …………………8分 (2)由11)32s in ()(=++=πααf 得0)32sin(=+πα, …………………9分所以ππαk =+32,62ππα-=k )(Z k ∈. …………………10分又因为),0(πα∈,所以3πα=或65π. …………………12分15. (本题满分13分) 解:(1)因为E G 、分别是AC AB 、的中点,所以BC GE //;……1分 又BC C B //11,所以GE C B //11; …………2分又⊆GE 平面EFG ,⊄11C B 平面EFG ,所以//11C B 平面EFG . …………3分 (2)直三棱柱111C B A ABC -中,因为︒=∠90ACB ,所以⊥BC 平面C C AA 11; ……………4分 又BC GE //,所以⊥GE 平面C C AA 11,即1AC GE ⊥; ……………5分 又因为21==AA AC ,所以四边形11A ACC 是正方形,即11AC C A ⊥; ……………6分 又F E ,分别是1,AA AC 的中点,所以C A EF 1//,从而有1AC EF ⊥, ……………7分 由E GE EF =⋂,所以⊥1AC 平面EFG ,即1AC FG ⊥. ……………8分 (3)因为//11C B 平面EFG ,所以111EFC G EFG C EFG B V V V ---==. ……………10分由于⊥GE 平面C C AA 11,所以GE S V EFC EFC G ⋅=∆-1131,且121==BC GE .…………11分 又由于2321114111111=---=---=∆∆∆∆ECC FC A AEF A ACC EFC S S S S S 正方形,……………12分所以21123313111=⋅⋅=⋅=∆-GE S V EFC EFC G ,即211=-E F G B V . ……………13分16. (本题满分13分)解:(1)t t x x x f 32)(22+--=13)1(22-+--=t t x . ……………1分①当1≥t 时,)(x f 在∈x ),[∞+t 时为增函数,所以)(x f 在∈x ),[∞+t 时的最小值为t t f t q ==)()(;……………3分②当1<t 时,13)1()(2-+-==t t f t q ; ……………5分综上所述,2(1)()31(1)t t q t t t t ≥⎧=⎨-+-<⎩. ……………6分 ACBB 1A 1C 1FGE )(x fx1O(2)由(1)知,当0<t 时,13)(2-+-=t t t q ,所以当0<t 时,131)1(2-+-=tt tq . ……………7分 由)1()(t q t q =得:1311322-+-=-+-tt t t , ……………8分即013334=-+-t t t , ……………9分 整理得0)13)(1(22=+--t t t , ……………11分解得:1±=t 或253±=t . ……………12分 又因为0<t ,所以1-=t .即存在1-=t ,使得)1()(tq t q =成立. ……………13分17. (本题满分14分)解:(1)圆M 的方程可化为:2217(2)(2)2x y -+-=,所以圆心M (2,2),半径r =342. ……1分 由于点A 的横坐标为4,所以点A 的坐标为(4,5),即13AM =. ……………2分 若直线AC 的斜率不存在,很显然直线AM 与AC 夹角不是45,不合题意,故直线AC 的斜率一定存在,可设AC 直线的斜率为k ,则AC 的直线方程为5(4)y k x -=-,即540k x y k -+-=. ……………3分由于45=∠MAC 所以M 到直线AC 的距离为226||22==AM d ,此时r d <,即这样的点C 存在. ……………4分由222542621k kk -+-=+,得2322621k k -=+,解得15 5k k =-=或. ……………5分 所以所求直线AC 的方程为0255=-+y x 或0215=+-y x . ……………6分 (2)当r AM 2||=时,过点A 的圆M 的两条切线成直角,从而存在圆上的点C (切点)使得45=∠MAC . ……………7分设点A 的坐标为),(y x ,则有⎪⎩⎪⎨⎧=-+=⋅=-+-09172342)2()2(22y x y x , ……………8分解得⎩⎨⎧==63y x 或⎩⎨⎧==36y x . ……………9分记点)6,3(为P ,点)3,6(为Q ,显然当点A 在 线段PQ 上时,过A 的圆的两条切线成钝角,从而必存在圆上的一点C 使得45=∠MAC ;……11分 当点A 在线段PQ 的延长线或反向延长线上时,过A 的圆的两条切线成锐角,从而必不存在圆上的点C 使得45=∠MAC , …………13分所以满足条件的点A 为线段PQ 上的点,即满足条件的点A 的横坐标取值范围是[]3,6.……14分18.(本题满分14分) 解:(1)由1()11f x x=-+可以看出,在区间(0,1]上,()f x 为增函数. ………………1分 又11111111()(1)111(11)11x x f x x x x x x x x x x x+-=-===++++++++,……………3分 显然)(1x f x在区间(0,1]上为减函数, ∴ ()f x 在区间(0,1]为“弱增”函数. ………………4分(2)122121212121211111()()111111(11)x x x x f x f x x x x x x x x x +-+--=-==+++++++++.…6分[)1212,0,,x x x x ∈+∞≠,∴111≥+x ,112≥+x ,21121>+++x x ,即212111(11)2x x x x +++++>,………………8分21()()f x f x ∴-2112x x <-. ………………9分 (3)当0x =时,不等式xax +≥-111显然成立. ………………10分“当(]0,1x ∈时,不等式xax +≥-111恒成立”等价于“ 当(]0,1x ∈时,不等式)111(1xx a +-≤即)(1x f x a ≤恒成立” . ………………11分yO∙MAxl也就等价于:“ 当(]0,1x ∈时, min )](1[x f xa ≤成立” . ………………12分 由(1)知1()f x x 在区间(0,1]上为减函数, 所以有221)1()](1[min -==f x f x . ……………13分 ∴221-≤a ,即221-≤a 时,不等式xax +≥-111对[]0,1x ∈恒成立. ……………14分。
广州市数学竞赛高二试题广州市数学竞赛高二试题涵盖了高中数学的多个领域,包括但不限于代数、几何、概率统计和微积分。
以下是一套模拟试题,供参赛者练习。
一、选择题(每题3分,共15分)1. 若\( a \)和\( b \)是方程\( x^2 + 4x + 5 = 0 \)的根,那么\( a^2 + 4a \)的值等于:A. -5B. 5C. 0D. 不确定2. 在直角坐标系中,点\( P(x, y) \)关于直线\( y = x \)的对称点的坐标是:A. \( (y, x) \)B. \( (-x, -y) \)C. \( (-y, -x) \)D. \( (x, -y) \)3. 若函数\( f(x) = 2x^3 - 3x^2 + 5x - 7 \)的导数是\( f'(x) \),那么\( f'(1) \)的值等于:A. 3B. 2C. -3D. -24. 已知正方体的体积为8,那么其表面积为:A. 16B. 24C. 32D. 645. 抛物线\( y^2 = 4x \)的焦点坐标是:A. \( (1, 0) \)B. \( (0, 1) \)C. \( (2, 0) \)D. \( (0, 2) \)二、填空题(每题4分,共20分)6. 若\( \sin \theta = \frac{3}{5} \),且\( \theta \)为锐角,则\( \cos \theta \)的值为______。
7. 一个等差数列的首项为2,公差为3,第10项的值为______。
8. 已知函数\( y = \ln(x) \)的定义域为______。
9. 若\( a \),\( b \),\( c \)为实数,且\( a^2 + b^2 + c^2 =1 \),则\( ab + bc + ca \)的最大值为______。
10. 一个圆的半径为5,圆心到直线\( x - y + 5 = 0 \)的距离为4,则直线与圆的位置关系是______。
2015年全国高中数学联赛(B 卷)(一试)一、填空题(每个小题8分,满分64分 1:已知函数⎩⎨⎧+∞∈∈-=),3(log ]3,0[)(2x a x xa x f x,其中a 为常数,如果)4()2(f f <,则a 的取值范围是2:已知3)(x x f y +=为偶函数,且15)10(=f ,则)10(-f 的值为3:某房间的室温T (单位:摄氏度)与时间t (单位:小时)的函数关系为:),0(,cos sin +∞∈+=t t b t a T ,其中b a ,为正实数,如果该房间的最大温差为10摄氏度,则b a +的最大值是4:设正四棱柱1111D C B A ABCD -的底面ABCD 是单位正方形,如果二面角11C BD A --的大小为3π,则=1AA 5:已知数列{}n a 为等差数列,首项与公差均为正数,且952,,a a a 依次成等比数列,则使得121100a a a a k >+⋅⋅⋅++的最小正整数k 的值是6:设k 为实数,在平面直角坐标系中有两个点集{})(2),(22y x y x y x A +=+=和{}03),(≥++-=k y kx y x B ,若B A 是单元集,则k 的值为7:设P 为椭圆13422=+x y 上的动点,点)1,0(),1,1(-B A ,则PB PA +的最大值为 8:正2015边形201521A A A ⋅⋅⋅内接于单位圆O ,任取它的两个不同顶点j i A A ,, 则1≥+j i OA OA 的概率为 二、解答题9:(本题满分16分)数列{}n a 满足,31=a 对任意正整数n m ,,均有mn a a a n m n m 2++=+ (1)求{}n a 的通项公式; (2)如果存在实数c 使得c a ki i<∑=11对所有正整数k 都成立,求c 的取值范围10:(本题满分20分)设4321,,,a a a a 为四个有理数,使得:{}⎭⎬⎫⎩⎨⎧----=≤<≤3,1,81,23,2,2441j i aa ji,求4321a a a a +++的值11:(本题满分20分)已知椭圆)0(12222>>=+b a by a x 的右焦点为)0,(c F ,存在经过点F的一条直线l 交椭圆于B A ,两点,使得OB OA ⊥,求该椭圆的离心率的取值范围(加试)1:(本题满分40分)证明:对任意三个不全相等的非负实数c b a ,,都有:21)()()()()()(222222≥-+-+--+-+-a c c b b a ab c ac b bc a ,并确定等号成立的充要条件 2:(本题满分40分)如图,在等腰ABC ∆中,AC AB =,设I 为其内心,设D 为ABC ∆内的一个点,满足D C B I ,,,四点共圆,过点C 作BD 的平行线,与AD 的延长线交于E 求证:CE BD CD ⋅=23:(本题满分50分)证明:存在无穷多个正整数组)2015,,)(,,(>c b a c b a 满足:1,1,1++-ab c ac b bc a4:(本题满分50分)给定正整数)2(,n m n m ≤≤,设m a a a ,,,21⋅⋅⋅是n ,,2,1⋅⋅⋅中任取m 个互不相同的数构成的一个排列,如果存在{}m k ,,2,1⋅⋅⋅∈使得k a k +为奇数,或者存在整数 )1(,m l k l k ≤<≤,使得l k a a >,则称m a a a ,,,21⋅⋅⋅是一个“好排列”,试确定所有好排列的个数。