2019年高中数学 第一章 数列 1.3 等比数列 1.3.2 第2课时 数列求和习题课达标练习5
- 格式:doc
- 大小:94.48 KB
- 文档页数:5
—————————— 新学期 新成绩 新目标 新方向 ——————————1.3.2 第2课时 数列求和习题[A 基础达标]1.数列{a n },{b n }满足a n b n =1,a n =n 2+3n +2,则{b n }的前10项和为( ) A.14 B .512 C.34D .712解析:选B.依题意b n =1a n=1n 2+3n +2=1(n +1)(n +2)=1n +1-1n +2,所以{b n }的前10项和为S 10=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+⎝ ⎛⎭⎪⎫14-15+…+⎝ ⎛⎭⎪⎫111-112=12-112=512,故选B.2.若数列{a n }的通项公式a n =2n+2n -1,则数列{a n }的前n 项和S n 为( ) A .2n+n 2-1 B .2n +1+n 2-1C .2n +1+n 2-2D .2n+n 2-2解析:选 C.S n =(2+22+23+ (2))+[1+3+5+…+(2n -1)]=2(1-2n)1-2+n (1+2n -1)2=2n +1-2+n 2.3.数列{a n }中,a n =1n (n +1),其前n 项和为910,则在平面直角坐标系中,直线(n +1)x+y +n =0在y 轴上的截距为( ) A .-10 B .-9 C .10D .9解析:选B.数列{a n }的前n 项和为11×2+12×3+…+1n (n +1)=1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=910,所以n =9,于是直线(n +1)x +y +n =0即为10x +y +9=0.所以其在y 轴上的截距为-9.4.已知数列{a n }的前n 项和S n =n 2-6n ,则{|a n |}的前n 项和T n 等于( ) A .6n -n 2B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n +18,n >3 D .⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n ,n >3 解析:选C.因为由S n =n 2-6n 得{a n }是等差数列,且首项为-5,公差为2.所以a n =-5+(n -1)×2=2n -7,n ≤3时,a n <0,n >3时,a n >0,T n =⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n +18,n >3.5.设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n =( )A .2nB .2n-n C .2n +1-nD .2n +1-n -2解析:选D.因为a n =1+2+22+…+2n -1=1-2n1-2=2n -1,所以S n =(2+22+23+…+2n )-n =2(1-2n)1-2-n =2n +1-n -2.6.已知数列{a n }的通项公式a n =2n-12n ,其前n 项和S n =32164,则项数n 等于________.解析:a n =2n-12n =1-12n ,所以S n =n -12⎝ ⎛⎭⎪⎫1-12n 1-12=n -1+12n =32164=5+164,所以n =6. 答案:67.已知ln x +ln x 2+…+ln x 10=110,则ln x +ln 2x +ln 3x +…+ln 10x =________. 解析:由ln x +ln x 2+…+ln x 10=110. 得(1+2+3+…+10)ln x =110,所以ln x =2. 从而ln x +ln 2x +…+ln 10x =2+22+23+…+210=2(1-210)1-2=211-2=2 046.答案:2 0468.已知函数f (n )=⎩⎪⎨⎪⎧n 2,n 为奇数,-n 2,n 为偶数,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于________.解析:由题意,a 1+a 2+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-…-(99+100)+(101+100)=100. 答案:1009.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N +.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)na n ,求数列{b n }的前2n 项和. 解:(1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .故数列{a n }的通项公式为a n =n .(2)由(1)知,a n =n ,故b n =2n+(-1)nn . 记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+ (22),B =-1+2-3+4-…+2n ,则A =2(1-22n)1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.10.已知数列{a n }的各项均为正数,前n 项和为S n , 且S n =a n (a n +1)2,n ∈N +;(1)求证:数列{a n }是等差数列;(2)设b n =12S n ,T n =b 1+b 2+…+b n ,求T n .解:(1)证明:因为S n =a n (a n +1)2,n ∈N +, 所以当n =1时,a 1=S 1=a 1(a 1+1)2,所以a 1=1.当n ≥2时,由⎩⎪⎨⎪⎧2S n =a 2n +a n ,2S n -1=a 2n -1+a n -1, 得2a n =a 2n +a n -a 2n -1-a n -1. 即(a n +a n -1)(a n -a n -1-1)=0, 因为a n +a n -1>0, 所以a n -a n -1=1(n ≥2).所以数列{a n }是以1为首项,以1为公差的等差数列. (2)由(1)可得a n =n ,S n =n (n +1)2,b n =12S n =1n (n +1)=1n -1n +1. 所以T n =b 1+b 2+b 3+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.[B 能力提升]11.化简S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1的结果是( )A .2n +1+n -2 B .2n +1-n +2 C .2n -n -2D .2n +1-n -2解析:选D.因为S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1,所以2S n =n ×2+(n-1)×22+(n -2)×23+…+2×2n -1+2n ,有2S n -S n =2+22+23+…+2n -1+2n-n ,得S n =2n +1-2-n .12.已知数列{a n }中,a n =4×(-1)n -1-n (n ∈N +),则数列{a n }的前2n 项和S 2n =________.解析:S 2n =a 1+a 2+…+a 2n =[4(-1)0-1]+[4(-1)1-2]+[4(-1)2-3]+…+ [4(-1)2n -1-2n ]=4[(-1)0+(-1)1+(-1)2+…+(-1)2n -1]-(1+2+3+…+2n )=-2n (2n +1)2=-n (2n +1).答案:-n (2n +1)13.已知等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式; (2)令c n =⎩⎪⎨⎪⎧2S n ,n 为奇数,b n ,n 为偶数.设数列{c n }的前n 项和为T n ,求T 2n .解:(1)设数列{a n }的公差为d ,数列{b n }的公比为q , 由b 2+S 2=10,a 5-2b 2=a 3,得⎩⎪⎨⎪⎧q +6+d =10,3+4d -2q =3+2d ,解得⎩⎪⎨⎪⎧d =2,q =2, 所以a n =3+2(n -1)=2n +1,b n =2n -1.(2)由a 1=3,a n =2n +1得S n =n (n +2), 则n 为奇数时,c n =2S n =1n -1n +2.n 为偶数时,c n =2n -1,所以T 2n =(c 1+c 3+…+c 2n -1)+(c 2+c 4+…+c 2n )=⎣⎢⎡⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎦⎥⎤⎝ ⎛⎭⎪⎫12n -1-12n +1+(2+23+…+22n -1) =1-12n +1+2(1-4n)1-4=2n 2n +1+23(4n -1).14.(选做题)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2. (1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n +1(x n +1, n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解:(1)设数列{x n }的公比为q ,由已知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2.所以3q 2-5q -2=0. 因为q >0, 所以q =2,x 1=1,因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1. 由(1)得x n +1-x n =2n-2n -1=2n -1,记梯形P n P n +1Q n +1Q n 的面积为b n ,由题意得b n =(n +n +1)2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+…+b n =3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2.①又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1.②①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1.所以T n =(2n -1)×2n+12.。
1.3.2 第2课时 数列求和习题[A 基础达标]1.数列{a n },{b n }满足a n b n =1,a n =n 2+3n +2,则{b n }的前10项和为( ) A.14 B .512 C.34D .712解析:选B.依题意b n =1a n=1n 2+3n +2=1(n +1)(n +2)=1n +1-1n +2,所以{b n }的前10项和为S 10=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+⎝ ⎛⎭⎪⎫14-15+…+⎝ ⎛⎭⎪⎫111-112=12-112=512,故选B.2.若数列{a n }的通项公式a n =2n+2n -1,则数列{a n }的前n 项和S n 为( ) A .2n+n 2-1 B .2n +1+n 2-1C .2n +1+n 2-2D .2n+n 2-2解析:选 C.S n =(2+22+23+ (2))+[1+3+5+…+(2n -1)]=2(1-2n)1-2+n (1+2n -1)2=2n +1-2+n 2.3.数列{a n }中,a n =1n (n +1),其前n 项和为910,则在平面直角坐标系中,直线(n +1)x+y +n =0在y 轴上的截距为( ) A .-10 B .-9 C .10D .9解析:选B.数列{a n }的前n 项和为11×2+12×3+…+1n (n +1)=1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=910,所以n =9,于是直线(n +1)x +y +n =0即为10x +y +9=0.所以其在y 轴上的截距为-9.4.已知数列{a n }的前n 项和S n =n 2-6n ,则{|a n |}的前n 项和T n 等于( ) A .6n -n 2B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n +18,n >3 D .⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n ,n >3 解析:选C.因为由S n =n 2-6n 得{a n }是等差数列,且首项为-5,公差为2. 所以a n =-5+(n -1)×2=2n -7,n ≤3时,a n <0,n >3时,a n >0,T n =⎩⎪⎨⎪⎧6n -n 2,1≤n ≤3,n 2-6n +18,n >3.5.设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n =( )A .2nB .2n-n C .2n +1-nD .2n +1-n -2解析:选D.因为a n =1+2+22+…+2n -1=1-2n1-2=2n -1,所以S n =(2+22+23+…+2n )-n =2(1-2n)1-2-n =2n +1-n -2.6.已知数列{a n }的通项公式a n =2n-12n ,其前n 项和S n =32164,则项数n 等于________.解析:a n =2n-12n =1-12n ,所以S n =n -12⎝ ⎛⎭⎪⎫1-12n 1-12=n -1+12n =32164=5+164,所以n =6. 答案:67.已知ln x +ln x 2+…+ln x 10=110,则ln x +ln 2x +ln 3x +…+ln 10x =________. 解析:由ln x +ln x 2+…+ln x 10=110. 得(1+2+3+…+10)ln x =110,所以ln x =2. 从而ln x +ln 2x +…+ln 10x =2+22+23+…+210=2(1-210)1-2=211-2=2 046.答案:2 0468.已知函数f (n )=⎩⎪⎨⎪⎧n 2,n 为奇数,-n 2,n 为偶数,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于________.解析:由题意,a 1+a 2+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-…-(99+100)+(101+100)=100. 答案:1009.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N +.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)na n ,求数列{b n }的前2n 项和. 解:(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .故数列{a n }的通项公式为a n =n .(2)由(1)知,a n =n ,故b n =2n+(-1)nn . 记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+ (22),B =-1+2-3+4-…+2n ,则A =2(1-22n)1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.10.已知数列{a n }的各项均为正数,前n 项和为S n , 且S n =a n (a n +1)2,n ∈N +;(1)求证:数列{a n }是等差数列;(2)设b n =12S n ,T n =b 1+b 2+…+b n ,求T n .解:(1)证明:因为S n =a n (a n +1)2,n ∈N +, 所以当n =1时,a 1=S 1=a 1(a 1+1)2,所以a 1=1.当n ≥2时,由⎩⎪⎨⎪⎧2S n =a 2n +a n ,2S n -1=a 2n -1+a n -1, 得2a n =a 2n +a n -a 2n -1-a n -1. 即(a n +a n -1)(a n -a n -1-1)=0, 因为a n +a n -1>0, 所以a n -a n -1=1(n ≥2).所以数列{a n }是以1为首项,以1为公差的等差数列. (2)由(1)可得a n =n ,S n =n (n +1)2,b n =12S n =1n (n +1)=1n -1n +1. 所以T n =b 1+b 2+b 3+…+b n=1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.[B 能力提升]11.化简S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1的结果是( )A .2n +1+n -2 B .2n +1-n +2 C .2n -n -2D .2n +1-n -2解析:选D.因为S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1,所以2S n =n ×2+(n-1)×22+(n -2)×23+…+2×2n -1+2n ,有2S n -S n =2+22+23+…+2n -1+2n-n ,得S n =2n +1-2-n .12.已知数列{a n }中,a n =4×(-1)n -1-n (n ∈N +),则数列{a n }的前2n 项和S 2n =________.解析:S 2n =a 1+a 2+…+a 2n =[4(-1)0-1]+[4(-1)1-2]+[4(-1)2-3]+…+ [4(-1)2n -1-2n ]=4[(-1)0+(-1)1+(-1)2+…+(-1)2n -1]-(1+2+3+…+2n )=-2n (2n +1)2=-n (2n +1).答案:-n (2n +1)13.已知等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式; (2)令c n =⎩⎪⎨⎪⎧2S n ,n 为奇数,b n ,n 为偶数.设数列{c n }的前n 项和为T n ,求T 2n .解:(1)设数列{a n }的公差为d ,数列{b n }的公比为q , 由b 2+S 2=10,a 5-2b 2=a 3,得⎩⎪⎨⎪⎧q +6+d =10,3+4d -2q =3+2d ,解得⎩⎪⎨⎪⎧d =2,q =2, 所以a n =3+2(n -1)=2n +1,b n =2n -1.(2)由a 1=3,a n =2n +1得S n =n (n +2), 则n 为奇数时,c n =2S n =1n -1n +2.n 为偶数时,c n =2n -1,所以T 2n =(c 1+c 3+…+c 2n -1)+(c 2+c 4+…+c 2n )=⎣⎢⎡⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎦⎥⎤⎝ ⎛⎭⎪⎫12n -1-12n +1+(2+23+…+22n -1) =1-12n +1+2(1-4n)1-4=2n 2n +1+23(4n -1).14.(选做题)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2. (1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n +1(x n +1, n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解:(1)设数列{x n }的公比为q ,由已知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2.所以3q 2-5q -2=0. 因为q >0, 所以q =2,x 1=1,因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1. 由(1)得x n +1-x n =2n-2n -1=2n -1,记梯形P n P n +1Q n +1Q n 的面积为b n ,由题意得b n =(n +n +1)2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+…+b n =3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2.①又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1.②①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n+12.。